
Speed Scaling in the Non-clairvoyant Model

[Extended Abstract]

Yossi Azar
Tel Aviv University

Tel Aviv, Israel
azar@tau.ac.il

Nikhil R. Devanur
Microsoft Research

Redmond, WA
nikdev@microsoft.com

Zhiyi Huang
University of Hong Kong

Hong Kong
zhiyi@cs.hku.hk

Debmalya Panigrahi
Duke University

Durham, NC
debmalya@cs.duke.edu

ABSTRACT
In recent years, there has been a growing interest in speed scaling
algorithms, where a set of jobs need to be scheduled on a machine
with variable speed so as to optimize the flow-times of the jobs
and the energy consumed by the machine. A series of results have
culminated in constant-competitive algorithms for this problem in
the clairvoyant model, i.e., when job parameters are revealed on re-
leasing a job (Bansal, Pruhs, and Stein, SODA 2007; Bansal, Chan,
and Pruhs, SODA 2009). Our main contribution in this paper is
the first constant-competitive speed scaling algorithm in the non-
clairvoyant model, which is typically used in the scheduling litera-
ture to model practical settings where job volume is revealed only
after the job has been completely processed. Unlike in the clairvoy-
ant model, the speed scaling problem in the non-clairvoyant model
is non-trivial even for a single job. Our non-clairvoyant algorithm
is defined by using the existing clairvoyant algorithm in a novel in-
ductive way, which then leads to an inductive analytical tool that
may be of independent interest for other online optimization prob-
lems. We also give additional algorithmic results and lower bounds
for speed scaling on multiple identical parallel machines.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: [Sequencing
and scheduling]

General Terms
Theory

Keywords
Scheduling; Energy efficiency; Online algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SPAA ’15, June 13 - 15, 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Copyright 20XX ACM ACM 978-1-4503-3588-1/15/06 $15.00

DOI: http://dx.doi.org/10.1145/2755573.2755582 ...$15.00.

1. INTRODUCTION
Scheduling jobs released over time on one or more machines

is one of the most fundamental optimization problems. A stan-
dard objective has been to minimize the average response time for
a given set of jobs, while the devices ran at their fastest possible
speed. (The technical term used for response time is flow-time,
which for a job is the duration of time between its release and com-
pletion.) However, over the years, the energy consumed by the pro-
cessors has become an important consideration. It was observed
by Barroso [1] that in data centers, the raw performance and the
performance per price of a server have been steadily growing but
the performance per power consumption has remained flat. This
increasing energy consumption coupled with rising prices of en-
ergy has made the cost of energy an important consideration in the
design of computing infrastructure such as data centers.

One of the main algorithmic approaches to energy management
is via dynamic speed scaling,1 where a processor can be run at
different speeds. Higher speeds finish jobs faster (improving re-
sponse time) but consume more energy. The instantaneous power
(which is the rate of energy consumed) is a given function of the
speed, typically the cube of the speed, or more generally, speedα

for some fixed constant α ≥ 2. The typical objective used in the
literature (introduced by Albers and Fujiwara [2]) is to minimize a
linear combination of energy and weighted flow-time.2 Jobs are
released over time, each job comes with a volume and a weight,
and the algorithm does not know which jobs will be released in the
future. The algorithmic question posed by this problem has two
components: which job to schedule next, and what speed to run the
machine at. We call this the speed scaling problem. After a consid-
erable amount of research [2, 5, 6, 7, 8, 9], it is now known that the
answer to the first question is to schedule the job with the highest
density first (HDF, density = weight/volume) and the answer to the
second question is to pick a speed so that the power consumption
equals the remaining weight of the jobs.

However, most of the results for this problem are in the clairvoy-
ant setting where the algorithm knows the volume of a job when
it is released. A more difficult, but in many cases more realistic,
problem is one where the volume is known only when the job is
1Other approaches have been considered, for example a power
down model where a machine transitions to a low power state when
idle, etc.
2Other problems such as minimizing energy while finishing jobs
within given deadlines [3] and minimizing flow-time with a hard
energy budget [4] have also been considered.

ACM 978-1-4503-3588-1/15/06 ...$15.00.

completed — this is called the non-clairvoyant setting (introduced
by Motwani, Phillips, and Torng [10] in classical scheduling). Our
main contribution in this paper is to consider the speed scaling
problem in the non-clairvoyant setting.

A particular application that motivated this study comes from
cloud computing. Typically, a customer pays at a rate (λ− ρtdelay)
for each unit volume of a submitted job to the cloud service provider,
where λ and ρ are predetermined payment and penalty rates for the
job, and tdelay is the delay in processing the job, i.e., the differ-
ence between the actual and expected duration of the job. Note that
the only term in the total payment for a job that is affected by the
scheduling algorithm is ρFint[j]V [j], where Fint[j] is the flow-
time of the job and V [j] is its volume. This can be interpreted as
a weighted flowtime, where the weight is ρV [j]. (Since the penalty
rate ρ = weight/volume, we call it the density.) Since V [j] is un-
known to the algorithm when a job is released, but ρ is known,
this is the case of known density and unknown weight. We con-
sider two scenarios: one where all jobs have the same density and a
more general one where the density is job-dependent and revealed
when a job is released.

1.1 Our Results
Before describing our results, let us formally define the notion of

flow-time. The integral (weighted) flow-time of a job is the differ-
ence of its completion and release times multiplied by its weight.
The integral flow-time of a processing schedule is the sum of the
integral flow-times of the individual jobs in the schedule. In defin-
ing the fractional flow-time of a job, we imagine breaking up the
job into infinitesimal pieces each of which suffers a different flow-
time based on when it is completed. We consider both fractional
flow-time plus energy, henceforth called fractional objective, and
integral flow-time plus energy, henceforth called integral objective.

Our main results are the first constant-competitive algorithms for
non-clairvoyant scheduling with known densities on a single ma-
chine. We consider any power function of the form P (s) = sα and
give deterministic algorithms. These results are also summarized
in Table 1.

• In the case of uniform job densities, we present a (3 + 1
α−1

)-
competitive algorithm for the integral objective and a (2 +

1
α−1

)-competitive deterministic algorithm for the fractional
objective.

Contrast this with a competitive ratio of 2α2

logα
for the integral

objective in the non-clairvoyant model with known weights,
for uniform (unit) weight jobs by Chan et al [11]. The best
known results for the clairvoyant model with uniform density
achieve competitive ratios of 4 and 2 respectively for integral
and fractional flow-time [5, 8].3

• We show anO(1)-competitive algorithm for the general prob-
lem with non-uniform densities for both the fractional and
integral objectives. The constant depends exponentially on
α.
In the non-clairvoyant model with known weights, no re-
sults are known for arbitrary weights, except in the special
case where all jobs are released at time 0, for which a (2 −
1
α

)2 competitive algorithm is given by Lam et al [7]. The
best known results for the clairvoyant model for arbitrary
weighted flow-time achieve a competitive ratio of 2 for the
fractional objective (due to Bansal, Chan, and Pruhs [8]) and

3Our competitive ratio of 3 + 1
α−1

for the integral objective in the
non-clairvoyant model improves the best-known clairvoyant com-
petitive ratio of 4 in uniform density case for α > 2.

O(α
logα

) for the integral objective (due to Bansal, Pruhs, and
Stein [5] and Bansal, Chan, and Pruhs [8]).4

We also consider the problem of scheduling jobs on identical
parallel machines. In the literature, two models for dispatching
jobs to machines have been considered depending on whether the
algorithm is required to do immediate dispatch, i.e., a job has to
be assigned to a machine immediately on release. In either model,
once a job has started processing on a machine, it cannot be mi-
grated to any other machine in the future.

• We give anO(α)-competitive deterministic algorithm for both
the integral and fractional objectives in the case of uniform
densities without immediate dispatch.
No results are known for multiple machines in the non-clairvoyant
model with known weights, even for unit weight jobs. Our
results almost match the best known competitive ratios for
the clairvoyant model (with immediate dispatch), which are
O(α) and O(α2) respectively for the fractional and the inte-
gral objective obtained by Anand, Garg, and Kumar [12].5

• We give a superconstant lower bound on the competitive ratio
of any deterministic algorithm even for fractional flow-time
in the case of uniform densities with immediate dispatch.

An interesting open problem is whether our results can be ex-
tended to the case of non-uniform density and multiple machines.
Both the algorithm for the uniform density case and the lower bound
for the immediate dispatch case do not extend readily to this case.

1.2 Techniques and Intuition
The non-clairvoyant problem with known densities is non triv-

ial even in the case of a single job. The optimal speed could vary
greatly with the processing volume of the job; therefore, the algo-
rithm has to continuously adapt as it learns more about the volume
of the job. Furthermore, in the case of multiple jobs, the choice of
the job to process affects the information that the algorithm obtains,
which in turn affects the speed of the machine. The natural choice
for information gathering turns out to be first-in first-out (FIFO) but
the clairvoyant algorithms suggest the HDF rule; most of the diffi-
culty we encounter is due to the conflict between the FIFO and the
HDF rules. A more detailed discussion of this conflict and how we
deal with it is presented later.

In order to give a glimpse of the techniques used, we describe
the simplest scenario of a single job here. On any instance I , we
denote the optimal objective by opt(I), and that produced by our
algorithm by algo(NC)(I). The online problem is a game between
the adversary and the algorithm with strategies that are functions
of (continuous) time, where at every moment of time the adver-
sary must declare whether the job has been completely processed
or not and the algorithm responds to this declaration by setting the
current speed of the machine. (The instance ends when the adver-
sary declares that the job is completely processed.) Therefore, the
algorithm must continuously ensure that the objective value of its
schedule, algo(NC)(I(t)), is competitive against the optimal solu-
tion, opt(I(t)), for the current instance I(t) defined by the volume
4To achieve the O(α

logα
) competitive ratio, one needs to combine

the 2-competitive algorithm of [8] for the fractional objective with
the reduction from the integral objective to the fractional objective
in [5]. See, e.g., [12] for the relevant discussions.
5This has been improved to O(α

logα
) for both objectives in [13].

Otherwise, we seem to be improving [12] for integral flow-time,
although the results of [12] are in a much stronger model, with
unrelated machines, arbitrary weights and immediate dispatch.

Table 1: Summary of Results

Clairvoyant Non-clairvoyant
known weight

Non-clairvoyant
know density (this paper)

Integral unit
density/weight

4 (unit density) [5] 2α2

lnα
[11]

(unit weight)
3 + 1

α−1

(unit density)3 (unit weight) [8]
Fractional unit
density/weight 2 [8] 2 + 1

α−1

(unit density)
Integral arbitrary
density/weight O

(
α

logα

)
[8, 5]

(
2− 1

α

)2 [7]
(jobs at time 0)

2O(α)

Fractional arbitrary
density/weight 2 [8] 2O(α)

processed till the current time t. This naturally leads to an induc-
tive analytical framework where we bound the rate of change (w.r.t.
time) of the algorithmic solution against the rate of change of the
optimal solution. If we can show that for any time t,

dalgo(NC)(I(t))

dt
≤ Γ · dopt(I(t))

dt
, (1)

then we have a competitive ratio of Γ. Unfortunately we do not
have a good handle on how the optimal solution evolves with time
(in the general case). We therefore use a surrogate of the opti-
mal solution, the solution produced by the clairvoyant algorithm
algo(C) defined by the speed setting rule instantaneous power = re-
maining weight, or P = W , on the current instance. Since this
algorithm is known to be 2-competitive [8], we show that for any
time t,

dalgo(NC)(I(t))

dt
≤ Γ′ · dalgo

(C)(I(t))

dt
, (2)

and obtain a competitive ratio of 2Γ′.
Let us now take a closer look at Eqn. (1). If s(t) is the speed

of the machine at time t, then the incremental volume of the job
processed in the interval [t, t + dt] is s(t)dt.6 The corresponding
change in the algorithmic objective, dalgo(NC)(I(t)) comprises
two parts: the additional energy P (s(t))dt consumed in the inter-
val [t, t+dt], and the flow-time t ·s(t)dt of the infinitesimal part of
the job processed in this interval. The sum of these quantities must
be bounded in terms of the increase in the clairvoyant objective.

In order to understand how the clairvoyant schedule changes
in response to an increase in weight of the job, say from W to
W + dW , consider the “power curve” of algo(C), i.e., the power
consumed by the algorithm as a function of time. Since the al-
gorithm sets instantaneous speed s such that power = remaining
weight, this curve also gives the remaining weight W as a function
of time. The remaining weight and speed satisfy s = −dW/dt;
therefore the power curve is defined by the differential equation
P (−dW/dt) = W . The “shape” of the power curve is indepen-
dent of the actual weight of the job in the current instance; the
weight simply determines the point on this curve where we start
from. This means that in response to an increase in weight of the
job, the starting point shifts higher and the entire power curve shifts
to the right (as illustrated in Fig. 1a). Let dt′ denote the increase in
the total processing time of the job by algo(C) due to the increase in
weight; this is how much the power curve shifts to the right by. It is
now easy to see that dt′ and dW are related by dW = P−1(W)dt′.
The corresponding increase in energy is Wdt′ = WdW

P−1(W)
.

6Since we are in the single job case, we assume w.l.o.g. (without
loss of generality) that the density of the job is 1.

We design the non-clairvoyant algorithm such that it matches the
clairvoyant algorithm in terms of the increase in energy. In other
words, we want P (s(t))dt = WdW

P−1(W)
, i.e.,

P−1(W)P (s(t))dt = WdW = Ws(t)dt. (3)

This is achieved by setting P (s(t)) = W , i.e., the instantaneous
power in the non-clairvoyant algorithm equals the processed weight
of the job. This ensures that the energy consumption of algo(NC)

and algo(C) match exactly. It is interesting to note that the power
curve of algo(NC) is exactly identical to the power curve of algo(C)

in reverse (illustrated in Fig. 1b).
But what about the flow-times? The clairvoyant algorithm, by

virtue of the P = W rule, has the property that its (fractional) flow-
time and energy are exactly equal. However, this is not true for the
non-clairvoyant algorithm. In fact, the flow-time of the algo(NC)

is given by the area above the power curve since remaining weight
at any instant is the total weight minus the processed weight, the
latter being equal to the instantaneous power. This is illustrated in
Fig. 1b. Our crucial observation, which makes this analysis work
for a single job, is that if the power function is P = sα, then
the ratio of the two areas corresponding to flow-time and energy
depends only on the value of α and is independent of the actual
weight of the job.

1.3 Related Work
In the last few years, there has been tremendous interest in the

design of energy efficient algorithms. In the dynamic speed scal-
ing approach, the problem of minimizing the sum of energy and
flow-time was introduced by Albers and Fujiwara [2]. They also
proposed what has been the thematic approach for this problem (in
the clairvoyant setting): to run at a speed such that the power con-
sumed is equal to the number of remaining jobs. This was later
generalized to weighted flow-time. This approach has been ana-
lyzed in many papers (e.g., [5, 6, 7]) and the best result for this
problem is by Bansal et. al. [8] who gave a 2 + ε competitive al-
gorithm for fractional weighted flow-time and 3 + ε competitive
algorithm for unweighted integral flow-time. For unweighted inte-
gral flow-time, Andrew et al. [9] improved the competitive ratio to
2. For weighted integral flow-time the combined results of [8] and
[5] imply an O

(
α

logα

)
competitive ratio. Note that the problem we

consider is harder since the volumes are not known in advance. We
relate the performance of our algorithm to the algorithm of Bansal
et al. [8] for fractional weighted flow-time. For scheduling on mul-
tiple machines, Gupta et al. [14] gave an O(α2)-competitive algo-
rithm for the related machines case7 which was extended to un-
related machines (with the same competitive ratio) by Anand et
al. [12].
7and an O(α)-competitive algorithm for the unweighted version

↑
Power

dt’ Time

dW

dt’

W
Flow-time
 = Energy

(a) The clairvoyant power curve

↑
Power

dt
Time

dW

W

Flow-time

Energy

(b) The non-clairvoyant power curve

Figure 1: Analysis of a single job

The non-clairvoyant version where the weight is known at the
time of release has also been considered [7, 11]. Lam et al [7] gave
a (2− 1

α
)2-competitive algorithm for weighted flow-time plus en-

ergy when all jobs are released together, in the non-clairvoyant set-
ting with known weights. Chan et al. [11] gave a 2α2

logα
-competitive

algorithm for unweighted flow-time plus energy, once again for the
non-clairvoyant setting with known (unit) weights. We consider
the non-clairvoyant problem where the densities are known instead
of the weights. As discussed, the two problems are very different.
Moreover our most general result is for the weighted case of (inte-
gral/fractional) flow-time plus energy. Many other variants of these
problems have been considered, such as when the maximum speed
is bounded [6], minimizing energy for jobs with given deadlines
(offline and online) [15, 3], and minimizing flow-time under an
energy budget [4]. The issues tackled in these papers are quite dif-
ferent from the ones in this paper. The reader is referred to a survey
by Albers [16] of the different approaches to energy management
and corresponding results.

Roadmap. We establish preliminary notation and terminology that
we use throughout the paper in section 2. In section 3, we present
the algorithm for the uniform case and give its detailed analysis for
both fractional and integral flow-times. Our analysis for the case
of non-uniform densities on a single machine is substantially more
complicated. In section 4, we give a description of the algorithm
and an overview of the analytical tools that we use, but defer a de-
tailed analysis to the full version of the paper. We give a black
box extension for non-uniform densities from fractional to integral
flow-times in section 5. In section 6, we give the algorithm for
scheduling on identical parallel machines without immediate dis-
patch and the lower bound with immediate dispatch. We discuss
open problems in Section 7.

2. PRELIMINARIES
The (offline) problem of scheduling to minimize flow-time plus

energy is as follows. There is a single machine that can run at any
non-negative speed. Running the machine at a higher speed pro-
cesses jobs faster but consumes higher energy, as given by a power
function P : R+ → R+ that is monotonically non-decreasing and
convex. P (0) = 0. There are jobs that need certain amounts of
processing power. The problem is to process all the jobs in a way
that minimizes the sum of the total energy consumed and the total
weighted flow-time of all the jobs. We think of the power func-

tion as something pre-defined and not as part of an instance of the
problem.

Input: A set of jobs J . For each job j ∈ J , its release time r[j],
volume V [j] and density ρ[j]. Let the weight of job j be W [j] =
ρ[j] · V [j].

Output: For each time t ∈ [0,∞) the job to be scheduled at time
t, denoted by j(t), and the speed of the machine, denoted by s(t).
We write just s when the dependence on t is clear from the context.

Constraints: A job can only be scheduled after its release time.
For each job j, the total computational power allocated to the job
must be equal to its volume, that is,∫

t∈[r[j],∞):j(t)=j

s(t) dt = V [j].

Objectives: The total energy consumed is the integral of the power
function over time: E =

∫∞
t=0

P (s(t)) dt. The integral flow-time
of a given job j is

Fint[j] = W [j] · (c[j]− r[j]),

where c[j] denotes the completion time of j. The fractional flow-
time of j is

F [j] = ρ[j] ·
∫
t∈[r[j],∞]:j(t)=j

(t− r[j])s(t)dt

= ρ[j] ·
∫ ∞
t=r[j]

V (t)[j] dt,

where V (t)[j] is the remaining volume of job j at time t, i.e.,

V (t)[j] = V [j]−
∫
t′∈[r[j],t]:j(t′)=j

s(t′) dt′.

The problem is to minimize the sum of the flow-times of all jobs
plus energy, which is (the integral objective)Gint = E+

∑
j Fint[j],

or (the fractional objective) Gfrac = E +
∑
j F [j].

The online clairvoyant problem is when the details of job j (den-
sity, volume) are given at time r[j]. The algorithm makes its deci-
sions at any time without knowing which jobs will be released in
the future. In the online non-clairvoyant problem, only the density
ρ[j] is given upon the release of job j at time r[j]. The volume
V [j] is not given. At any future point of time, the algorithm only
knows if V (t)[j] > 0 or not. If a job j is such that V (t)[j] > 0,

we say the job is active, otherwise it is inactive (i.e., completed or
not released yet).

We now describe a 2-competitive algorithm for the online clair-
voyant problem. We call it Algorithm C. The job to be sched-
uled is determined by highest density first (HDF): schedule the ac-
tive job with the highest density. The speed at time t is set based
on the total remaining weight of active jobs at time t, denoted
by W (t) =

∑
j ρ[j] · V (t)[j]. The speed at time t is such that

P (s(t)) = W (t). For Algorithm C, the total energy always equals
the total flow-time. This is because the total flow time is∑

j

F [j] =

∫ ∞
t=0

∑
j

ρ[j] · V (t)[j] dt =

∫ ∞
t=0

W (t) dt.

THEOREM 1 ([8]). Algorithm C is 2-competitive.

We need the following properties of Algorithm C that follow from
elementary calculus.

LEMMA 2. Consider a run of Algorithm C on a single job of
weight W and density ρ, which takes time t to complete. Then they
satisfy the following relations:

1. dW
dt

= ρW
1
α ,

2. ρ(1− 1
α

)t = W 1− 1
α , and

3. W
t

= (1− 1
α

) dW
dt

.

3. UNIFORM DENSITY
In this section we consider the uniform density case, i.e., ρ[j] =

1 for all j. First, we give an algorithm for the online non-clairvoyant
version of the problem for minimizing fractional flow-time plus en-
ergy on a single machine, which we call Algorithm NC. Assume
w.l.o.g that the release times are all distinct. The job to be sched-
uled is determined according to the first-in first-out (FIFO) rule:
schedule active job j, if one exists, with the smallest r[j]. The
speed is set by considering a run of algorithm C on the same in-
stance. Notice that by the time Algorithm NC schedules a job j, it
knows the volumes/weights of all the jobs that are released earlier
than r[j]. Thus one can simulate Algorithm C upto time r[j]. Let
W

(C)
(r[j]−) = limt→r[j]−W

(C)
(t) be the remaining weight of

the active jobs in algorithm C at time r[j] (not including the weight
of job j). Further, let W̆ (t)[j] be the weight of job j processed by
Algorithm NC till time t. At time t, Algorithm NC sets a speed s
such that P (s) = W

(C)
(r[j]−) + W̆ (t)[j].

We now restrict our attention to power functions of the form
P (s) = sα for some α > 1. We obtain a competitive ratio for
Algorithm NC by showing that it is almost as good as Algorithm C,
which is surprising since the former is in the non-clairvoyant set-
ting. In particular we show that the energy consumed in the two al-
gorithms is the same (Lemma 3) and that the flow-times are within
a factor of 1− 1

α
(Lemma 4).

LEMMA 3. Algorithms C and NC consume the same amount of
energy.

LEMMA 4. For all α > 1 and power functions P (s) = sα, the
total flow-time of algorithm NC = the total flow-time of Algorithm
C /(1− 1

α
).

The competitive ratio of Algorithm NC follows immediately from
Lemmas 3 and 4 since we noted earlier that Algorithm C is 2-
competitive (Theorem 1) and that the flow-time equals the total
energy for Algorithm C. Therefore we get the following theorem.

THEOREM 5. For all α > 1 and power functions P (s) = sα,
Algorithm NC is 1 + 1/(1 − 1

α
) = 2 + 1

α−1
-competitive for the

objective of fractional flow-time plus energy.

In the remainder of this section we give the proofs of Lemma 3.
and Lemma 4, and the extension to the integral objective.

3.1 Energy Comparison (Proof of Lemma 3)
We show a very close structural similarity between the two al-

gorithms, by showing that their “speed profiles” are essentially the
same, upto a re-mapping of time (Lemma 6). This almost immedi-
ately implies Lemma 3. In fact, Lemmas 6 and 3 are actually true
for all power functions, not just ones of the form sα. The form of
the power function is needed for flow-time comparison (Lemma 4).

LEMMA 6. There exists a measure preserving 1-1 mapping t→
t′ from R+ to itself such that for all time t, the speed in Algorithm
NC at time t is equal to the speed in Algorithm C at time t′.

This lemma is proved by induction on time, with a stronger in-
ductive hypothesis, which is stated in Lemma 7. First, we define
the notion of an instantaneous instance. The stronger inductive hy-
pothesis constructs a mapping between the two algorithms for ev-
ery such instance and shows how to modify this mapping over time.
The instance at time∞ is just the original instance and hence we
obtain a mapping for it as well.

For any time T , let the clairvoyant instance at time T , denoted
by I(T), be an instance where the job release times are as in the
original instance, with weight of job j being W̆ (t)[j], which is the
weight of job j processed by Algorithm NC till time T . This would
be the instance if for algorithm NC, the instance ended at time T .
(Clearly I(T) depends on Algorithm NC).

For any two times T1 < T2, the run of Algorithm NC for instance
I(T1) is a prefix of its run for instance I(T2). However, the run of
Algorithm C is different for each instance. The proofs use how
the run of Algorithm C evolves with these changing instances. We
need to consider various quantities of Algorithm C that correspond
to different instances. Therefore, we will denote a quantity w.r.t a
particular instance by representing the time of that instance in the
subscript. For example, the remaining weight at time t in instance
I(T) is denoted WT (t).

We denote the speed of Algorithm C by s(C) and that of Algo-
rithm NC by s(NC).

LEMMA 7. ∀ T ∈ R+, there exists a measure preserving 1− 1
mapping t→ t′ from [0, T] to itself such that for all t ∈ [0, T], the
speed of algorithm NC at time t, which is s(NC)(t), equals the speed
of algorithm C at time t′ on instance I(T), which is s(C)

T (t′).

PROOF. The proof is by induction on T (refer to Figure 2 for a
pictorial depiction). The statement is vacuously true at time T = 0.
Suppose the statement is true for T . We will argue that it is also true
for T + dT , for an infinitesimal dT .

Clearly, as one goes from T to T + dT , the speed of algorithm
NC only changes in the interval [T, T + dT]. Suppose Algorithm
NC schedules job j during time [T, T + dT]. The speed s(NC)(T)

is such that P (s(NC)(T)) = W
(C)

(r[j]−) + W̆ [j](T). Since dT is
infinitesimal, we may assume that the speed does not change during
this interval. The increase in the completed weight of job j during
this interval is

dW = W̆ [j](T + dT)− W̆ [j](T) = s(NC)(T)dT.

The change in Algorithm C due to the change in the instance
from I(T) to I(T + dT) is more complicated. This change does

𝑤1

𝑤2
𝑑𝑤

𝑑𝑇 𝑟2 Time

Weight

↑

(a) The change in the non-clairvoyant algorithm upon
processing an extra dw weight of job 2 which takes an
extra time of dT . Job 2 is released at r2 and has weight
w2 currently. Job 1 is released at time 0 and has weight
w1, all of which has been processed.

𝑤1

𝑤2
𝑑𝑤

𝑑𝑇 𝑟2
Time

Weight

↑

(b) The change in the run of the clairvoyant algorithm
due to an extra dw weight of job 2. Here the speed of
the algorithm changes all the way from time r2 to the
end. The extra time taken dT is however the same as in
the non-clairvoyant case.

Figure 2: Analysis for the uniform density case

not affect Algorithm C before time r[j]. At r[j], the remaining
weight increases by dW , i.e.,

W
(C)
T+dT (r[j]) = W

(C)
T (r[j]) + dW,

which increases the speed of Algorithm C at time r[j]. Then as we
move forward in time from r[j] the remaining weight decreases.

W
(C)
T+dT (r[j] + dT) = W

(C)
T+dT (r[j])− s(C)(r[j])dT

= W
(C)
T (r[j]) + (s(NC)(T)− s(C)(r[j]))dT.

In fact, the drop in remaining weight after time dT is the same
as the initial increase since s(NC)(T) = s(C)(r[j]), which follows
from

W
(C)

(r[j]) = W
(C)

(r[j]−) + W̆ [j](T), and

P (s(C)(r[j])) = W
(C)

(r[j]).

Therefore, the remaining weight at time r[j] + dT in the instance
I(T + dT) is the same as the remaining weight at time r[j] in the
instance I(T). This continues for all t ≥ r[j], i.e.,

W
(C)
T+dT (t+ dT) = W

(C)
T (t).

We now specify the measure preserving 1− 1 mapping for T +
dT . We map T + dT → r[j]. Recall that s(NC)(T + dT) =

s(C)(r[j]). For t ≤ T , we map t→ t′+dT , where t→ t′ in I(T).
The speed s(NC) does not change for t ≤ T , due to the change in
T . The speed s(C) does not change for t < r[j]. For t ≥ r[j], the
above argument shows that

s
(C)
T+dT (t′ + dT) = s

(C)
T (t′) = s(NC)(t).

3.2 Flow-time Comparison (Proof of Lemma 4)
We prove Lemma 4 by once again considering the evolution of

Algorithm C with I(T). We show that the rate of change of flow-
time of Algorithm C on instance I(T), w.r.t. T , is 1− 1

α
times the

rate of change of flow-time of Algorithm NC w.r.t. T . The rest of
this section assumes P (s) = sα for some α > 1.

As in the proof of Lemma 7, when we go from T to T +dT , Al-
gorithm C processes an extra dW amount of weight at time r[j]
at speed s(C)(r[j]), which takes time dT . This incurs an extra
P (s(C)(r[j])) dT units of energy consumption. Therefore, the rate
of change of flow-time/energy8 of Algorithm C on instance I(T)
w.r.t. T is

dE(C)(I(T))

dT
= P (s(C)(r[j])) = W

(C)
(r[j]−) + W̆ [j]. (4)

At the same time, Algorithm NC incurs an extra flow-time due to
the extra dW weight which is processed in the interval [T, T+dT].
This weight dW waits for time T − r[j], giving an extra flow-time
of (T − r[j])dW . Therefore the rate of change of flow-time of
Algorithm NC w.r.t. time T is

dF (NC)

dT
= (T − r[j])dW̆ [j]

dT
. (5)

LetW ′ = W
(C)

(r[j]−)+W̆ [j] and T ′ = T −r[j]. W ′ is the total
weight processed by Algorithm C in time T ′ and hence

W ′ = (1− 1
α

)T ′
dW ′

dT ′
, by Lemma 2

⇒ dE(C)(I(T))

dT
= (1− 1

α
)
dF (NC)

dT
, by Eqns. 4 and 5.

3.3 Integral Objective
We will now show that the integral flow-time of any schedule

produced by Algorithm NC can be bounded in terms of its fractional
flow-time.

LEMMA 8. The integral flow-time of any schedule produced by
Algorithm NC is at most 2− 1

α−1
times its fractional flow-time.

PROOF. When we go from T to T + dT , Algorithm NC incurs
an extra fractional flow-time of (T − r[j])dW , i.e.,

dF (NC)

dT
= (T − r[j])dW. (6)

8Recall that the total flow-time and energy are equal for Algorithm
C.

At the same time, Algorithm NC incurs an extra integral flow-time
both due to the extra dW weight which is processed between T and
T + dT and due to the processed weight W̆ [j] of job j that now
contributes for the extra duration dt. The first part corresponds ex-
actly to the increase in fractional flow-time, i.e., (T−r[j])dW . So,
we bound the second part, i.e., W̆ [j]dt. Let W ′ = W

(C)
(r[j]−) +

W̆ [j] and T ′ = T − r[j]. W ′ is the total weight processed by
Algorithm C in time T ′, and hence by Lemma 2,

W ′ = (1− 1
α

)T ′
dW ′

dT ′

⇒ W̆ [j]dt ≤ (1− 1
α

)(T − r[j])dW

⇒ W̆ [j]dt ≤ (1− 1
α

)
dF (NC)

dT
,

where the first step follows from W ′ ≥ W̆ [j] and the second step
follows from Eqn. 6. Therefore,

dF
(NC)
int

dT
≤ (1 + (1− 1

α
))
dF (NC)

dT
.

The competitive ratio of Algorithm NC follows immediately from
Lemmas 3, 8 and 4 since we noted earlier that Algorithm C is 2-
competitive (Theorem 1) and that the total flow-time is equal to
the total energy for Algorithm C. Therefore we get the following
theorem.

THEOREM 9. For all α > 1 and power functions P (s) = sα,
Algorithm NC is 2 + 1/(1 − 1

α
) = 3 + 1

α−1
-competitive for the

objective of integral flow-time plus energy.

4. NON-UNIFORM DENSITY
In this section, we will significantly generalize the results in the

previous section, and give a non-clairvoyant algorithm for jobs of
non-uniform density. First, we consider the fractional objective in
this section, and then extend it to the integral objective in the next
section.

To define an algorithm for our problem, we need to specify, for
every time t, the job selected for processing at time t, and the
speed at which the selected job is processed. Recall that in the
non-clairvoyant version, the algorithm only has the following in-
formation at its disposal: the densities of all the jobs that have been
released till time t, the volume/weight of all jobs that have been
completed till time t, the set of active jobs, and a lower bound on
the volume/weight of every active job given by the volume/weight
of the job processed by the non-clairvoyant algorithm till time t.
As in the case of uniform densities, the non-clairvoyant algorithm
is closely related to the clairvoyant algorithm (algorithm C) for the
current instance I(t). Recall that algorithm C uses the HDF rule
to determine the processing order among jobs of different densities
that are waiting at any given time. If there are multiple jobs of the
highest density, then the algorithm is agnostic to which of these
jobs is chosen, but for the purpose of our analysis, it will be conve-
nient to assume that algorithm C uses the FIFO rule, i.e. it selects
the job with the highest density that was released the earliest.

As mentioned earlier, a key step in algorithm NC is to round all
densities down to powers of some constant β. Similar to algorithm
C, algorithm NC also processes the job with the highest density
among the active jobs at any given time, and uses the FIFO rule
to decide the processing order of jobs of the same density. (Note
that, in effect, jobs in the same density bracket are processed in
FIFO rather than HDF order since their densities are rounded to the

same value.) The speed of algorithm NC at time t is η times the
speed of algorithm C for the instance I(t) (we call I(t) the current
instance), i.e. s(NC)(t) = η · s(C)

t (t), where η is a constant that we
will determine later. (Again, the rounding of densities affects the
speed of algorithm NC via algorithm C since I(t) is now defined to
be the rounded instance at time t.)

Our analysis depends crucially on the fact that the current in-
stance will eventually evolve to the real problem instance. But this
need not be the case if algorithm NC always runs at zero speed. In-
deed, initially all jobs in the current instance have zero weight; so
the speed given by the above definition will be zero. We fix this
issue by setting the speed of algorithm NC to be ε more than that
given by the above definition, for some arbitrarily small but fixed
ε. We will ignore this excess speed in the analysis.

In analyzing algorithm NC, we will compare its energy and flow-
time to the energy and flow-time (which are equal) of algorithm C
respectively. The energy comparison is relatively straightforward
and is deferred to the full version of the paper. Intuitively, Algo-
rithm NC uses ηα times the energy of Algorithm C. In terms of
flow-times, we will show the following lemma.

LEMMA 10. For any instance I(t), the total flow-time in algo-
rithm NC is at most a constant times that in algorithm C, where the
constant depends only on α.

4.1 Flow-time Comparison (Sketch of Proof
of Lemma 10)

As in the case of uniform densities, we will establish Lemma 10
by induction over the evolving instances. The main objective of
using the multiplicative factor of η in setting the speed of algorithm
NC is to ensure that for every active job j, a constant fraction of j
is waiting at time t in algorithm Cin the current instance. Recall
that in contrast, the entire weight of job j in the current instance
has already been processed by algorithm NC before time t.

LEMMA 11 (PROPERTY (A)). For any active job j,

W
(C)
t (t)[j] ≥ ζ ·Wt[j] for some constant ζ.

Another consequence of the higher speed of algorithm NC com-
pared to algorithm C is that the total volume of jobs processed by
algorithm NC dominates that processed by algorithm C for any time
interval ending at the current time t.

LEMMA 12 (PROPERTY (B)). For any time t1 < t,

V (NC)(t1, t) ≥ γ · V (C)
t (t1, t) for some constant γ.

We prove the above two properties jointly using induction over the
evolving instances. Once these properties have been established,
we use them to show that for any active job j, the completion time
of j in algorithm C is significantly greater than its completion time
in algorithm NC if the job get completed right now. Let c(C)

t [j]
denote the completion time of job j in Algorithm C in instance
I(t).

LEMMA 13. For any active job j,

c
(C)
t [j]− t ≥ ψ · (t− r[j]) for some constant ψ.

The proofs of Lemma 11, Lemma 12, and Lemma 13 are deferred
to the full version of the paper.

We now explain the difficulties of proving Lemma 10 via Lemma
13, and sketch the key ideas. Note that when we transform the in-
stance from I(t) to I(t+dt) by adding a weight of dW = dWt[j

∗]

t
Time

Weight

↑

t1 t2 t3 t4 t5

Figure 3: The structure of preemption intervals in algorithm C for
the current instance. Job j∗ is released at time t1, i.e., rj∗ = t1
and is processed in the dotted intervals. There are two preemption
intervals [t1, t2] and [t3, t4], i.e., R̂1 = t1 and R̂2 = t3. Therefore,
i∗ = 2. The last preemption interval completes after the current
time t.

to job j∗, the increase in flow-time of algorithm NC is

dF (NC) = (t− r[j∗]) dW ≤ 1

ψ
·
(
c
(C)
t [j]− t

)
dW, by Lemma 13.

(7)
We can show that if the increase in the remaining weight at time t
for algorithm C, i.e., dW

(C)
t (t), is at least a constant factor of dW ,

then Eqn. (7) is sufficient to prove Lemma 10. However, while this
property holds in the case j(C)

t (t) = j∗, it may not hold in general.
This necessitates a more complicated proof, the first step of which
is to show a somewhat weaker property that we describe below.

To describe this property, we first need to describe and estab-
lish some notation about the structure of the time interval [r[j∗], t]
in algorithm C for the current instance. This time interval alter-
nates between intervals where j∗ is being processed by algorithm
C and intervals where jobs of densities higher than ρ[j∗] are being
processed (see Figure 3 for an example). We call the latter preemp-
tion intervals, and the jobs that are processed by algorithm C in the
preemption intervals are called preempting jobs. We index the pre-
emption intervals in chronological order. Let R̂i and V̂i denote the
starting time and the volume of all preempting jobs in the i-th pre-
emption interval respectively. Also, let W i = W

(C)
t (R̂−i). (Note

that W i does not include the weight of jobs released at time R̂i.)
Let i∗ be the index of the last preemption interval.

The next lemma states that the increment in the remaining weight
at time R̂i∗ is a constant fraction of the added weight dW , if 1) the
ratio of remaining weight at R̂i∗ is a constant fraction of that at
R̂1, and 2) the total preempting volume except the last preemption
interval is a constant fraction of the volume of the current job. Note
that properties (A) and (B) informally correspond to these two con-
ditions, though a formal proof will need to use induction over the
properties since the following lemma is used to prove the properties
themselves. Also, note that the property established by the lemma
is weaker than what we would have ideally liked: the increment
in the remaining weight at time t (instead of time R̂i∗ as given by
the lemma) is at least a constant factor of dW . (The proof of this
lemma is deferred to the full version of the paper.)

LEMMA 14. If W i∗ ≥ ζ ·Wt[j
∗], then

dW
(C)
t (R̂i∗)[j

∗]

dW
≥

(
1− 1

4ζ

∑i∗−1
k=1 V̂k

Vt[j∗]

)(
W i∗

W 1

) 1
α

.

Recall that the increase in the flow-time of Algorithm C equals
the integral of dW

(C)
t (t′) as over time t′ starting from r[j∗]. Up

to the last preemption interval, dW
(C)
t (t′) is at least some constant

factor of dWt[j
∗] by Lemma 14. Therefore if the last preemption

interval is short enough, i.e., if it is at most a constant factor of
(t − r[j∗]), then we will be done. However, in general, the last
preemption interval could be long. Therefore a local charging ar-
gument will not work and we resort to an amortized analysis.

The intuition for why an amortized analysis works is as follows.
If a preempting job in the last preemption interval is small, then we
can ignore it since the time taken by this job is small compared to
the total time. On the other hand if the preempting job is large, then
we can charge some of dF (NC)(t) to dF (C)(t) at an earlier time
when we were processing this large preempting job. The amortized
analysis uses a potential function to accomplish this. When we
have an extra amount in the dF (C)(t) in the charging argument, we
will store this in the potential function. Later we may need help in
the charging argument in which case we will draw from the stored
potential function to pay for dF (NC)(t).

More precisely, we will have one bin for each pair of density lev-
els k > k′, into which we will store the extra clairvoyant flow-time
when we are processing jobs with density βk and from which we
will draw when we are processing jobs with density βk

′
. In par-

ticular, consider a bin (k, k′). Suppose j∗ = j with density βk.
We will show that dF (C)(t) is at least a constant fraction of the
change in processing time of the current job times its weight. We
will store 2k

′−k fraction of dF (C)(t) in the bin for (k, k′). By do-
ing so, the total amount that we store in all bins is a constant factor
of dF (C)(t). Further, when Algorithm NC finishes processing job
j, the total potential stored in bin (k, k′) due to j is at least the pro-
cessing time of j times a 2k

′−k fraction of its weight. Later, when
Algorithm NC is processing dW weight of a job j′ with density
βk
′
, we can withdraw potential equal to the processing time of job

j times dW from the bin (k, k′). We can keep doing this until the
weight of the job j′ become at least a 2k

′−k fraction of the weight
of job j. Now recall that the density of the jobs are rounded to be
powers of β. Choosing β > 4, we get that if the weight of the job
j′ becomes at least a 2k

′−k fraction of the weight of job j, then
the volume of job j′ is at least (2/β)k

′−k = (β/2)k−k
′
> 2k−k

′

times the volume of j. So the processing time of job j is now negli-
gible compared to that of j′. The details of the amortized analysis,
which ultimately yields Lemma 10, is deferred to the full version
of the paper.

5. INTEGRAL OBJECTIVE
In this section, we will give a black box reduction of any sched-

ule optimizing fractional flow-time plus energy to one optimizing
integral flow-time plus energy. Our goal is to show the following
lemma.

LEMMA 15. If a non-clairvoyant algorithmAfrac has the guar-
antee that the fractional flow-time plus energy of any schedule pro-
duced by the algorithm is at most Γfrac times the optimum, where
Γfrac is a constant that depends only on α, then there is a non-
clairvoyant algorithm Aint with the guarantee that the integral
flow-time plus energy of any schedule produced by the algorithm
is at most Γint times the optimum, where Γ∫ is some constant that
also depends only on α.

PROOF. Let j(t) be the job processed by algorithm Afrac at
time t, and let s(t) be the corresponding speed of the machine.
Then, algorithm Aint is defined as follows: if job j(t) is active

at time t (i.e., it has not been completed yet), then algorithm Aint
processed job j(t) at speed (1 + ε)s(t) for some constant ε >
0; otherwise, if job j(t) has already been completed by algorithm
Aint before time t, then it keeps the machine idle at time t. Note
that for every job j and every time t, the weight of job j processed
by algorithm Aint till time t is exactly 1 + ε times the weight of
job j processed by algorithm Afrac till time t. In other words,
whenAint finishes job j, 1

1+ε
fraction of the job is left in algorithm

Afrac. Let T [j] be the difference between the completion time
of job j in algorithm Aint and its release time r[j]. Then, the
integral flow-time due to job j in algorithmAint is exactlyW [j]·T ,
whereas the fractional flow-time of job j in algorithm Afrac is at
least

(1− 1

1 + ε
)W [j] · T =

ε

1 + ε
·W [j] · T.

Therefore, the total integral flow-time in algorithm Aint is at most
1 + 1

ε
times the total fractional flow-time in algorithm Afrac. On

the other hand, the total energy consumed in algorithm Aint is at
most (1+ε)α times that in algorithmAfrac. To complete the proof,
we set

Γint = max

{
(1 + ε)α, 1 +

1

ε

}
Γfrac.

The next theorem follows from the above lemma and our result
for minimizing fractional flow-time plus energy.

THEOREM 16. There is a deterministic algorithm for the non-
clairvoyant scheduling problem with non-uniform density that has
a constant competitive ratio, where the constant only depends on
α, for the objective of integral flowtime plus energy.

6. IDENTICAL PARALLEL MACHINES
Throughout this section we will consider only deterministic al-

gorithms. Let there be a set of k identical machines. The goal is
to minimize the sum of the energy and (fractional/integral) flow-
time on all the machines. In the immediate dispatch model, on the
release of a job, the algorithm must specify which machine it will
be processed on. The actual processing might be done later but the
selection of the machine has to be immediate. We show a lower
bound of Ω(kβ) where β = 1 − 1/α in the immediate dispatch
model, even for uniform densities and fractional flow-time. The
main property we use is that the algorithm has no way of distin-
guishing jobs of different volumes. Due to this, the adversary can
pick the job volumes in such a way that the algorithm cannot do
any load balancing. Release k2 jobs at time 0, of which k jobs will
have high volumes and the rest will have low volumes. The algo-
rithm dispatches all the jobs right away and there exists a machine
which has been assigned at least k jobs. The adversary chooses
these k jobs to be the ones with the high volumes. The optimum
schedule is the one that assigns all the high volume jobs to different
machines. The cost of the optimum is (dominated by) the cost of
processing a single high volume job whereas the cost of the algo-
rithm is (dominated by) the cost of processing k high volume jobs.
The ratio of these two costs gives a lower bound of Ω(kβ).

Now, we focus on the model where jobs do not need to be as-
signed immediately on arrival. However, once a job has started
processing on a machine, it cannot be moved to another machine.
In this model, we give an algorithm with constant competitive ratio.
Our algorithm (we call it NC-PAR) is defined as follows. It main-
tains a global queue of unassigned jobsQ in FIFO order. Whenever

a machine is available, i.e., all jobs previously assigned to the ma-
chine have been completed, we assign the first job in NC-PAR to
the available machine. The instantaneous speed on a machine is
determined exactly as in Algorithm NC, where the current instance
is defined by the processed volume of all jobs assigned by Algo-
rithm NC-PAR to this machine.

THEOREM 17. For all α > 1 and power functions P (s) = sα,
Algorithm NC-PAR is O(α+ 1

α−1
)-competitive for the objective of

integral/fractional flow-time plus energy on identical parallel ma-
chines.

Similar to the single machine case, the analysis of Algorithm
NC-PAR relies on comparing its flow-time and energy consumption
with those of a known competitive (immediate dispatch) clairvoy-
ant algorithm that we call C-PAR. Algorithm C-PAR behaves iden-
tical to Algorithm C on each individual machine, i.e., the instan-
taneous speed is set such that power equals fractional remaining
weight. In assigning jobs to machines, Algorithm C-PAR embraces
a greedy policy and assigns each arriving job immediately to a ma-
chine that minimizes the increase in the fractional objective.

THEOREM 18 ([12]). Algorithm C-PAR is O(α)-competitive
for the objective of fractional flow-time plus energy.

Next, we will show that the job assignment of algorithm NC-PAR
is identical to that of algorithm C-PAR. This suffices since on an
individual machine, Algorithms NC-PAR and C-PAR are identical to
Algorithms NC and C respectively. The next lemma characterizes
the job assignment rule of Algorithm C-PAR.

LEMMA 19. For every job j, Algorithm C-PAR assigns j to a
machine i that has the least remaining (fractional) weight when j
is released.

PROOF. Suppose the fractional remaining weight of jobs on some
machine i is W when job j is released, i.e., at time r[j]. Then, us-
ing Lemma 2, the total energy for processing the remaining jobs is
given by∫ W

0

α

α− 1
w1− 1

α dw =
α

α− 1
· α

2α− 1
W 2− 1

α .

So, assigning job j to machine i would increase the energy by
α

α− 1
· α

2α− 1

(
(W +W [j])2−

1
α −W 2− 1

α

)
,

which is monotonically increasing inW by the convexity of x2−
1
α .

To conclude the proof, we note that since the fractional flow-time
equals energy for Algorithm C-PAR, it assigns job j to the machine
that minimizes the increase in the energy consumption after time
r[j].

Next, for convenience of presentation, we will assume that there
is an arbitrary total order of all machines and both algorithms C-PAR
and NC-PAR break ties according to this total order. This assump-
tion can be removed with more careful analysis using the same idea.
We omit the details for the sake of brevity.

LEMMA 20. Algorithm NC-PAR assigns job j to machine i if
and only if algorithm C-PAR assigns job j to machine i.

PROOF. We will use induction on the order of arrival of jobs. All
machines have zero remaining weight when the first job arrives. So
the first job will be assigned to the first machine with respect to the
total order in both algorithms C-PAR and NC-PAR.

Now, suppose that the assignments of all jobs before job j are
identical in the two algorithm. We will show that this is also the
case for job j. By Lemma 19, Algorithm C-PAR assigns job j to
the machine i that has the least remaining weight at time r[j]. Fur-
ther, by property 2 of Lemma 2, the completion time of all jobs on
an individual machine is a monotonically increasing function of its
fractional remaining weight at time r[j]. Finally, given that the job
assignment has been the same in algorithms C-PAR and NC-PAR
so far, it follows from Lemma 6 that for any individual machine,
the completion time for all jobs released before job j on the ma-
chine is identical for algorithms C-PAR and NC-PAR. It follows
that Algorithm C-PAR assigns job j to the machine with the earliest
completion time in Algorithm NC-PAR for all jobs released before
job j (breaking ties according to the total order of the machines).
By definition of Algorithm NC-PAR, this is the same machine that
Algorithm NC-PAR would assign job j to.

Combining Lemma 20 with Lemma 3 and 4 respectively, we re-
late the energy and fractional flow-time of C-PAR with those of
NC-PAR.

LEMMA 21. Both algorithms C-PAR and NC-PAR consume the
same amount of energy.

LEMMA 22. The fractional flow-time of Algorithm NC-PAR equals
the fractional flow-time of Algorithm C-PAR divided by (1− 1

α
).

Lemmas 21 and 22, and Theorem 18 immediately yield Theo-
rem 17 for the fractional objective. Extending our proof to the inte-
gral objective is almost identical to the the analysis in Section 3.3;
we omit the details for brevity.

7. OPEN PROBLEMS
The most natural open problem is to extend our results to the

case of non-uniform density and identical parallel machines.
In terms of getting a positive result, it is no longer feasible for the

non-clairvoyant algorithm to mimic the job assignment rule of the
clairvoyant algorithm. When the clairvoyant algorithm dispatches
a higher density job, it takes into account the lower density jobs
to compute the increase in the cost for each machine. The non-
clairvoyant algorithm, however, has to dispatch the higher density
job without exploring the lower density jobs thoroughly. A natural
policy for the non-calirvoyant algorithm is to follow HDF (proba-
bly with rounded densities) and dispatch only as needed to follow
this rule. A candidate clairvoyant algorithm to compare this with
is the one that considers only jobs of equal or higher density to
calculate the increase in the cost. However the job assignments
could still be different: for instance, jobs released later could affect
the machine a job is assigned to in the non-clairvoyant algorithm
whereas they do not in the clairvoyant algorithm.

In terms of showing a hardness result, one natural attempt is to
use different densities to force the algorithm to do immediate dis-
patch and then apply the hardness result for immediate dispatch
in Section 6. However, the following somewhat surprising fact
rules this approach out. Suppose there are l jobs with densities
1, ρ, ρ2, . . . , ρl−1 such that the cost of processing any one of them
by itself on a single machine is c. Then the cost of processing all of
them on l machines is lc. However, the cost of processing them all
on a single machine is at most 4lc as long as ρ ≥ 4. Thus, not load
balancing jobs of different densities costs only a constant factor
unlike the case of uniform densities where it costs a super-constant
factor.

These issues indicate that this is an interesting open problem that
needs some new ideas.

8. REFERENCES
[1] Barroso, L.A.: The price of performance. ACM Queue 3(7)

(2005) 48–53
[2] Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow

time minimization. ACM Transactions on Algorithms 3(4)
(2007)

[3] Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for
reduced cpu energy. In: FOCS. (1995) 374–382

[4] Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best
response for your erg. ACM Transactions on Algorithms 4(3)
(2008)

[5] Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted
flow time. SIAM J. Comput. 39(4) (2009) 1294–1308

[6] Bansal, N., Chan, H.L., Lam, T.W., Lee, L.K.: Scheduling
for speed bounded processors. In: ICALP (1). (2008)
409–420

[7] Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Speed
scaling functions for flow time scheduling based on active
job count. In: ESA. (2008) 647–659

[8] Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an
arbitrary power function. In: SODA. (2009) 693–701

[9] Andrew, L.L.H., Wierman, A., Tang, A.: Optimal speed
scaling under arbitrary power functions. SIGMETRICS
Performance Evaluation Review 37(2) (2009) 39–41

[10] Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant
scheduling. Theoretical computer science 130(1) (1994)
17–47

[11] Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K.,
Marchetti-Spaccamela, A., Pruhs, K.: Nonclairvoyant speed
scaling for flow and energy. Algorithmica 61(3) (2011)
507–517

[12] Anand, S., Garg, N., Kumar, A.: Resource augmentation for
weighted flow-time explained by dual fitting. In: SODA.
(2012) 1228–1241

[13] Devanur, N.R., Huang, Z.: Primal dual gives almost optimal
energy efficient online algorithms. In: SODA. (2014)

[14] Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably
scheduling power-heterogeneous processors. In: ICALP (1).
(2010) 312–323

[15] Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage
energy and temperature. J. ACM 54(1) (2007)

[16] Albers, S.: Energy-efficient algorithms. Commun. ACM
53(5) (2010) 86–96

	Introduction
	Our Results
	Techniques and Intuition
	Related Work

	Preliminaries
	Uniform Density
	Energy Comparison (Proof of Lemma 3)
	Flow-time Comparison (Proof of Lemma 4)
	Integral Objective

	Non-uniform Density
	Flow-time Comparison (Sketch of Proof of Lemma 10)

	Integral Objective
	Identical Parallel Machines
	Open Problems
	References

