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Abstract

Determining the integrality gap of the bidirected cut relaxation for the metric Steiner tree
problem, and exploiting it algorithmically, is a long-standing open problem. We use geometry
to define an LP whose dual is equivalent to this relaxation. This opens up the possibility of
using the primal-dual schema in a geometric setting for designing an algorithm for this problem.

Using this approach, we obtain a 4/3 factor algorithm and integrality gap bound for the case
of quasi-bipartite graphs; the previous best integrality gap upper bound being 3/2 [RV99]. We
also obtain a factor

√
2 strongly polynomial algorithm for this class of graphs.

A key difficulty experienced by researchers in working with the bidirected cut relaxation
was that any reasonable dual growth procedure produces extremely unwieldy dual solutions.
A new algorithmic idea helps finesse this difficulty – that of reducing the cost of certain edges
and constructing the dual in this altered instance – and this idea can be extracted into a new
technique for running the primal-dual schema in the setting of approximation algorithms.

1 Introduction

Some of the major open problems left in approximation algorithms are centered around LP-
relaxations which researchers believe have not been fully exploited algorithmically, i.e., the best
known algorithmic result does not match the best known lower bound on their integrality gaps.
One of them is the bidirected cut relaxation for the metric Steiner tree problem [Edm67] and this
is the main focus of our paper.

The integrality gap of the bidirected cut relaxation is believed to be very close to 1; the best
lower bound known on the gap is 8/7, due to Goemans [Goe96] and Skutella[KPT07]. On the
other hand, the known upper bound is the same as the weaker undirected cut relaxation which is
2 by a straightforward 2-factor algorithm for it. The only algorithmic results using the bidirected
relaxation that we are aware of are: a 6/5 factor algorithm for the class of graphs containing at
most 3 required vertices [Goe96] and a factor 3/2 algorithm for the class of quasi-bipartite graphs,
i.e., graphs that do not have edges connecting pairs of Steiner vertices [RV99].

In this paper, we use geometry to develop a new way of lower bounding the cost of the optimal
Steiner tree. The best such lower bound can be captured via an LP, which we call the simplex-
embedding LP. A short description of this LP is that it is an `1-embedding of the given metric on
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a simplex, maximizing a linear objective function. Interestingly enough, the dual of the simplex-
embedding LP is a relaxation of the metric Steiner tree problem having the same integrality gap
as the bidirected cut relaxation.

We believe our geometric approach would open up new ways to use the primal-dual schema for
the bidirected cut relaxation. In this paper we exhibit progress made for the class of quasi-bipartite
graphs – graphs in which the set of Steiner vertices are stable. In particular, we describe one
dual growing procedure (the Embed algorithm in Section (4)) which helps us prove the following
property about the bidirected cut relaxation in quasi-bipartite graphs: If the minimum spanning
tree is the optimum Steiner tree, then the LP relaxation is exact (Theorem (4.1)). Based on a
modification of this algorithm, in Section 5 we design a primal-dual 3/2-approximate algorithm
for quasi-bipartite graphs matching the previous known bounds by [RV99, Riz03]. However, our
algorithms runs in nearly linear time while the previous algorithms were weakly polynomial.

A second key feature of our paper is the new algorithmic idea of reduced costs. We show that
modifying the problem instance by reducing costs of certain edges and then running the primal-dual
schema allows us to obtain provably better upper bounds on the integrality gap of the relaxation
for quasi-bipartite graphs. We use this idea first to get a simple and fast algorithm which proves
an upper bound of

√
2 on the integrality gap for quasi-bipartite graphs. Using another way of

reducing costs, we improve the upper bound to 4/3. This algorithm (similar to the algorithm
in [RV99, Riz03]) doesn’t run in strongly polynomial time, unlike the

√
2 algorithm. We believe

each of our algorithms demonstrates geometric and algorithmic ideas which could be insightful for
studying the bidirected cut relaxation in general graphs.

We also give a second geometric LP in which Steiner vertices are not constrained to be on the
simplex but are allowed to be embedded “above” the simplex. Again, the dual of this LP is a
relaxation of the metric Steiner tree problem. We show that on any instance, the integrality gap of
this latter LP is at most that of the bidirected relaxation. It turns out that this LP is in fact exact
for Goemans’ 8/7 example. However, there are examples for which the gap is 8/7 even for this
relaxation. Could it be that this relaxation has a strictly smaller integrality gap than the bidirected
cut relaxation?

1.1 Related Work

Historically, the idea of using an extra vertex to get a shorter tree connecting three points on the
plane goes back to Torricelli and Fermat in the seventeenth century. The Euclidean Steiner tree
problem, in its full generality, was first defined by Gauss in a letter to his student, Schumacher.
This problem was made popular by the book of Courant and Robbins [CRS96], who attributed it
to the nineteenth century geometer, Steiner. The rich combinatorial structure of this problem was
explored by many researchers; e.g., see the books by Hwang, Richards and Winter [HRW92] and
Ivanov and Tuzhilin [IT94].

The use of the bidirected cut relaxation for the Steiner tree problem goes back to Edmonds[Edm67]
who showed the relaxation is exact for the the case of spanning trees. Wong [Won84] used this
relaxation to study the Steiner arborescence problem, and Chopra and Rao[CR94a, CR94b] studied
the properties of facets of the polytope defined by the relaxation. Goemans and Myung[GM93]
study various undirected equivalent relaxations to the bidirected cut relaxation.

The bidirected cut relaxation has interesting structural properties which have been exploited in
diverse settings. Let α denote the integrality gap of this relaxation. [JV02] use this LP for giving
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a factor 2 budget-balanced group-strategy-proof cost-sharing method for the Steiner tree game;
Agarwal and Charikar [AC04] prove that for the problem of multi-casting in undirected networks,
the coding gain achievable using network coding is precisely equal to α. The latter result holds
when restricted to quasi-bipartite networks as well. Consequently, for these networks, the previous
best bound was 3/2 [RV99], and our result improves it to 4/3.

The best approximation algorithms for the Steiner tree problem is due to Robins and Zelikovsky
[RZ05]. The authors prove a guarantee of 1.55 for general graphs and also show that when restricted
to the quasi-bipartite case, the ratio is 1.28. However, it is not clear if these results would imply
an upper bound on the integrality gap of the bidirected cut relaxation. Very recently, Konemann
et.al. [KPT07] introduced another LP relaxation for the minimum Steiner tree problem which
they show is as tight as the bidirected cut relaxation, and showed that the algorithm of Robins
and Zelikovsky can be interpreted as a primal-dual algorithm on their LP. However, even their
interpretation does not prove any upper bound on the integrality gap of their relaxation as they
also compare with the optimum Steiner tree and not the optimum LP solution. Nevertheless, they
show upper bounds for their relaxation for a larger class of graphs called b-quasi-bipartite graphs.1

We stress that their LP seems quite different from ours – while we have variables for edges of the
tree, they maintain variables and constraints for special sub-trees called full components much in
the spirit of [RZ05]. It is an interesting question to study the relationship between their LP and
ours.

2 Preliminaries

Let G = (V,E) be an undirected graph with edge costs c : E → Q+. Let R ⊆ V denote the set
of required vertices. These are also called terminals and we use both terms interchangeably. The
vertices in S = V \R are called Steiner vertices. The Steiner tree problem is to find the minimum
cost tree connecting all the required vertices and some subset of Steiner vertices. The edge costs
can be extended to all pairs of vertices such that they satisfy triangle inequality (simply define the
cost of (u, v) to be the cost of the shortest path from u to v). This version is called the metric
Steiner tree problem. The two versions are equivalent.

We abuse notation and denote both the optimum Steiner tree and its cost as OPT . Also, given
a set of vertices X, we denote the minimum spanning tree on X and its cost as MST (X; c) or
simply as MST (X) when c is clear from the context.

Let U := {U ( V : U ∩R 6= ∅ and U ∩R 6= R} denote the subsets of V which contain at least
one required vertex but not all. Let δ(U) denote the edges with exactly one end point in U . Note
that any Steiner tree would use at least one edge in δ(U). This motivates the following undirected
cut relaxation of the Steiner tree problem:

min{
∑
e∈E

c(e)xe : x(δ(U)) ≥ 1, ∀U ∈ U ; x ≥ 0}

The MST on R is known (see for instance [GW95]) to be within factor 2 of the fractional
optimum of this LP, so this relaxation has an integrality gap of at most 2. However the integrality
gap can be arbitrarily close to 2 even when the set of Steiner vertices is empty. The example is
that of an n-cycle with each edge having cost 1 where all vertices are required. The optimal Steiner

1A graph is b-quasi-bipartite if on deleting all required vertices, the largest size of any component is at most b
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(spanning in this case) has value n − 1 while the solution giving xe = 1/2 on all edges is a valid
solution of cost n/2.

2.1 The bidirected cut relaxation

Edmonds [Edm67] introduced the following stronger relaxation called the bidirected cut relaxation2.
Fix an arbitrary required vertex r as root. Now replace each undirected edge (u, v) with two
directed arcs ~(u, v) and ~(v, u), each of cost c(u, v) (hence the name: bidirected). Call the set
of arcs ~E. Call a subset U valid if it contains the root but not all the required vertices. Let
U := {U ( V : U ∩ R 6= R and r ∈ U} denote the family of valid sets. The observation now is
that if the edges of any Steiner tree are directed to point away from the root, then at least one arc
in this directed arborescence must be in the cut set δ+(U) of arcs going out of U . This gives the
bidirected cut relaxation for the minimum Steiner tree problem.

min{
∑
e∈ ~E

c(e)x~e : x(δ+(U)) ≥ 1, ∀U ∈ U ; x ≥ 0} (BCR)

The above description of the LP seems to be dependent on the choice of the root r. However,
it is known (see for instance [GM93]) that the choice of the root doesn’t affect the value of the LP.
We denote the optimum of the above LP on a graph G as BCR(G).

Observe that the bidirected cut relaxation is stronger than the undirected cut relaxation. To see
this note that any solution to LP(BCR) corresponds to a solution to the undirected cut relaxation:
for every undirected edge add the variables on its two corresponding arcs. Edmonds [Edm67]
showed that the bidirected cut relaxation is exact for the MST problem, i.e., the integrality gap
of the relaxation is 1 for spanning tree instances. In fact, in Section 4 we will prove a stronger
statement – we will show the integrality gap is 1 in quasi-bipartite graphs where the spanning tree
is the optimal Steiner tree.

For Steiner trees however, no upper bound better than 2 (which is implied by the undirected cut
relaxation) is known on the integrality gap of LP(BCR). Nevertheless, it is believed to be strictly
better. Goemans [Goe96] showed an example where the gap is 8/7, which is the largest known lower
bound on the integrality gap. The only algorithmic results using the bidirected relaxation that we
are aware of prior to our work are: a 6/5 factor algorithm for the class of graphs containing at most
3 required vertices [Goe96] and a factor 3/2 algorithm by Rajagopalan and Vazirani [RV99] for
the class of quasi-bipartite graphs, i.e., graphs that do not have edges connecting pairs of Steiner
vertices.

A graph is called quasi-bipartite if there are no edges between any two Steiner vertices3. The
class of quasi-bipartite graphs is a non-trivial class for the bidirected cut relaxation. In fact, recently
Skutella (as reported by Konemann et.al.[KPT07]) exhibited a quasi-bipartite graph on 15 vertices
for which the integrality gap of the bidirected cut relaxation is 8/7. Moreover, the best known
hardness results for the Steiner tree problem in this class of graphs is quite close to that known in
general graphs (128

127 versus 96
95)[CC02].

2Actually, Edmonds was concerned only with the spanning tree problem, however the generalization to the Steiner
tree problem is natural

3In the original graph G and not in its metric completion.
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The bidirected cut relaxation has interesting structural properties which have been exploited
in diverse settings. [JV02] use this LP for giving a factor 2 budget-balanced group-strategy-proof
cost-sharing method for the Steiner tree game. Let α denote the integrality gap of this relaxation.
Agarwal and Charikar [AC04] prove that for the problem of multi-casting in undirected networks,
the coding gain achievable using network coding is precisely equal to α. The latter result holds
when restricted to quasi-bipartite networks as well. Consequently, for these networks, the previous
best bound was 3/2 [RV99], and our result improves it to 4/3.

Organization: In Section (3) we show the geometric theorem giving the lower bound, and other
results relevant to it. In Section(4), we demonstrate a dual-growing embedding procedure for
quasi-bipartite graphs. In Sections (5), (6) and (7) we give our 3/2,

√
2 and 4

3 factor primal-dual
approximation algorithms respectively.

3 A Geometric Lower Bound and its Consequences

We first present a special case of the geometric theorem, for the sake of ease of presentation. Let
∆k be the unit simplex in Rk

+, that is, ∆k := {x ∈ Rk
+ :

∑
i∈[k] x(i) = 1}, where x(i) is the ith

coordinate of x. The corners of ∆k are the unit vectors in Rk
+ and we denote the set of k points

as R. Let T be a tree whose vertices are R and a finite set S of points from ∆k which are not the
corners. For any vertex v ∈ R ∪ S of T , let degT (v) denote the degree of the vertex in the tree
T . Define the distance between two points to be half the `1-distance, also called the variational
distance; for any two points x, y ∈ ∆k, d(x, y) := 1

2

∑k
i=1 |x(i) − y(i)|. (The half is so that two

corners are at a distance of 1). For any edge e = (x, y), let d(e) := d(x, y). Let d(T ) :=
∑

e∈T d(e).
Then

Theorem 3.1 d(T ) ≥ k − 1.

Note that if the set S were empty, that is T was simply a spanning tree of R, then the above relation
holds with equality since any two corners are at a distance of 1. One way to interpret the above
theorem is that Steiner points from the simplex don’t improve upon the MST with respect to the
variational distance of the corners of the simplex. This we believe is somewhat counter-intuitive,
since in most geometric spaces, the Steiner points do improve upon the MST. What is special here
is the `1-distance, and the location of the required vertices (they are the corners) on the simplex.

Proof: Let R = {e1, e2, . . . , ek} be the unit vectors in Rk. The proof follows by a counting
argument. For every edge (x, y) in T , and i ∈ [k], note that either x is on the unique path from y
to ei in T or y is on the unique path from x to ei. In the first case we say x is nearer to ei than
y. If x is nearer to ei than y, then we lower bound |x(i)− y(i)| by x(i)− y(i), otherwise we lower
bound by y(i)− x(i). Thus,

d(T ) =
1
2

∑
(x,y)∈E

∑
i∈[k]

|x(i)− y(i)| ≥ 1
2

∑
(x,y)∈E

∑
i∈[k]

sgni(x, y) · (x(i)− y(i)),

where sgni(x, y) is 1 if x is nearer to ei than y in T , and −1 otherwise.
Note that in the summation, the coefficient of x(i) gets a contribution +1 for all of its neighbors

in T except possibly the unique neighbor on the path from x to ei, from which it gets a contribution

5



of −1. (We say possibly because if x were ei itself, then there is no neighbor on the path from x to
ei). Thus, the coefficient of x(i) is 1

2 (degT (x)− 2) if x 6= ei and 1
2(degT (x)) if x = ei.

Therefore,

d(T ) ≥ 1
2

∑
x∈T,i∈[k]

(degT (x)− 2)x(i) +
1
2

∑
i∈[k]

2ei(i)

=
1
2

∑
x∈T

(degT (x)− 2) +
∑
i∈[k]

1

= k − 1.

where the equality in the second line holds because
∑

i∈[k] x(i) = 1 and the last equality follows
from the fact that in a tree

∑
x∈T degT (x) = 2|V (T )| − 2. 2

The general theorem allows two concessions on the location of the points: first, the points need not
be on the unit simplex but rather on a λ-simplex; second, the set R need not be the corners of the
λ-simplex.

The λ-simplex in k dimensions denoted as ∆(λ)
k is defined as the set of points in Rk

+ whose coor-
dinates sum up to λ, for some parameter λ > 0. That is, ∆(λ)

k := {x ∈ Rk :
∑

i∈[k] x(i) = λ}.
Let R = {z1, z2, · · · , zk} be a (ordered) set of k points in ∆(λ)

k . Define γ(R) := (
∑

i∈[k] zi(i) − λ).

Let T be any tree whose vertices are R and a finite set S of other points in ∆(λ)
k . Let d() be the

variational distance defined above. Then,

Theorem 3.2 d(T ) ≥ γ(R).

Note that when R is the set of corners of a unit simplex, the above implies Theorem (3.1).

Proof: Let R′ := {e1, · · · , ek} be the corners of the λ-simplex. From T , construct the tree T ′ with
vertices v(T ′) = V (T ) ∪R′ and edges E(T ′) = E(T ) ∪ {(ei, zi) : i = 1 · · · k}.

Note that the distance between zi and ei is d(ei, zi) = λ− zi(i). By scaling. Theorem (3.1) can
be easily modified to give d(T ′) ≥ (k − 1) · λ. Thus,

d(T ) = d(T ′)−
∑
i∈[k]

(λ− zi(i)) ≥ (k − 1) · λ−
∑
i∈[k]

(λ− zi(i)) = γ(R)

2

3.1 A Lower Bound on OPT

Theorem (3.2) can be used to get a lower bound on the minimum Steiner tree of any graph
G = (R ∪ S,E). Given G, suppose |R| = k and R = [k]. Embed the vertices of the graph
onto the λ-simplex in k dimensions using z : V → ∆(λ)

k . Call an embedding z valid if for all edges
(u, v) ∈ E, c(u, v) ≥ d(zu, zv). Henceforth, we will abuse notation and d(u, v) to denote d(zu, zv)
and d(T ) to denote

∑
(u,v)∈E(T ) d(zu, zv). Let z(R) := {z1, . . . , zk} be the embedding of the vertices

in R. Henceforth, we will use γ(z) to denote γ(z(R)).
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Now given any valid embedding z, Theorem 3.2 gives a lower bound on the cost of any Steiner tree
T of G since c(T ) ≥ d(T ) ≥ γ(z). In particular we have the following minimax inequality lower
bounding the optimum Steiner tree.

OPT ≥ max{γ(z) : z is a valid embedding }.

The above maximum can be obtained by solving the following linear program which we call the
simplex-embedding LP.

max {γ(z) =
∑
i∈[k]

zi(i)− λ : (SimpEmb)

∑
i∈k

zv(i) = λ, ∀v ∈ V ;

zv(i)− zu(i) ≤ di(u, v) ∀i ∈ [k], (u, v) ∈ E;
zu(i)− zv(i) ≤ di(u, v), ∀i ∈ [k], (uv) ∈ E;

1
2

∑
i∈[k]

di(u, v) ≤ c(u, v), ∀(u, v) ∈ E;

zv(i), di(u, v) ≥ 0, ∀v ∈ V, i ∈ [k], (u, v) ∈ E}

Given input graph G, let SE(G) denote the maximum of the above LP. The above discussion
implies the following theorem.

Theorem 3.3 Given any graph G, OPT ≥ SE(G).

Remark 1: We should remark that the idea of embedding vertices of a graph onto a simplex to get a
relaxation is not new. Calinescu et.al. [CKR98] use a similar LP relaxation for the multiway cut problem.
In the multiway cut problem we are given a graph G and a set of terminals R with costs on edges and the
goal is to find a minimum cost set of edges whose removal separates each pair of terminals. If |R| = k then
an equivalent formulation would be to embed the vertices onto the corners of a k-dimensional unit simplex
so that the total weighted (weighted by costs of edges) distance (half `1 distance) between endpoints of edges
is minimized. The relaxation is obtained by letting the points embed anywhere on the simplex. [CKR98]
obtain a 3/2− 1/k factor approximation algorithm for the problem which was improved to 1.3438− o(k) by
Karger et.al [KKS+04].

On the face of it the [CKR98] relaxation seems similar to the one described above. However there are
key differences. Firstly, the relaxation of [CKR98] is a primal LP relaxation while ours is a dual relaxation.
Moreover, in the [CKR98] relaxation the terminals always embed to the corners of the simplex; we need to
be able to embed the terminals away from the corners. Arguably, with the idea of vertices being embedded
to simplex being given, theirs seems to be a natural relaxation while ours crucially depends on Theorem
3.2 which we believe is non-trivial. Nevertheless, there could be a duality between the two LP relaxations,
however it is not clear how one would try to achieve it. We also mention that [CGK05] prove that the
[CKR98] relaxation is strictly stronger than the bidirected relaxation for the multiway cut, while in the next
section we show that the above relaxation is equivalent to the bidirected cut relaxation for Steiner trees.

We end this remark by stating that the special case of Theorem 3.3 where only one Steiner vertex is
allowed in the tree was essentially proved by [CKR98]. We point out that this follows simply from by writing
out the expression for the half `1 distance for the k terminals and the single Steiner point and generalizing
to more than one Steiner point needs the counting argument.
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3.2 Connections to the bidirected cut relaxation

We now show that for any graph G and cost vectors c, the optimum of the simplex embedding LP
equals the optimum of the bidirected cut LP described in Section 2. The proof uses the following
dual of the simplex-embedding LP. We have a variable xuv for every edge (u, v), variables fi(u, v)
and fi(v, u) for each i ∈ [k] and (u, v) ∈ E; and variable αv for every vertex v. Apart from the
free αv’s, every other variable is non-negative. Below, we multiply each of the constraints and the
objective value by 2.

SE(G) = min {
∑

(u,v)∈E

c(u, v)xuv : (SE-Dual)

xuv ≥ fi(u, v) + fi(v, u), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi(u, v)− fi(v, u)) ≥ α(u), ∀i ∈ [k], u ∈ V \ i;

∑
v:(i,v)∈E

(fi(i, v)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k];

∑
v

α(v) = −2;

fi(u, v), fi(v, u), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k]}

To interpret LP(SE-Dual), one can think of xuv as capacity of edge (u, v). There are k circu-
lations - fi for every required vertex i each satisfying the capacity constraint and moreover, the
supplies (excess flows) for fi at every vertex v is α(v) (it could be negative) except at the vertex
i, where it is α(i) + 2. These are the supply constraints. The last equality constraint implies the
total supplies sum up to zero, as it should be in a circulation.4

Before going on to describe the equivalence of LP(BCR) and LP(SE-Dual), we show a direct proof
that LP(SE-Dual) is a relaxation of the minimum Steiner tree problem giving an alternate proof
of Theorem 3.3.

Alternate proof of Theorem 3.3: Given any Steiner tree T , consider the following solution to
LP(SE-Dual): xuv = 1 for all (u, v) ∈ E(T ), and 0 for all other edges; α(v) = degT (v) − 2 for
all v ∈ V (T ) and 0 for all other vertices. Note that

∑
v α(v) = −2 and

∑
(u,v)∈E c(u, v)xuv is the

cost of the tree. It remains to define the circulations. For required vertex i, consider the unique
out-tree rooted at i formed by directing all edges of T away from i. For every edge (u, v) in T , let
fi(u, v) = 1 if (u, v) is directed from u to v in the out-tree, or fi(v, u) = 1 if the arc is oriented
otherwise. All other arcs carry 0 circulation. Note that for any vertex v in the tree other than i,
the total flow coming in is 1, and flow going out is degT (v)− 1; while for i, the total flow going out
is degT (i). Thus the circulation satisfies the supply constraints. This shows that LP(SE-Dual) is a
relaxation of the minimum Steiner tree problem. �

4Note that the constraint of the LP’s only imply that the supplies are at least α(v) or α(i) + 2. Since the sum of
supplies adds up to 0 and the sum of the α(v)’s equals −2, all these inequalities are actually tight.
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We now go on to show the equivalence between LP(SE-Dual) and LP(BCR). In [GM93], Goemans
and Myung provide two vertex weighted relaxations which are equivalent to the bidirected cut
relaxation. Although our relaxation is different, our proof of equivalence follows on similar lines.

Theorem 3.4 Given any graph G, SE(G) = BCR(G).

Proof: We show there exists a feasible solution to LP (BCR) of value Γ if and only if there exists
a feasible solution to LP (SE-Dual) of value Γ. Recall that LP(BCR) (with root r ∈ R) was the
following:

min{
∑
e∈ ~E

c(e)y~e : y(δ+(U)) ≥ 1, ∀U ∈ U ; y ≥ 0}

LP (BCR) ≥ LP (SE-Dual): Let {y ~(u,v)
} ~(u,v)∈ ~E be a feasible solution of LP (BCR) of cost Γ with

root r. The corresponding solution to LP (SE-Dual) is as follows: xuv := y ~(u,v)
+ y ~(v,u)

and α(v)
is the supply at vertex v which is the difference of the outgoing y ~(v,u)

’s and the incoming y ~(u,v)
’s,

except at r where α(r) is the supply−2. That is,

α(v) =

{∑
u:(u,v)∈E(y ~(v,u)

− y ~(u,v)
) if v 6= r∑

u:(u,v)∈E(y ~(v,u)
− y ~(u,v)

)− 2 if v = r

Note that
∑

v α(v) = −2.
Now we describe the circulations. The circulation fr corresponding to r just mimics the y ~(u,v)

’s.
That is fr(u, v) := y ~(u,v)

and fr(v, u) := y ~(v,u)
, for all edges (u, v). To get the circulations corre-

sponding to another required vertex j, we use the fact that the minimum r-j cut (w.r.t. capacities
y) in the digraph with arc set ~E and capacities y ~(u,v)

’s is at least 1 since the solution is feasible for
LP (BCR). This implies there is a standard flow grj from r to j in this digraph. The flow fj is
found by subtracting 2grj from fr.

To be precise, for each edge (u, v) we set

fj(u, v) := max[0, fr(u, v)− 2grj( ~(u, v))] + max[0, 2grj( ~(v, u))− fr(v, u)]

and
fj(v, u) := max[0, fr(v, u)− 2grj( ~(v, u))] + max[0, 2grj( ~(u, v))− fr(u, v)]

It is easy to check that fj satisfies the constraints of LP(SE-Dual). Since grj increases the supply of
j by 2 and decreases that of i by 2, the supply constraints are guaranteed. The capacity constraints
are guaranteed by noting

fj(u, v) + fj(v, u) ≤ max[(fr(u, v) + fr(v, u)), (fr(u, v)− fr(v, u) + 2grj( ~(v, u)))]

both of which are less than y ~(u,v)
+ y ~(v,u)

= xuv. Thus the solution is feasible for LP(SE-Dual) and
is of value Γ.

LP(SE-Dual) ≥ LP(BCR): Let ({x}, {fi}, {α}) (respectively over edges, arcs and vertices) be
a solution to LP (SE-Dual). Without loss of generality, by adding circulations if necessary, we can

9



assume for all edges (u, v), and i we have xuv = fi(u, v) + fi(v, u). For LP(BCR), let r be the
chosen root. Then the solution is: for all edges (u, v), y ~(u,v)

:= fr(u, v) and y ~(v,u)
:= fr(v, u) To see

feasibility for LP (BCR), we must show across any cut S separating r and a required vertex j, we
have

∑
~(u,v)∈δ+(S)

fr(u, v) ≥ 1. To see this, consider the flow grj : the difference between fr and fj .
To be precise:

grj( ~(u, v)) = max[0, fr(u, v)− fj(u, v)] + max[0, fj(v, u)− fr(v, u)]

Observe that the supply of the flow grj on every vertex other than r or j is 0 and on r is 2 and j
is −2. This is because the supplies of fr and fj match on every vertex other than r and j where they
differ by 2. Thus it is a standard flow from r to j of value 2, implying across any cut S as above,∑

~(u,v)∈δ+(S)
grj( ~(u, v)) ≥ 2. The proof ends by noting for any arc ~(u, v), grj( ~(u, v)) ≤ 2fr(u, v),

because each term in the above definition of grj , is less than fr(u, v). The second term is less since
fr(u, v) + fr(v, u) = xuv ≥ fj(v, u). 2

What the above theorem shows is that the LP(SimpEmb) can be interpreted as a geometric
dual to the bidirected cut relaxation. In Section 4 we explain how we design algorithms using the
primal-dual schema with this new geometric dual.

3.3 A stronger LP relaxation

Note that in LP(SE-Dual), the α(v)’s are free variables. This is because the interpretation of α(v)
as degT (v)−2 implies that for leaves α(v) could be negative. However, in any optimal Steiner tree,
no Steiner vertex would be a leaf. Therefore, we could add the constraint (α(v) ≥ 0, ∀v ∈ S),
and the new relaxation, call it LP(SE-Dual2), would still be a feasible relaxation for the minimum
Steiner tree problem.

min {
∑

(u,v)∈E

c(u, v)xuv : (SE-Dual2)

xuv ≥ fi(u, v) + fi(v, u), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi(u, v)− fi(v, u)) ≥ α(u), ∀i ∈ [k], u ∈ V \ i;

∑
v:(i,v)∈E

(fi(i, v)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k];

∑
v

α(v) = −2;

fi(u, v), fi(v, u), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k];
α(v) ≥ 0, ∀v ∈ S} (1)

The corresponding change in the simplex-embedding LP is that for the Steiner vertices, the
equality constraint

∑
i∈[k] zv(i) = λ is relaxed to an inequality constraint

∑
i∈[k] zv(i) ≥ λ. Call

this new LP, LP(SimpEmb2). In other words, the Steiner vertices are allowed to embed “above”
the simplex. It is not too hard to extend Theorem(3.2) to capture this as well.
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It is clear that the optimum value of LP(SimpEmb2) is at least that of LP(SimpEmb) and thus
it gives as good a lower bound. In fact, the following example in Figure(1) shows that on some
instances the former is strictly better, and thus LP(SE-Dual2) is strictly a better relaxation than
LP(SE-Dual) and also by Theorem(3.4), better than LP(BCR).

4
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8 8

888

8 8

8

888 8

4

4

Above the Simplex EmbeddingOn the Simplex Embedding

(8,8,0)

(0,8,8)

(8,8,8)

(8,0,8)

(0,0,16)(0,16,0)

(16,0,0)

(5,5,5)

(1,7,7)

(7,7,1) (7,1,7)

(0,0,15)(0,15,0)

(15,0,0)

444
8

4

88

8

Figure 1: In the figure, black vertices are required and white ones are Steiner. Integrality gap of
the bidirected cut relaxation for the graph is known to be 16/15 (due to Goemans, as reported in
Chap 23 of [Vaz01]). The middle figure shows an embedding on the 15-simplex attaining a value of
30. The figure to the right shows how we can get a higher value of 32 if we allow Steiner vertices
to move above the 16-simplex. Note that the Steiner vertex at the center is not on the 16-simplex.

Nevertheless, the example of Skutella which shows a gap of 8/7 for the bidirected cut relaxation
can be shown to also give the same gap for LP(SE-Dual2). We provide Skutella’s example and
integrality gap of 8/7 for the stronger LP in Appendix A. Henceforth, in the remainder of the paper
we will investigate LP(SimpEmb) and thus all our results will imply results for the bidirected cut
relaxation.

3.4 Primal-Dual schema with the geometric dual

All the algorithms we give for the minimum Steiner tree problem fall in the following primal-dual
schema: we construct a Steiner tree T and a feasible embedding z of the vertices of the graph onto
a λ-simplex; moreover we prove c(T ) ≤ ρ ·γ(z), and thus get a ρ-approximation for the Steiner tree
problem as well as an upper bound on the integrality gap of LP(SE-Dual) and LP(BCR).

In the remainder of the paper we restrict ourselves to the special class of graphs called quasi-
bipartite graphs. Such graphs do not have Steiner-Steiner edges. The best known upper bound on
the integrality gap of LP(BCR) on such graphs was 3/2[RV99].

For such graphs, we first describe the dual growing procedure, Embed, which gives us a feasible
embedding of vertices. Embed has the property that on quasi-bipartite graphs, if the MST on
the required vertices is the optimal Steiner tree, then it returns an embedding z such that γ(z)
equals the cost of the MST on terminals. Otherwise, it returns a Steiner vertex v such that
MST (R ∪ v) < MST (R).

The Embed algorithm stops after returning the first Steiner vertex. In fact, one can extend
Embed to obtain more Steiner vertices, however a natural extension to do so doesn’t give good
enough dual – that is, there is an example where the natural dual growing procedure stops with a
dual which is around 1/2 the cost of the optimal tree. For details, refer Section 5. In Section 5, we
show how to modify Embed and give a primal-dual algorithm achieving the upper bound of 3/2
for quasi-bipartite graphs. The algorithm can be made to run in (almost) linear time. We note
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that Rizzi’s [Riz03] algorithm runs in time O(n2T (n,m) log2 cmax) where T (n,m) is the time taken
to compute an MST in a n-vertex, m-edge graph, while cmax is the maximum cost of an edge.

In Sections 6 and 7, we use Embed in rounds (with a processing step before each round) to get√
2 and 4

3 factor approximations respectively for quasi-bipartite graphs. The
√

2 algorithm runs in
strongly polynomial time, while the 4/3 algorithm takes the same time as Rizzi’s algorithm.

4 The Embed algorithm

In this section, we describe the dual growing procedure Embed which given a quasi-bipartite graph
G and a cost function c does the following.

Case 1: If MST (R) is the optimal Steiner tree, then it returns a feasible embedding z such that
γ(z) = MST (R). Note, in this case, MST (R) = OPT = BCR, since MST (R) ≥ OPT ≥
BCR ≥ γ(z).

Case 2: Or, returns a Steiner vertex v whose addition strictly helps the MST on R, that is,
MST (R ∪ v) < MST (R). We say that Embed crystallizes v.

The following theorem is immediate.

Theorem 4.1 Given a quasi-bipartite instance G, if the addition of no Steiner vertex reduces the
cost of MST (R), then MST (R) = BCR(G). In particular the integrality gap for the instance is 1.

Note that the theorem implies the following important property about the bidirected cut relaxation
for quasi-bipartite graphs: If the minimum spanning tree is optimal, then the relaxation is exact.
We are now ready to describe Embed.

The following is a continuous description of the algorithm, which can be easily discretized. The
algorithm has a notion of time. Time starts at t = 0 and increases at unit rate. At any time
t, all required vertices are on the t-simplex, all Steiner vertices are below the t-simplex (sum of
coordinates is less than t). The algorithm maintains a set of terminal-terminal edges T , which form
a forest at any time t. Let K denote a connected component of required vertices formed with the
edges of T and K denote the set of all connected components. At time t = 0, the algorithm starts
with T = ∅ and the components are singleton required vertices. All vertices start at the origin at
t = 0. Before describing how the embedding at time t is formed, we make a few definitions.

Definition 1 At any point of time, d(u, v) be the half-`1 distance between zu and zv, that is,
d(u, v) := 1

2

∑
i |zu(i)−zv(i)|. Let d+({u, v}) :=

∑
i∈Xu

(zu(i)−zv(i)), where Xu are the coordinates
in which u dominates v. That is, Xu := {i : zu(i) ≥ zv(i)}. Note that d+ takes an ordered pair of
vertices.

Claim 4.2 If u and v are both on a λ-simplex (for some λ > 0), then d+({u, v}) = d+({v, u}) =
d(u, v).

Proof: Note by definition, d(u, v) = 1
2(d+({u, v}) + d+({v, u})). Also, if u, v are both on the

λ-simplex we get d+({u, v}) =
∑

i∈Xu
zu(i)−

∑
i∈Xu

zv(i) = λ−
∑

i∈Xv
zu(i)− (λ−

∑
i∈Xv

zv(i)) =∑
i∈Xv

zv(i)−
∑

i∈Xv
zu(i) = d+({v, u}). 2
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Definition 2 Given a vertex v and a component K, let d(v,K) := minu∈K d(u, v). Similarly, let
d+({v,K}) := minu∈K d+({v, u}) and d+({K, v}) := minu∈K d+({u, v}). For any two components
K,L ∈ K, let c(K,L) := minu∈K,v∈L c(u, v). An edge (u, v) is tight if d(u, v) = c(u, v).

Definition 3 A Steiner vertex v links to a component K if there exists i ∈ K so that d+({i, v}) =
c(i, v). The edge (i, v) is called a link of v to K.

We first give the intuition of the algorithm. At time t = 0 all vertices are embedded to the origin
of Rk+. Note that we are in k-dimensions and thus we correspond every coordinate to a required
vertex. As time moves on, required vertices increase their respective coordinates till some edge
goes tight in which case the vertices merge to form components and their coordinate increases are
“coupled”. Steiner vertices v stay at the origin till some required vertex i goes “far enough” so
that d+({i, v} = c(i, v). We use the d+() distance rather than the d() since the Steiner vertices are
not on the simplex, but below it. Recall that when on the simplex (Claim 4.2), the two distances
match. The algorithm goes on till either all the required vertices merge into a single component
(Case 1), or a Steiner vertex hits the simplex (Case 2). We now give the details of the algorithm.

Algorithm 1 Embed

Required vertices: For each component K and required vertex i ∈ K, the algorithm increases
the jth coordinate of i at rate 1/|K|, for each j ∈ K. Clearly, this will keep required vertex
i on the t-simplex. When an edge (i, j) goes tight, the algorithm merges the components
containing i and j and adds (i, j) to T . It is instructive to note that when restricted to only
required vertices, this actually mimics Kruskal’s MST algorithm.

Steiner vertices: For each Steiner vertex v, the algorithm increases its coordinates depending on
the components it has linked to. For each component K that v is linked to, the coordinates
zv(i) for all i ∈ K increase at rate 1/|K|. Thus, henceforth d+({i, v}) remains the same for
all terminals i ∈ K. Note that at t = 0, the Steiner vertex is linked to no component and
remains at the origin till t = c(i, v), where i is the closest terminal to v. Also note that if
a Steiner vertex v is linked to exactly one component K, then rate of growth of zv(i) equals
that of zi(i), for all i ∈ K.

The algorithm terminates if the number of components becomes 1 (Case 1) or a Steiner vertex v
hits the simplex, that is

∑k
j=1 zv(j) = t, and is linked to more than one component (Case 2). In

Case 1, the algorithm runs the following projection step.

Projection Step: If Case 1 happens at time t = λ, for every Steiner vertex v and coordinate j,
zv(j) := zv(j) λP

i zv(i) . Note that each Steiner vertex is projected on to the λ-simplex. The
coordinates of the required vertices are kept the same.

The embedding procedure is described in Algorithm 1. The example in Figure 4 illustrates the
algorithm on a graph with three required vertices.

We now show Algorithm 1 satisfies the conditions mentioned at the beginning of the section.
In Case 1, the algorithm returns a tree T and embedding z. The way the required vertices are
moved, it is clear that terminals stay on the t-simplex and no terminal-terminal edge is over tight.
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Figure 2: Snapshots of the running of Embed on the graph above at times t = 2, 3, 4, 5. At
time t = 2, the Steiner vertex v links to the required vertices x and y, and increases its x and
y coordinates at rate 1. At time t = 3, x, y merge. The edge (x, y) goes into Remove(v). At
time t = 4, v links to z, and moves in the zth coordinate as well. At t = 5, it hits the 5-simplex,
terminating the algorithm. The tree shown with dotted lines pays exactly for the dual and is
cheaper than the MST.

Steiner vertices always stay below the t-simplex – if they hit the t-simplex since we are in Case 1
there is exactly one component to which it is linked and thus due to the movement of the terminals,
the Steiner remains on a t-simplex throughout. To see that terminal-Steiner edges are not over
tight, note that before the projection step, we have for every terminal i and every Steiner vertex
v, d+({i, v}) ≤ c(i, v) (otherwise v links to the component containing i). After projection step, the
coordinates of the Steiner vertex only increase, which means d+({i, v}) only decreases. Moreover,
since v is on the simplex, we have (by Definition 1) d+({i, v}) = d(i, v) and thus d(i, v) ≤ c(i, v).

We now need to show that tree T has cost γ(z). In fact we prove something stronger. Given
any connected component K, denote the restriction of T to K as T [K].

Lemma 4.3 At any instant of time t, for any connected component K,
c(T [K]) =

∑
i∈K zi(i)− t.

Proof: At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈K zi(i) increases at
the same rate as time, we need to prove the lemma only in the time instants when two com-
ponents merge. Suppose K,K ′ merge at time instant t due to edge (i, j) which comes in the
tree, with i ∈ K, j ∈ K ′. Note d(i, j) = c(i, j) = t. So for the new connected component K ∪K ′,∑

i∈K∪K′ zi(i)−t =
∑

i∈K zi(i)−t+
∑

i∈K′ zi(i)−t+t = c(T [K])+c(T [K ′])+c(i, j) = c(T [K∪K ′]).
2

Thus, we have established correctness if we are in Case 1.

In Case 2, when v hits the simplex (suppose at time t = λ), the algorithm returns v as the
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Steiner vertex helping the minimum spanning tree. Since v hits the simplex there must be at
least two components to which it is linked to. Suppose they are K̂1, . . . , K̂r̂ with r̂ ≥ 2. Let
P̂ =

⋃r̂
`=1 K̂` be the vertices of K`’s. We now show MST (P ∪ v) < MST (P̂ ) which will imply

MST (R ∪ v) < MST (R) by extending the MST to all required vertices.
With each Steiner vertex v, we associate a subset of edges Remove(v) of T . Suppose v is linked

to K and K ′ and these merge at time t, due to edge (i, j), i ∈ K and j ∈ K ′. At this point, (i, j)
is added to the set Remove(v). Thus, a Steiner vertex may have more than one link into the same
component, but for each extra link, there is an edge in Remove(v). At any instant of time, let v
be linked to K1, . . . ,Kr, let P :=

⋃r
`=1K` and let Tv be the tree formed by adding all the links

incident at v to
⋃r
`=1 T [K`] and deleting Remove(v). The proof of the following lemma is very

similar to that of Lemma 4.3.

Lemma 4.4 At any instant of time, c(Tv) =
∑

i∈P zi(i)−
∑

i∈P zv(i).

Proof: At time t = 0, the lemma holds vacuously. Since the quantity
∑

i∈P zv(i) increases precisely
at the rate

∑
i∈P zi(i), we need only check the lemma when v links to a new component K. Suppose

this happens at time t. This means, there is a terminal j ∈ K with c(v, j) = t. Note that∑
i∈K zi(i) = t, by the way required vertices move. Thus the increase in both left-hand side and

right-hand side is t, and thus equality holds. 2

Hence at time t = λ, when v hits the simplex,
∑

i∈P̂ zv(i) = λ, and so c(Tv) =
∑

i∈P̂ zi(i)− λ.
From the proof of Lemma 4.3, we have that the RHS is at most MST (P̂ ) with equality iff all the
vertices of P̂ are in a single component. Since r̂ ≥ 2, we see that v improves the MST. Thus, we
have proved the following theorem.

Theorem 4.5 Given a quasi-bipartite graph G, the algorithm Embed either returns a terminal
spanning tree T and feasible embedding z with c(T ) = MST (R) = γ(z); or returns a Steiner vertex
v with MST (R ∪ v) < MST (R).

Remark: Note that the above algorithm and analysis do not use the fact the cost satisfies triangle
inequality. We would need this for our algorithms in Sections 6 and 7 to work.

5 A 3
2-factor approximation algorithm

The dual growing procedure Embed suggests the following primal-dual algorithm: At each step,
maintain the connected components of T ; when a Steiner vertex v hits the simplex, merge all the
components v was linked to by adding v and the various links connected to it to T and continue
the dual growing procedure.

However, as the example in Figure(5) suggests, such an algorithm cannot give anything better
than a factor 2.

The above example suggests a shortcoming of the Embed procedure: it grows the coordinates
of all the Steiner vertices, although any optimum Steiner tree contains at most one Steiner vertex
of degree larger than 2. To be precise, the k vertices at the bottom increases the coordinates of
all the ` Steiner vertices at a very high rate (at rate k), although only one of them is useful for
connecting the k terminals.
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Figure 3: In the above graph, the black vertices are terminals and the white vertices are Steiner. There are
` Steiner vertices connected to k terminals via a complete bipartite graph K`,k. Think of `� k � 1. There
are ` other terminals forming a perfect matching with the l Steiner vertices. Each edge is of length 1. Note
that the optimum Steiner tree costs at least 2`. In the procedure Embed, all the Steiner vertices hit the
t-simplex simultaneously at time t = 1 + 1

k . Subsequently, no more dual can be grown and thus the total
dual obtained is (k + `− 1)(1 + 1/k) ∼ k + `.

The main idea behind the 3/2-factor algorithm is that it uses Embed to recognize useful (degree
≥ 3) Steiner vertices early (not wait till they hit the simplex) and on recognizing such a vertex,
merge the components linked to the vertex so that these components do not raise the coordinates
of other Steiner vertices.

In short, the algorithm runs Embed until some Steiner vertex is linked to three distinct con-
nected components. If that is the case, it merges all the components, and adds the Steiner vertex
and the three links to the tree. The idea is that this Steiner vertex should be helpful. With this
modification, we see that if some Steiner vertex hits the simplex, it must do so being connected to
at most two components. In this case, the algorithm merges these components, adds the Steiner
vertex and the (possibly two) links to the tree, and continues. The algorithm terminates when
there is a single component.
The algorithm maintains a set of edges and vertices, T , which is initialized to E(T ) = ∅ and
V (T ) = R. At every time instant t, the algorithm maintains a family of connected components
K of T ; and an embedding z : V → Rk

+ of the vertices. We emphasize that components in K
contain Steiner vertices unlike those in Embed. At time t = 0, all the vertices of the graph are
embedded at the origin. Time increases at rate 1. We state the algorithm formally in Algorithm 2
Smart-Embed. We use the definitions 1,2 and 3 from Section 4.

It is clear that the algorithm returns a Steiner tree T in the end. Moreover, the feasibility
of the embedding returned by Embed also implies the feasibility of the embedding z returned by
Smart-Embed. We finish the section with the following theorem which shows that the tree is
within 3/2 of the optimal.

Theorem 5.1 The algorithm Smart-Embed returns a tree T and a feasible embedding z, with
c(T ) ≤ 3

2γ(z).

Proof:
We show that at any time t, for any connected componentK we have c(T [K]) ≤ 3

2(
∑

i∈K∩R zi(i)−t).
Henceforth, we abuse notation and denote c(T [K]) by c(K). The proof follows by induction on the
size of K. Moreover it is enough to check that the inequality is preserved after every merge step
as between merge steps both sides of the inequality remain unchanged.
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Algorithm 2 Smart-Embed

Component Vertices: For each componentK ∈ K, and for each terminal i ∈ K∩R, the algorithm
increases the ith coordinate of every vertex v ∈ K (required or Steiner) at rate 1/|K ∩R|.

Other Vertices: For each Steiner vertex v not in any component, the algorithm increases its
coordinates depending on the components it has linked to. For each component K that v is
linked to, the coordinates of v corresponding to K increase at rate 1/|K ∩R|.

Merge Step: A Merge Step happens when one of the three events take place:

1. For some two components K,L ∈ K, we have c(K,L) = t. Recall that c(K,L) :=
minu∈K,v∈L c(u, v) and now u or v (but not both since graph is quasi-bipartite) could be
Steiner vertices. Since we project (as we see below) Steiner vertices of a component to the
t-simplex, the distance between these components is also t.

In this case, we merge K and L into one component. All Steiner vertices linked to either K
or L now link to the new component. Moreover, if a Steiner vertex is linked to both K and
L, the costlier of its links to K and L is removed. This maintains that a Steiner vertex has
only one link to a component. Let (u, v) be the edge which achieves c(K,L). Add (u, v) to
T .

2. Some Steiner vertex v not in any component hits the t-simplex, that is,
∑

i∈[k] zv(i) = t. In
this case, merge v and all the components it links to into one single component. For each
component K, v links to, add the cheapest links of v to K to T . Add v to T as well.

3. Some Steiner vertex v not in any component links to three components Ki,Kj ,Kl. In this
case, merge v and Ki,Kj ,Kl into one component. Once more all Steiner vertices linked to
either Ki,Kj or Kl now link to the new component. Steiner vertices which link to two out
of the three, discard their costlier link, as in Step 1. Add v and its links to Ki,Kj ,Kl to T .
Also project v onto the t-simplex as in Embed.

Projection Step: Once the number of components is 1, we do a projection step as in the Embed
procedure.

Suppose at time t, a merging of type 1 occurs: components K and L merge into one component,
and the edge (u, v) is added to T . Therefore, we have c(K) ≤ 3

2(
∑

i∈K∩R zi(i) − t) and c(L) ≤
3
2(

∑
i∈L∩R zi(i) − t). The cost of the new component (K ∪ L) increases by the cost of the edge

(u, v). Note that by definition, c(u, v) = t. That is,

c(K ∪ L) = c(K) + c(L) + t ≤ 3
2

(
∑

i∈K∩R
zi(i)− t) +

3
2

(
∑
i∈L∩R

zi(i)− t) + t (2)

≤ 3
2

(
∑

i∈(K∪L)∩R

zi(i)− t)

Suppose at time t, a merging of type 2 occurs: the Steiner vertex v hits the simplex. First
observe that there are exactly 2 components v is linked to. The algorithm maintains that a Steiner
vertex is linked to at most 2 components. Moreover, if there is only 1 component v is linked to,
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the rate of growth of sum of its coordinates is the same as that for the terminals and the Steiner
vertex won’t hit the simplex.

Call the two components K and L. Let the links to K and L be (v, i) and (v, j) respectively.
Without loss of generality let (v, i) be the shorter one with c(v, i) =: a ≤ c(v, j) =: b ≤ t. Note
that the increase in the left hand side is a+ b. That is, c(K ∪L∪ v) = c(K) + c(L) + (a+ b). Now
note that whenever a link from v is removed (this happens only when two components linked to
the same Steiner vertex merge), we always remove the costlier link from v. Thus, the smaller link
(v, i) is in fact the first link of v. That is, before time a, the coordinates of v were all 0. By the
running of the algorithm, a Steiner vertex is linked to at most two components at all times. Thus,
the rate of increase of sum of coordinates is at most 2. Therefore at time t when the vertex hits
the simplex, the sum of coordinates (which is t since it hits the simplex) is at most 2(t− a). This
gives a bound on t: 2(t− a) ≥ t implying t ≥ 2a. Furthermore, note that t ≥ b since the terminal
j links to a vertex v at time c(j, v) = b which must be before t. Thus a+ b ≤ 3t/2. This gives us

c(K ∪ L ∪ v) ≤ c(K) + c(L) +
3
2
t ≤ 3

2
(

∑
i∈(K∪L)∩R

zi(i)− t)

where the last inequality follows as in Inequality 2.
Suppose a merging of type 3 happens at time t: a Steiner vertex links to components K,L,M

via links (v, i), (v, j) and (v, l) respectively. Each of these links have cost less than t. Thus the cost
of the new component

c(K ∪ L ∪M ∪ v) ≤ c(K) + c(L) + c(M) + 3t ≤ 3
2

(
∑

i∈(K∪L∪M)

zi(i)− t)

where the last inequality follows from induction on the components K,L,M . This completes the
proof. 2

The above algorithm can be implemented in time O((|E| + |V |) log(|V |)) thus giving a nearly
linear time 3/2-factor algorithm for quasi-bipartite graphs. However, the implementation details
are a little tedious and not quite the main focus of this paper, and so we defer the proof of the next
theorem to Appendix B.

Theorem 5.2 Given a weighted quasi-bipartite graph G(V = R∪S,E; c), there exists an algorithm
which runs in time O((|E|+|V |) log(|V |)) and returns a tree T with cost within 3/2 times the optimal
Steiner tree.

6 A
√

2 Factor Approximation Algorithm

In this section and the next, we give algorithms for the Steiner tree problem using Embed as a black-
box unlike the 3/2-factor algorithm. We will require nothing more than the statement of Theorem
4.5. Both algorithms would use Embed in rounds to obtain useful Steiner vertices, although each
round will be preceded by a pre-processing step. In this section we look at a

√
2-factor algorithm.

Notation 1 MST (U ; c) denotes the minimum cost spanning tree on vertices U given the costs c.
Based on the context, it also denotes the cost of this tree.
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We start by giving a high level idea of our algorithm. The algorithm will finally return a cost c2
and a subset of Steiner vertices X ⊆ S such that

1. The optimal Steiner tree w.r.t. c2 is the MST on the terminals. Equivalently, by Theorem 4.5,
Embed when run on G, c2 terminates with a feasible embedding z with γ(z) = MST (R; c2).

2. MST (X ∪R; c) ≤
√

2 ·MST (R; c2)

The costs c2 will be only smaller than c; therefore, z is also feasible for c. Hence, the two
conditions imply that we get a factor

√
2 approximation.

Initially, X = ∅ and we obtain c2 by reducing the costs of the required-required edges by a
factor of

√
2 and leaving the costs of required-Steiner edges unchanged. We denote the reduced

cost at this point as c1 which we use later. Clearly Condition 2 is satisfied now, and will remain
an invariant of the algorithm.

Suppose that condition 1 is not satisfied, that is, when Embed is run on G, c2, a Steiner vertex
v ∈ S hits the simplex. At this point, the algorithm adds v to X, and modifies c2 by reducing
the costs of certain required-required edges further, as detailed below. This has the effect that if
Embed is run with these new costs, v does not hit the simplex. Moreover, the Condition 2 above
is maintained. Hence in each iteration, a new Steiner vertex is added to X, implying termination
in at most |S| rounds.

We now give the intuition behind modifying the costs so that the invariant is maintained. The
first step of scaling all the required-required edges acts as a “global filter” which filters out Steiner
vertices that only help a little. If a Steiner vertex v now hits the simplex, then adding it to X
reduces the cost of MST (R ∪ X; c) so much that decreasing the cost of required-required edges
“local” to it to 1

2 of the original costs still maintains the invariant Condition 2. This requires an
involved argument (Lemma 6.2) that amortizes the improvements due to all the vertices previously
added to X. Moreover, since all the local required-required edges have been decreased to half their
original cost, this has the additional desired effect that running Embed on the new costs doesn’t
let v hit the simplex – that is v itself is filtered out.

Now the formal description of the algorithm follows.

Definition 4 Applying the global filter with parameter ρ > 1 gives a cost c1 defined as c1(i, j) =
c(i,j)
ρ for all i, j ∈ R, and c1(i, v) = c(i, v) for all i ∈ R and v ∈ S.

Definition 5 Applying a local filter w.r.t X ⊆ S gives a cost c2. Let T = MST (R ∪X; c1), and
for each u ∈ X, Clos(u) denote the closest required vertex to u. Let ΓT (u) be the neighbors of u in
T1. The cost c2 is defined as

c2(i, j) =

{
1
2c(i, j) if there exists u ∈ X such that i = Clos(u) and j ∈ ΓT (u)
c1(i, j) otherwise
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Algorithm 3 Primal-Dual

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅; c2 ← c1.

2. Repeat till Embed returns z
Run Embed on G, c2.
If Embed returns v then

X = X ∪ v; Apply local filter w.r.t X to get c2.

3. Return T1 = MST (R ∪X; c), z.

Claim 6.1 At each round a new Steiner vertex enters X.

Proof: Let c2 be obtained by applying the local filter w.r.t. X. Let T1 = MST (R ∪X; c1). We
claim that Embed run on G, c2 will not crystallize any vertex v ∈ X. This will complete the proof.

Suppose Embed on G; c2 does crystallize v ∈ X. Then by Theorem 4.5 MST (R ∪ v; c2) <
MST (R; c2) =: T2. That is, there exist a set of edges A, each of the form (v, j) where j is a
terminal; and a set of terminal-terminal edges in E(T2) so that c2(A) = c1(A) < c2(B); and
T2 \B ∪A is a tree spanning R ∪ v.

Call an edge diminished if c2(e) = 1
2c(e). Now, among the edges in B, some are diminished

and some are in E(T1); and each diminished edge e corresponds to two edges e1 and e2 in E(T1)
one of which, say e1, has c1(e1) ≥ c2(e). Thus from B, we get a subset of edges B′ ⊆ E(T1) with
c1(B′) ≥ c2(B). Moreover, note that T1 \B′ ∪A is a valid spanning tree of R∪X ∪ v. This implies
MST (R ∪X ∪ v; c1) < MST (R ∪X; c1), which is a contradiction. 2

Lemma 6.2 (Invariant Condition 2) Let X be the set of Steiner vertices at any stage of the
algorithm. Then, MST (R ∪X; c) ≤

√
2 ·MST (R; c2).

Proof: Let T1 := MST (R∪X; c1). Clearly, MST (R∪X; c) ≤ c(T1). Let T1 = E0 ∪E1, where E0

denotes the required-Steiner edges and E1 denotes the required-required edges of T1. We bound
the costs of these two sets separately. Let E2 be the set of edges modified by the local filter, that
is, e such that c2(e) = 1

2c(e). Recall such edges are called diminished. Define T2 to be E2 ∪ E1. It
can be shown that T2 is an MST (R, c2).

Claim 6.3 T2 is an MST of R with respect to cost c2.

Proof: By definition of the local filter, it is clear that E2 ∪ E1 is a terminal spanning tree. If it
is not a minimum one w.r.t cost c2, there exists an edge e ∈ E(T2) and an edge f /∈ E(T2) such
that T2 − e + f is spanning and c2(f) < c2(e). Note that c2(f) = c1(f), since f /∈ E2. Also, since
f /∈ E1 ∪ E0, T1 + f has a cycle, and in fact it is the precisely the cycle formed in T2 + f with
the edges in E2 replaced by length 2 paths containing a Steiner vertex. Moreover, by definition of
the local filter, there will be an edge e′ in the cycle in T1 + f such that c1(e′) ≥ c2(e), and thus
T1 + f − e′ will be a cheaper spanning tree of R ∪X w.r.t. costs c1, contradicting the choice of T1.
2

We have c(T1) = c(E0) + c(E1), c2(T2) = c2(E2) + c2(E1). The proof follows from the following.
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• c(E0) ≤
√

2c2(E2).
This is essentially a consequence of the observation that c1(T1) ≤ MST (R; c1). Since T2 =
E1 ∪ E2 is also a spanning tree of R, we get c1(T1) ≤ c1(T2). Expanding the costs, we get

c1(E0) + c1(E1) ≤ c1(E2) + c1(E1).

Since E0 are required vertex-Steiner edges, c1(E0) = c(E0). c1(E2) = c(E2)/
√

2 =
√

2c2(E2)
by definition, giving us c(E0) ≤

√
2c2(E2).

• c(E1) ≤
√

2c2(E1).
Since E1 costs are not modified by the local filter, c2(E1) = c1(E1) and in fact the relation
holds with equality.

2

Theorem 6.4 The algorithm Primal-Dual terminates in at most |S| rounds, returning a Steiner
tree T1 and a feasible embedding z of G, c such that c(T1) ≤

√
2 · γ(z) ≤

√
2 ·OPT .

Proof: By Claim 6.1, the algorithm terminates in |S| rounds. Moreover, we have γ(z) = MST (R; c2).
Using Lemma 6.2, we get MST (R ∪X; c) ≤

√
2 ·MST (R; c2) =

√
2 · γ(z) ≤

√
2 ·OPT . 2

In fact, the above algorithm has a faster implementation. Although the algorithm constructs the
set X in a certain order, it turns out that the order does not matter. Hence it is enough to simply
apply the global filter and go through the Steiner vertices (in any order) once, picking the ones
that help. We describe this in Algorithm 4 Reduced One-Pass Heuristic .

Algorithm 4 Reduced One-Pass Heuristic

1. Apply global filter with parameter ρ =
√

2 to get c1.
Initialize X ← ∅;

2. For all v ∈ S,
If MST (R ∪X ∪ v; c1) < MST (R ∪X; c1), then

X = X ∪ v ;

3. Return T1 = MST (R ∪X; c1).

Theorem 6.5 There exists a feasible embedding z of G, c such that for T1 returned by Algorithm
Reduced One-Pass Heuristic, c(T1) ≤

√
2 · γ(z).

The proof of Theorem (6.5) is quite similar to Theorem (6.4) and is deferred to Appendix C for
completeness. Note that the above algorithm makes at most |S| minimum spanning tree computa-
tions and is hence is very efficient. In particular, it runs in strongly polynomial time.
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7 A 4
3 Factor Approximation Algorithm

The primal-dual 4
3 approximation algorithm is along the lines of the one in the previous section,

with the major difference being that it drops Steiner vertices from X when beneficial. The other
differences are that it applies the global filter with ρ = 4/3, and the definition of a local filter is
somewhat different. And like the earlier algorithm, the order of vertices picked/dropped does not
matter. As a result it can be implemented as a local search algorithm with an extra global filtering
step, which is what we present here.

Algorithm 5 Reduced-Local-Search

1. Apply global filter with parameter ρ = 4/3 to get c1.
Initialize X ← ∅, T1 = MST (R; c1);

2. Repeat
If ∃v such that MST (R ∪X ∪ v; c1) < c1(T1), X = X ∪ v.
If ∃v such that MST (R ∪X \ v; c1) < c1(T1), X = X \ v.
T1 = MST (R ∪X; c1).

Until No such v exists.

3. Return T1.

The plain local search algorithm (without the global filtering step) was studied [RV99] who
showed that this algorithm gives a 3/2 factor approximation for quasi-bipartite graphs. This factor
is tight. So the simple modification of applying a global filter provably improves the performance of
this algorithm. It was shown in [Riz03] that this algorithm can be implemented efficiently in time
O(|V ||S|T (|V |, |E|) log2(cmax)) where T (n,m) is the time taken to compute the minimum spanning
tree in an n-vertex m-edge graph, and cmax is the maximum cost of an edge.

We show that T1 returned by the algorithm is within 4/3 of the optimal by exhibiting an
embedding z of value greater than 3/4 times the cost of T1. As in Section (6), the analysis proceeds
by defining cost c2 and constructing tree T2. The factor 4/3 comes from the parameter ρ used in
the global filter and the following property of T1.

Lemma 7.1 The degree of every Steiner vertex in T1 is at least 4.

Proof: It is easy to see that T1 doesn’t have vertices of degree 1 or 2. Suppose there existed a
Steiner vertex v ∈ T1 with deg(v) = 3. Let a, b, c be the required vertices connected to v and assume
c1(va) ≤ c1(vb) ≤ c1(vc) without loss of generality. Now by triangle inequality property of c, we
know c(va) + c(vb) ≥ c(ab). Since c(va) = c1(va) and c(vb) = c1(vb), we get 3

4(c1(va) + c1(vb)) ≥
3
4c(ab) = c1(ab). Similarly 3

4(c1(va) + c1(vc)) ≥ c1(ac). Thus c1(ab) + c1(ac) ≤ 3
4(2c1(va) + c1(vb) +

c1(vc)) ≤ c1(va) + c1(vb) + c1(vc). Thus MST (R ∪X) would choose5 (ab) and (ac), rather than
choosing (va), (vb), (vc). 2

5It would seem that (ab) and (ac) could be equal to (va) + (vb) + (vc) and improve the MST – in this case we
break ties by excluding Steiner vertices if possible
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Theorem 7.2 For the tree T1 returned by Reduced-Local-Search, there exists a feasible em-
bedding z such that c(T1) ≤ 4

3 · γ(z).

Proof:
As in the proof of Lemma 6.2, denote the edges of T1 as E1∪E0. Define c2 as: For every Steiner

vertex v ∈ T1 and for every j 6= Clos(v) connected to v in T1, let c2(Clos(v), j) = c1(vj). Note
that c1(vj) ≤ c1(Clos(v), j), for otherwise T1 would have picked (Clos(v), j) instead of (vj). Call
these required vertex-required vertex edges diminished. For every other edge, c2(e) := c1(e). Let
E2 be the set of diminished edges and let T2 := E1 ∪ E2, be a required vertex spanning tree. By
the conditions of the algorithm, since T1 is an MST of R ∪X with costs c1 and no Steiner vertices
help X, T2 is an MST of R with costs c2 and no Steiner vertex helps T2. Thus, by Theorem (4.1)
running Embed on G, c2 returns a feasible embedding z of value c2(T2). We now bound the cost
of T1.

We have c(T1) = c(E1) + c(E0) = c(E1) + c1(E0). Note that c2(T2) = c1(E1) + c2(E2) since E1

is not diminished. As in the proof of Theorem (6.4), we argue term by term. By definition we have
c(E1) = 3

4c1(E1).
Every Steiner vertex v ∈ T1 contributes deg(v)− 1 edges to E2 and deg(v) edges in E0, where

deg(v) is the degree of v in T1. By definition the deg(v)− 1 edges have cost exactly the cost of the
largest deg(v)− 1 edges of the deg(v) edges it contributes to E0. By lemma (7.1), deg(v) ≥ 4 and
thus we get c1(E0) ≤ 4

3c2(E2). Adding, we get c(T1) ≤ 4
3c2(T2) = 4

3γ(z). 2
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A An 8/7 Integrality Gap Example for LP (SE-Dual2)

In this section we show that the LP relaxation LP SE-Dual2 described in Section 3 has integrality
gap lower bounded by 8/7. We first recall the LP relaxation.

min {
∑

(u,v)∈E

c(u, v)xuv : (SE-Dual2)

xuv ≥ fi(u, v) + fi(v, u), ∀i ∈ [k], (u, v) ∈ E;∑
v:(u,v)∈E

(fi(u, v)− fi(v, u)) ≥ α(u), ∀i ∈ [k], u ∈ V \ i;

∑
v:(i,v)∈E

(fi(i, v)− fi(vi)) ≥ α(i) + 2, ∀i ∈ [k];

∑
v

α(v) = −2;

fi(u, v), fi(v, u), xuv ≥ 0, ∀(u, v) ∈ E, i ∈ [k];
α(v) ≥ 0, ∀v ∈ S} (3)

The example showing a gap of 8/7 is due to Martin Skutella which was reported by Könemann
et.al. [KPT07]. We produce the example below from their paper.

r

a b c d e f g

Figure 4: The nodes in white are Steiner nodes and nodes in black are required. Each edge has
unit cost. The optimum Steiner tree is of cost 10.

It can be seen (by inspection, or there exists a proof in [KPT07]) that the optimum Steiner tree
costs 10. We now demonstrate a solution to LP SE-Dual2 of cost 35/4 which will show that the
gap of the LP is at least 8/7. In fact the cost 35/4 is optimal for the LP since the bidirected cut
value is exactly 35/4 for this example, and as proved in Section 3, LP SE-Dual2 can only be larger.

The solution gives xe = 1/4 for every edge. Note that the value is then 35/4. The α values
are as follows: α(r) = −1/4. α(i) = −1 for every other required vertex. α(u) = 3/4 for every
Steiner vertex u. Note that

∑
v∈V α(v) = (−7 + 21/4 − 1/4) = −2. It remains to describe the

circulations. We will describe the circulation fr for the root r and fa for the terminal a. All the
other circulations are symmetric to fa.
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fr sends a flow of 1/4 from r to every Steiner vertex and a flow of 1/4 from every Steiner ver-
tex to terminal which is not r. Thus, the supply on r is 7/4 = 2 + (−1/4). The supply on a Steiner
vertex is 1− 1/4 = 3/4 and that on a non-root terminal is −1.

To describe fa, let S be the set of Steiner vertices incident on a. fa is the same as fr except
on the edges of the form (v, a) and (r, v) for v ∈ S. In fr, fr(v, a) = fr(a, v) = 1/4 for all v ∈ S. In
fa, these are reversed. That is, fa(a, v) = fa(v, r) = 1/4 for all v ∈ S. All the other flows are the
same. Now, the total supply on r is (−1 + 3/4) = −1/4, the total supply on Steiners remain the
same, and the total supply on a is 1 = (−1 + 2). Thus, we get a feasible solution to LP SE-Dual2
of value 35/4.

B An Implementation of Smart Embed in time O((|E|+ |V |) log |V |)
Theorem B.1 (Theorem 5.2) Given a weighted quasi-bipartite graph G(V = R ∪ S,E; c), there
exists an algorithm (Algorithm 6 below) which runs in time O((|E| + |V |) log(|V |)) and returns a
tree T with cost within 3/2 times the optimal Steiner tree.

We now describe an implementation of the Algorithm Smart-Embed which runs in almost
linear time (O((|E| + |V |) log |V |). Note that Smart-Embed has a notion of time, and this im-
plementation mimics the same by only maintaining the times at which the merge operations of
Smart-Embed take place.

For every edge (u, v) ∈ E, we maintain a variable t(u,v) := c(u, v) the cost of the edge. Thus
t(u,v)’s are static variables. The idea is that the edge (u, v) comes to play in Smart-Embed
precisely at time t = t(u,v). For instance, if the vertices u and v are required, at time t = t(u,v)
the components containing them merge. Moreover a Steiner vertex v links to a component at time
t(u,v) for some terminal u in the component.

We also maintain a time-variable t(v) for every Steiner vertex v which is not in any component.
t(v) stands for the time at which the Steiner vertex v will hit the simplex if no other merge steps
occur in between. Initially t(v) is set to ∞ (which for implementation issues can be assumed to
be an integer larger than sum of all edge weights).

We maintain a list L of t(u,v)’s (for all edges (u, v)) and t(v)’s (for Steiner vertices v). These
are precisely the set of times at which the merge steps of Smart-Embed take place. We remark
that the list is not static as t(v)’s can change as the algorithm progresses. However, we always
maintain L sorted in non-decreasing order of times. The implementation reads the list L in the
sorted order and depending on the entry read, and whenever applicable, performs one of the three
merge steps of Smart-Embed. We show that these merges can all be made to run with an amor-
tized O(log |V |) time per entry in L, and since there are at most O(|E| + |V |) entries in L, the
implementation runs in almost linear time of O((|E|+ |V |) log |V |).

Data Structures:
We now describe the data structure used for the implementation. The data structures are similar
to disjoint set data structures implemented via linked lists (see for example, [CLRS01]). These are
used in an implementation of Kruskal’s minimum spanning tree algorithm.
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For each vertex v of the graph, we maintain 4 pointers: head - which points to the connected
component containing v, next - which points to the next vertex in v’s connected component, copy1
and copy2 - these point to two copies of the same vertex, as we see these will be used by only
Steiner vertices and for terminals the two pointers will always be null.

The components K ∈ K are stored as linked lists of vertices. For every component, one of the
vertices will be an identifier vertex. Each vertex in the component will point to this identifier vertex
via their head pointers. Thus, given a vertex v, the component which contains it can be found in
O(1) time. Initially, we start with |V | linked lists, one for each vertex. However, there are only |R|
(number of terminals) components corresponding to the terminals; the head pointers of the Steiner
vertices are initialized to null. For each component, we also maintain the size of the component.
We also maintain a pointer tail which points to the last vertex in the list.

For each Steiner vertex v ∈ S, we store two copies of it, call them vA and vB. These correspond
to the two possible components a Steiner vertex could link to. Each of these copies are linked with
the original vertex via their copy pointers. Whenever a Steiner vertex v is picked in a component,
these copies are deleted and the Steiner vertex is treated like a terminal henceforth.

For every component K, we maintain another linked-list, Steiner(K), which contains the list
of all Steiner vertices K is linked to. The list contains only copies of the Steiner vertices and not the
original Steiner vertex. Steiner(K) is stored similarly as K is stored: a linked list with all Steiner
vertices pointing to an identifier vertex for Steiner(K). The lists K and Steiner(K) are doubly
linked to each other for all K, thus given a Steiner vertex v one can find the components to which
it is linked to in O(1) operations. In fact, we will call this function Link(v) which returns a set
(which we also call Link(v), abusing notation) of (identifiers of) connected components linked to v.
Link(v) is of at most size two, for all Steiner vertices v. For any Steiner vertex v, we also maintain
a set of edges link-edges(v) which contains the unique links of v to the various components in
Link(v).

To calculate t(v), we maintain a bunch of variables for every Steiner vertex v. We store a
variable z(v) for every Steiner vertex which is supposed to contain the sum-of-coordinates of v
as in Smart-Embed. z(v) is initialized to 0 for every Steiner vertex. We maintain a variable
last(v), which is the last time when a modification had to be made to z(v). These will corre-
spond to instances when v links to a component, or when two components linked to v merge.
last(v) is also initialized to 0. We maintain rate(v), which is the rate at which z(v) increases
since last(v). rate(v) will always equal to |Link(v)|. Using last(v), rate(v) and z(v), at any time
t(u,v), one can easily figure out t(v): if rate(v) = 1, t(v) =∞, otherwise t(v) = t(u,v)−z(v).

We now describe how Smart-Embed can be implemented using these data structures. Initially, the
set of components K is initialized to be all singleton terminals. That is, all terminals have their head
pointer pointing to themselves. All t(v)’s are set to∞. The list L is read in non-decreasing order.
If the entry read is t(u,v) for some edge (u, v) and u and v are not in the same component, then the
following is done. If u and v are both terminals, the components corresponding to them are merged
and (u, v) is added to the tree. The set of Steiner vertices Steiner(K(u)) and Steiner(K(v))
are also merged and for Steiner vertices w linked to both K(u) and K(v), z(w), last(w), rate(w)
and t(w) are modified. If u is a terminal and v is a vertex not linked to K(u), then either v links
to K(u) if |Link(v)| ≤ 1, or a merge step corresponding to merge step 3 of Smart-Embed takes
place. If the entry of L read corresponds to t(v) for some Steiner vertex v, then it means v has
hit the simplex in Smart-Embed. The components in Link(v) are merged and the link-edges
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link-edges(v) are added to the tree. The algorithm terminates when there is a single component
formed.

What remains to be described is how to perform the merge steps in O(log |V |) amortized time
per entry of L. It is known that if the sets to be merged are always disjoint, then this can be
done using the disjoint-set data structures. In our case, any two components are disjoint. However,
for two components K1 and K2, the list of linked Steiner vertices Steiner(K1) and Steiner(K2)
might not be disjoint and the above argument for disjoint data structures fail. Nevertheless, we
can show that the total time taken by the merge steps can be bounded by O(|E|+ |V | log |V |). The
main idea is this: if the two sets Steiner(K1) and Steiner(K2) have a “big” enough union, then
the argument for disjoint set data structures can be made to go through. If the union is not “big”,
then the intersection must be “big”. Note that a vertex v in the intersection of Steiner(K1) and
Steiner(K2) is a vertex linked to both K1 and K2. When two such components merge, the costlier
of the two link-edges in link-edges(v) is discarded and this never plays a role in the algorithm
subsequently. Thus, all the operations (which are only O(1)) made on v in this merge operation
can now be charged to the costlier edge in link-edges(v). The algorithm details are in Algorithm
6: Implementation of Smart-Embed.
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Algorithm 6 Implementation of Smart Embed

1. Initialization:

• For every vertex u ∈ V , create linked list containing u with pointers head, next, copy1,
copy2. For terminals i ∈ R, head points to itself, next is initialized to null, and the two
copy pointers are always set to null. We also initialize the tail pointers for each to point
to itself.

• For Steiner vertices v ∈ S, head and next both point to null. For each v, create two
linked lists vA, vB which are the two copies of v. The two copy pointers of v point to vA
and vB respectively. All pointers of the copy nodes are set to null.

• For every Steiner vertex v ∈ S, create linked list Link(v) containing two pointers initially
set to null. Also create a list link-edges(v) initially set to null. Initialize variables z(v)
to 0, last(v) to 0, rate(v) to 0 and t(v) to ∞.

• Initialize the tree T to be a linked list of edges initialized to an empty list. L be the list
of t(u,v)’s and t(v)’s. Along with the value of the t(), we also store the edge or the
Steiner vertex responsible for it. L can be stored as a heap so that insertion in sorted
can be done in O(log |L|) time and the list can be read out in a non-decreasing order
with O(1) time per read.

2. Read the entries of L in non-decreasing order. If the entry read corresponds to a Steiner
vertex (that is t(v) for some Steiner vertex v), then merge the components v is linked to
along with the Steiner vertex v: For K1,K2 ∈ Link(v), Merge(K1,K2, v). Delete the copies
vA, vB, delete t(v) from L, and add the links of v to the tree, that is, append link-edges(v)
to T .

3. If the next term in the list L is the edge (u, v), then

(a) If u and v are in the same component, delete t(u,v) from L and proceed to the next
entry.

(b) If u ∈ R, v ∈ R, merge the two components containing them and add the edge to the
tree: Merge(K(u),K(v)) and append (u, v) to T .

(c) If u ∈ R, v ∈ S (or vice-versa) and K(u) /∈ Link(v), that is, v is not already linked to
the component containing u

i. If K(v) is not null, merge the components containing u and v and add the edge
(u, v) to the tree: Merge(K(u),K(v)) and append (u, v) to T .

ii. If |Link(v)| = 2, that is, v is already linked to 2 other components, merge
those with the component containing u and add v to the new component,
Merge(K(u),Link(v), v). Add the edge (u, v) and edges in link-edges(v) to the
tree: append (u, v) and link-edges(v) to T . Also delete the copies of v and delete
t(v) from L, as in Step 2.

iii. If |Link(v)| ≤ 1, then do the following: append the edge (u, v) to link-edges(v);
append a copy of v (choose arbitrarily if both copies have their heads
pointing to null) to Steiner(K(u)); append K(u) to Link(v); recalculate
z(v) = z(v) + rate(v) · (t(u,v)− last(v)), last(v) = t(u,v) and rate(v) =
rate(v)+1. Recalculate t(v) to∞ if (new) rate(v) = 1, or t(v) = (t(u,v)−z(v))
and place it in the correct order in L.
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What remains to be described in the implementation is the Merge(K1,K2) step. When two
components merge, a number of things needs to be taken care of: firstly, the two linked lists
corresponding to the components need to be merged. Furthermore, the linked lists Steiner(K1)
and Steiner(K2) need to be merged and care needs to be taken that the duplicate copies of the
same Steiner vertex should be removed. Moreover, for precisely these Steiner vertices which were
linked to both K1 and K2, the variables z(v), last(v), rate(v) and t(v) need to be recalculated.

The merge step is very similar to the weighted-union step used in disjoint-set data structures.
Since our sets (Steiner(K1) and Steiner(K2)) might not be disjoint, we need a little more care.
However, recognizing the duplicates only takes constant times more time since the recognition
requires going through the vertices of one component, and the weighted union step does precisely
that.

We now describe merge step in Algorithm 7.

Algorithm 7 Merge(K1,K2)

1. Choose the smaller linked list (which can be determined the size variable) of K1 and K2, say
it is K1. Append K1 to K2 using the tail pointer of K2. Update the tail pointer of K2 to
point to the last element of K1. For every vertex in K1, make the head pointer point to the
identifier of K2

2. Choose the smaller linked list among Steiner(K1) and Steiner(K2), say Steiner(K2) and
append Steiner(K2) to Steiner(K1) as in the merge of K1 and K2. Also make the identifier
of K2 (which now starts a list of the merged K1 and K2) point to the identifier of Steiner(K1)
(which now starts a list of the merged Steiner(K1) and Steiner(K2)), and vice-versa. This
takes care that the Link(v) operation is consistent with the merges.

For every vertex v (or rather copy of v) in Steiner(K2) do the following: check if a copy
of it exists in Steiner(K1). This can be done in O(1) pointer chasing: for a vertex vA in
Steiner(K2), go to the original Steiner vertex v and figure out the component containing the
other copy. If a copy does not exist, move the head pointer of v (the copy) to the identifier of
Steiner(K1).

If a copy exists, and the original Steiner vertex be v, then this means that v is linked to both
K1 and K2. Remove the copy of v (call it vA) from Steiner(K2) and make the head pointer
of vA point to null. Also remove the costlier edge from link-edges(v). Furthermore, for
v recalculate the variables z(v), last(v), rate(v), t(v) as in last step of the implementation
above. The only difference being rate(v) decreases by 1 (note that |Link(v)| also decreases
by 1 too).

Proof of Theorem 5.2: It is easy to see that the implementation mimics Algorithm 2 and thus
from Theorem 5 the tree T returned is within 3/2 times the optimal tree. We need to argue about
the running time.

Note that the sorting of L (storing it as a heap) takes O((|E| + |V |) log(|V |)) time. Suppose
that for every entry of L, all the operations of Algorithm 6 took O(log |V |) time. Then since the
size of L is at most (|E| + |V |) we would be done. In fact, it is easy to check that all the steps
take O(log |V |) time except the merge step. We now show that the total time taken in merge steps
across the run of the algorithm is O(|E|+ |V | log |V |) and we will be done.

30



When two components K1,K2 are merged, one individual step of merge might take
O(min(|K1|, |K2|) + min(|Steiner(K1)|, |Steiner(K2)|) time which is linear. However, since the
smaller list is always appended to the larger list, an amortized analysis is possible. Indeed this the
most naive implementation of the “union” step in the disjoint step data structures.

Consider the appending of K1 and K2. Note that every vertex which changes its head pointer
ends up in a component at least twice the size of the original component it was in. This is because
it was in the smaller component to begin with and the components are disjoint. Thus, since the
maximum size of a component in |V |, each vertex changes its head pointer at most O(log |V |) times
implying the total number of head pointer changes for vertices in components throughout the run
of the algorithm is at most O(|V | log |V |).

However the same accounting does not hold for the appending of Steiner(K1) and Steiner(K2).
This is because the two sets need not be disjoint and thus the doubling argument does not hold.
Nevertheless, we can argue the total number of operations when we append two Steiner lists is also
bounded by O(|E| + |V | log |V |). This is because if the union of the two lists Steiner(K1) and
Steiner(K2) is not too large (say it is smaller than 1.5 times the size of the smaller list), then the
intersection will have to be large (larger than 0.5 times the size of the smaller list). Moreover, for
every Steiner vertex v in the intersection, we remove one edge from link-edges(v) and this edge
never appears again in the algorithm.

Thus, whenever a Steiner vertex changes its head pointer, if it moves into a list larger than 1.5
times the list it was in, we charge the movement of the pointer to the vertex. Thus a single Steiner
vertex can be charged at most O(log |V |) times. If the Steiner vertex which changes its head pointer
doesn’t move into a list larger than 1.5 times the list it was in, then we charge the movement of
head pointers of all the Steiner vertices in the smaller list equally to the Steiner vertices in the
intersection. Thus by the above observation about intersections being large, every Steiner vertex
in the intersection is charged 2. Moreover, vertices in the intersection perform O(1) operations
re-evaluating the various variables (z(v), last(v),etc), thus the extra 2 can be swept in the O(1).
Now, for every Steiner vertex in the intersection, we move the O(1) charge on it, on to the unique
link-edge incident to it that is removed. The crucial observation is that this link-edge is never
brought back on to the algorithm, and thus the charge on it remains O(1).

Therefore, adding up, the total number of operations for merge operations can be charged to
vertices and edges, each vertex having charge O(log |V |) and each edge having charge O(1). The
theorem follows. �

C Proof of Theorem 6.5

Theorem C.1 (Theorem 6.5) There exists a feasible embedding z of G, c such that for T1 re-
turned by Algorithm Reduced One-Pass Heuristic, c(T1) ≤

√
2 · γ(z).

Proof: Let T1 be the tree returned by Algorithm Reduced One-Pass Heuristic with X as the
set of Steiner vertices in T1. Firstly observe that for any vertex v ∈ S \X, MST (R ∪X ∪ v; c1) ≥
MST (R ∪ X; c1). This is because, a Steiner vertex which does not help the MST on R ∪ X at
an earlier iteration cannot help the MST at a later iteration; the heaviest edge in the unique path
between any two terminals in T1 keeps on decreasing. Note that we use the fact here that the graph
is quasi-bipartite and a Steiner vertex can connect only to terminals.
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As in the proof of Lemma 6.2, let T1 = E0 ∪ E1. Construct the costs c2 by applying the local
filter w.r.t X. Let E2 be the set of diminished edges and let T2 = E1 ∪ E2. Once again, one can
apply the same proof of Claim 6.3 to show that T2 = MST (R, c2). Moreover,

Claim C.2 For every Steiner vertex v ∈ S, MST (R ∪ v; c2) ≥MST (R; c2) = c2(T2).

Proof: Suppose for some Steiner vertex v, MST (R ∪ v; c2) < MST (R; c2). Thus there exist a set
of edges A, each of the form (v, j) where j is a terminal; and a set of terminal-terminal edges in
E(T2) so that c2(A) = c1(A) < c2(B); and T2 \ B ∪ A is a tree spanning R ∪ v. Now, among the
edges in B, some are diminished and some are in E(T1); and each diminished edge e corresponds to
two edges e1 and e2 in E(T1) one of which, say e1, has c1(e1) ≥ c2(e). Thus from B, we get a subset
of edges B′ ⊆ E(T1) with c1(B′) ≥ c2(B). Moreover, note that T1 \B′ ∪A is a valid spanning tree
of R ∪X ∪ v. This implies MST (R ∪X ∪ v; c1) < MST (R ∪X; c1), which is a contradiction. 2

Thus, in the quasi-bipartite graph G with costs c2, T2 is an MST spanning the terminals and
the addition of no Steiner vertex improves it. So, by Theorem 4.1, we know that running Embed
on (G; c2) will return a feasible dual z with c2(T2) = γ(z). Since c2 is only reduced, this embedding
is a feasible embedding of (G, c) as well. The proof ends by noting that c(T1) ≤

√
2c2(T2) which is

exactly as in the proof of Lemma 6.2. 2
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