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We consider a revenue-maximizing seller with a single item facing a single buyer with a private budget. �e

(value, budget) pair is drawn from an arbitrary and possibly correlated distribution. We characterize the

optimal mechanism in such cases, and quantify the amount of price discrimination that might be present. For

example, there could be up to 3 · 2k−1 − 1 distinct non-trivial menu options in the optimal mechanism for such

a buyer with k distinct possible budgets (compared to k if the marginal distribution of values conditioned on

each budget has decreasing marginal revenue [Che and Gale, 2000], or 2 if there is an arbitrary distribution

and one possible budget [Chawla et al., 2011]).

Our approach makes use of the duality framework of Cai et al. [2016], and duality techniques related to the

“FedEx Problem” of Fiat et al. [2016]. In contrast to [Fiat et al., 2016] and other prior work, we characterize the

optimal primal/dual without nailing down an explicit closed form.

1 INTRODUCTION
�e theory of optimal auction o�en equates willingness to pay with the ability to pay. While this

leads to clean formulations and elegant solutions, there are many instances where this assumption

is violated. For example, the valuation for an item could be based on future earnings but credit

could be di�cult to obtain due to imperfect capital markets (see Che and Gale [2000] for more

discussion on this). �is is especially true when the sums involved are huge, such as in spectrum

auctions [Cramton, 1995]. Budget constraints have been a predominant feature in ad auctions,

which has led to a revived interest in understanding how they impact auction design [Abrams,

2006, Borgs et al., 2005, Dobzinski et al., 2008, Goel et al., 2012]. Sometimes, budget constraints

are imposed exogenously, e.g., in contests with some form of bidding [Gavious et al., 2002], and in

auctions for players to form a team in a professional sports league [Venkateswaran, 2013]. Another

reason for the existence of budget constraints is that a principal may employ an agency to bid on

her behalf, and imposes a budget constraint to control the spending [Che and Gale, 1998].

In this paper we consider selling a single item to a single bidder, who has a quasi-linear utility

function as well as a hard upper bound on her payment. In other words, if the buyer obtains the

item and pays p, then her utility is v −p, as long as p < b, for some two numbers v and b. We call v
her valuation and b her budget, and both of them are private information. We consider the problem

in the Bayesian se�ing, where there is a joint probability distribution over types (v,b), which is

known to the seller.

In such se�ings, it is known that the optimal mechanism necessitates selling lo�eries (e.g.

awarding the item with probability in (0, 1)). While there may be practical limitations to selling

lo�eries, there are many cases where lo�eries are sold in disguise: an upgrade to a business class seat

on an airplane is essentially a lo�ery since the upgrade is available only with a certain probability.

A similar situation has been observed in a spot market for virtual machines, where they are evicted

with some probability even when there is no excess demand [Kilcioglu and Maglaras, 2015a,b]. �e

same e�ect can be acheived via a degradation of service, depending on the context. E.g., if the item

is time sensitive such as the latest fashion trend, then delaying the sale is an e�ective degradation

of service. Equivalently, the item could be divisible, and x would be the fraction of the item sold.

Manuscript submi�ed for review to ACM Economics & Computation 2017 (EC ’17).
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Treating the item as divisible is a resonable approximation when there are a large number of copies

of identical items, such as in the case of ad auctions.

Two variants of this problem have been considered [Che and Gale, 2000]: the optimal uncondi-
tional mechanism where a buyer can exaggerate her budget as long as the eventual payment is less

than her actual budget, and the optimal conditional mechanism where the seller can prevent such

exaggerations. �is can be enforced by requiring a cash bond, for example, or by requiring the

buyer to pay his full budget with some small probability. �e optimal conditional mechanism can do

a higher degree of price discrimination and as a result extract more revenue than the unconditional

mechanism.
1

In this paper we focus on the optimal conditional mechanism (and henceforth, simply

the optimal mechanism) .

�e core of the ma�er is how to use the budget constraints to do price discrimination. Buyers can

feasibly report a lower budget, so the ones with higher budgets extract higher information rents.

�e economic intuition gained from previous work on this subject is as follows. �e following

assumptions on the value distributions are commonly made: a distribution with a CDF F and

density f is called regular ifv − 1−F (v)
f (v) is non decreasing, and it satis�es declining marginal revenues

(DMR) if the function v(1 − F (v)) is concave.

Fixed budget, regular or DMR distributions [La�ont and Robert, 1996]: If the buyer’s value

is drawn from a regular or DMR distribution and the budget is �xed and known to the seller, the

optimal mechanism posts a price equal to the minimum of the budget and the Myerson reserve (at

most one non-trivial menu option). �ere is no price discrimination in this case. �is is not true

when either the regularity or the DMR assumption is violated.

Fixed budget, arbitrary distributions [Chawla et al., 2011]: If the buyer’s value is drawn from

an arbitrary distribution and the budget is �xed and known to the seller, two non-trivial menu

options are necessary and su�cient: receive the item with probability 1 and pay the budget, or

receive the item with probability q < 1 and in this case pay a price < qb (Example 3.8 shows that 2

options are necessary, as does Example 1 in [Chawla et al., 2011]). �is shows that there could be a

non-trivial price discrimation even when there is only one possible budget. �e combination of

arbitrary distributions as well as di�erent budgets ampli�es this aspect, and is one of the di�culties

in handling such cases.

Private budget, DMR distributions [Che and Gale, 2000]: If there are k possible budgets

b1 < . . . < bk , private to the buyer, and the buyer’s value conditioned on any given budget is drawn

from a DMR distribution, then the optimal mechanism has the following format: the menu o�ered

to buyers with budget b1 has at most one non-trivial option. �ere is a cu�o� budget bi∗ , below

which the budget binds and above which the menu contains an option to receive the item with

probability 1. �e menu presented to a buyer with budget bj contains every option o�ered to the

buyer with budget bj−1, plus at most one additional option (meant for the highest valued types).

For j < i∗, the additional option is to receive the item with a probability qj < 1 and pay bj . For

j ≥ i∗, the additional option o�ers the item with probability 1, at a possibly lower price than the

same option for the lower budgeted buyers. (Higher budgeted types get larger discounts.) �ere

are therefore at most k non-trivial menu options.

We show how to derive all of the above results using a common approach. �e �rst two results

appear in Section 3 as a warm-up, and the �nal one appears in Appendix D. In comparison to existing

1
Che and Gale [2000] show that under cerain assumptions on the prior distribution, the optimal unconditional mechanism

is essentially a price curve, which is a mapping from the allocation probability x ∈ [0, 1] to a price p(x ). �e optimal price

curve is further guaranteed to be convex; the marginal cost per unit amount is non decreasing. �e search space is therefore

the set of all non decreasing convex functions p such that p(0) = 0. For the optimal conditional mechanism, the search

space is a 2 dimensional function, since there can be a di�erent price curve for each budget.
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proofs of the above results, we believe our proof for the private budget, DMR case is considerably

more structured.
2

Existing proofs for the single budet case are already quite straight-forward, but

our approach shows how to properly view the single budget, regular/DMR se�ing as a special

case of the single budget, arbitrary distribution se�ing where additional structure exists (rather

than as a necessary assumption to get the proof going). Our principled approach allows us to

extend this characterization all the way to the most general case. Our main contribution in this
paper is to characterize the optimalmechanism in the private budget setting without any
assumption on the distributions. �e main economic intuition gained from our results is a

quantitative understanding of the degree of price discrimination that might arise in the general

case. For example:
3

If the buyer’s value is drawn from an arbitrary distribution and there are possible

budgets b1 < . . . < bk , private to the buyer, the optimal mechanism has the

following format: the menu o�ered to buyers with budget b1 has at most two

non-trivial options. �ere is a cu�o� budget bi , below which the budget binds and

above which the menu contains an option to receive the item with probability 1.

Every option on the menu presented to a buyer with budget bj−1 splits into at most

two options to be included on the menu presented to a buyer with budget bj . In

addition, there is at most one additional option at the top (i.e. higher allocation

probability than all other options). If j < i , the additional option o�ers the item

at probability q < 1 at price bjq. If j ≥ i , the additional option o�ers the item at

probability 1 (at most 3 · 2k−1 − 1 non-trivial menu options) [�eorem 4.17].

1.1 Techniques
�e predominant technique in characterizing optimal mechanisms for multi-dimensional types is to

write it as a mathematical program and use its optimality conditions [Che and Gale, 2000, Malakhov

and Vohra, 2004, 2009]. In particular, a very successul technique has been to guess the optimal

mechanism as well as the optimal dual variables/Lagrange multipliers and verify that they satisfy

these conditions [Daskalakis et al., 2013, 2015a, Fiat et al., 2016, Giannakopoulos and Koutsoupias,

2014, 2015, Haghpanah and Hartline, 2015, La�ont and Robert, 1996, Manelli and Vincent, 2006,

Pai and Vohra, 2014]. Within these, there are several di�erences such as whether the types are

discrete or continuous, giving rise to �nite or continuous linear programs (LPs), whether to use

“allocation variables” or “utility variables”, and so on. We stick to discrete types and �nite LPs that

use allocation variables, althoug our results extend to continuous types (see [Cai et al., 2016] for

a proof/discussion of why). Finite LPs are technically easier since strong duality holds without

any additional work, while continuous versions have the advantage that one can do calculus more

easily.

A key aspect of our approach is the idea of Lagrangifying only the incentive/budget constraints,

as in the duality framework of Cai et al. [2016]. A particularly nice property of this is that the

duals give a virtual valuation for each type. �e optimal mechanism is then such that all the types

with positive virtual values are allocated with probability 1, and all the types with negative virtual

values are not allocated at all. For the types with a zero virtual value the allocation probability is

2
We stop short of claiming that the complete proof is simpler - there are quite a few technical hurdles to overcome. But we

believe that it is much simpler to get an understanding of both the approach and the special cases where these technical

hurdles don’t arise.

3
Note that in the description below, we are targeting the optimal ex-post IR mechanism (charges at most budget when the

item is awarded). Our approach, literally word-for-word with some obvious replacements also characterize the optimal

interim IR mechanism (charges at most the budget). For the optimal interim IR mechanism, replace bjq in the text below

with bj .
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typically in (0, 1); and we need to use additional structure of the dual to pin down these probabilities

(speci�cally, complementary slackness). �e optimal dual is such that the sign of the virtual value

is monotone in the buyer’s value.

A special case of our problem is the FedEx problem of Fiat et al. [2016]: each buyer has a value v
for a service and a “deadline” d , where d is a time. �e buyer gets a value v for a service as long as

it is delivered before the deadine d . A buyer can be prevented from reporting a later deadline by

making sure that he is always serviced exactly at his deadline. �us, the only relevant IC constraints

are when a buyer can misreport his value and an earlier deadline. �is is exactly our problem, in

the instances where none of the budgets are binding. �e conditional mechanism can also prevent

buyers from over-reporting their budget, so the IC constraints are exactly the same syntactically;

semantically, deadlines are replaced by budgets. As mentioned earlier, we show that there is a

threshold budget above which the budget constraint does not bind. In this regime, the problem

becomes identical to the FedEx problem and we use essentially the same primal/dual solution from

Fiat et al. [2016], translated to our LP. �is translation shows that their dual solution indeed induces

monotonically signed virtual values.

Finally, we emphasize one key technical departure from previous works. In prior works, an

explicit optimal dual solution and explicit optimal primal solution are proposed, and then optimal-

ity/complementary slackness is proved. In our se�ing, this would be a complete nightmare - mostly

due to the multiple budget constraints. Instead, we characterize what the optimal dual solution

must look like, and show that there exists an optimal primal solution of the desired form which

satis�es complementary slackness. All this is done without excessive algebraic calculation to nail

down a closed form. Still, it is easy to see from our approach how one could go about �nding the

optimal primal/dual - the point is just that an exact calculation isn’t necessary to characterize the

solutions. We defer a more technical overview of our approach to later sections.

1.2 Conclusion and Future directions
Organization: In Section 2, we formally state our problem, notation, etc. We also write an LP

formulation and go through a series of reformulations a la Cai et al. [2016], resulting in a program to

search for the optimal dual. In Section 3, we instantiate this approach for the case of a single public

budget. �e results in this section are already known due to Chawla et al. [2011], La�ont and Robert

[1996], but it will be instructive to see our approach address this special case. In Section 4, we prove

our main result: a characterization of the optimal mechanism with arbitrary value distributions and

private budgets. In the appendix, we provide a longer overview of other related work (Appendix A),

derive Che and Gale’s tighter characterization when all value distributions are DMR as a corollary

(Appendix D), and provide several omi�ed proofs (Appendices B and C).

Future Work: Along with the FedEx Problem, our work is an example of problems that are “one-

and-a-half-dimensional:” the space of optimal mechanisms is considerably richer than in single-

dimensional se�ings, yet there is still enough structure to obtain meaningful characterizations.

Another example of this is when there are multiple copies of an item, and the buyer’s valuation

grows linearly with the number of items subject to a capacity constraint. �e type of a buyer

is once again a pair, a per unit valuation and a capacity. Devanur et al. [2017] characterize the

optimal mechanism when the marginal distributions satisfy DMR; extending this to arbitrary

distributions is an interesting open question. Another enticing direction is understanding the

optimal mechanism for multiple buyers in these se�ings. Non-trivial innovation is likely needed

beyond existing techniques - see technical sections for more detail.
4

Additionally, it would be

4
Essentially the challenge is that for a single bidder, one only needs virtual values that are monotonically signed (i.e.

never go from positive to negative). But for multiple bidders, one additionally needs virtual values that are monotone
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interesting to push the limits of these se�ings: for example, what about a single buyer with multiple

of these “half-dimensions” (e.g., a budget and a deadline)?

2 PRELIMINARIES
We consider the problem faced by a single seller with a single item for sale to a single buyer. �e

buyer has a value v for receiving the item and a hard budget constraint b on her maximum ability

to pay. Our techniques apply both to ex-post IR (where the buyer must pay at most b conditioned

upon winning the item), and interim IR constraints (where the buyer must pay at most b, but pays

before learning whether or not she receives the item). Our characterization applies in both
settings, but we will give proofs only for ex-post IR. �e same proof applies nearly verbatim for

interim IR.

Buyer Types. �e buyer’s type, (v,b) is drawn jointly from an arbitrarily correlated distribution

supported on {0, 1, . . . , v̄} × {b1, . . . ,bk }, with {b1, . . . ,bk } ⊆ {0, 1, . . . , v̄}. �e assumption that

the support is �nite and integral is for technical simplicity and without loss of generality, see [Cai

et al., 2016] for a rigorous argument. De�ne fi (w) = Pr[(v,b) = (w,bi )], and Fi (w) =
∑

x ≤w fi (w).

Mechanisms. We’ll use the variables πi (v) to denote the probability that a bidder with type (v,bi )
receives the item, and pi (v) to denote the expected price they pay. We seek mechanisms that are:

• Incentive Compatible: v · πi (v) − pi (v) ≥ v · πj (w) − pi (w), for all j ≤ i , and all v,w .

• Individually Rational: v · πi (v) − pi (v) ≥ 0, for all i,v .

• Feasible: πi (v) ∈ [0, 1] for all i,v .

• Budget-Respecting: pi (v) ≤ bi · πi (v).5
Note that in de�ning Incentive Compatibility above, we are assuming that the buyer may only

lie by under-reporting her budget. �is is standard in the literature on auction design with budget

constraints, and can be enforced e.g. by asking the buyer to front her budget before any sale takes

place. It is folklore knowledge that many of the above constraints are redundant (see e.g. [Fiat

et al., 2016, La�ont and Robert, 1996]), and the revenue-optimal mechanism is the solution to the

following LP. We write the LP for ex-post budget-respecting, the necessary change for interim

budget-respecting is obvious.
6

LP1: • Maximize:

∑
i
∑
v fi (v)pi (v) (expected revenue).

• Subject to:

– v · πi (v) − pi (v) ≥ v · πi (v − 1) − pi (v − 1), for all i and v ≥ 1 (Le�wards IC).

– v · πi (v) − pi (v) ≥ v · πi (v + 1) − pi (v + 1), for all i and v ≤ v̄ (Rightwards IC).

– v · πi (v) − pi (v) ≥ v · πi−1(v) − pi−1(v), for all i > 1 and v (Downwards IC).

– π1(0) = p1(0) = 0 (Individual Rationality).

– πi (v) ≤ 1, for all i,v (Feasibility).

– pi (v̄) ≤ bi · πi (v̄) for all i (Budget-Respecting).

Proposition 2.1 (Folklore,[Fiat et al., 2016],[Laffont and Robert, 1996]). Every solution to
LP1 is an optimal mechanism.

�e above essentially just observes that many of the IC/budget constraints are redundant (implied

by the others). Following the duality framework of Cai et al. [2016], we will also take the partial

non-decreasing when positive. �e present results certainly fall short of providing clear guidance on how to achieve

monotone non-decreasing virtual values.

5
For interim IR, replace this with pi (v) ≤ bi for all i . Adapting the proof to this case involves essentially just propagating

this change through computation of virtual values, etc.

6
�is is the last time we will reference necessary changes for interim IR.
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Lagrangian of LP1, with dual multipliers λi (v,v − 1) for the Le�wards IC constraints, λi (v,v + 1)
for the Rightwards IC constraints, αi (v) for the Downwards IC constraints, and γi for the budget

constraints. For the reader unfamiliar with their framework, we’ll go through their approach,

omi�ing proofs (which can be found in [Cai et al., 2016]). By strong duality, the solution to LP1

corresponds to the primal variables in the solution to the following max-min program. We will use

Λ = (®λ, ®α , ®γ ) to refer to a complete set of Lagrangian multipliers for the IC/budget constraints.

Max-Min1:

• Maximize: Lmin( ®π , ®p), where Lmin( ®π , ®p) is the value of the following LP1( ®π , ®p):
– Minimize

∑
i,v fi (v)pi (v) +

∑
i γi (biπi (v̄) − pi (v̄))

+
∑

i,v
[
αi (v)(vπi (v) − pi (v) −vπi−1(v) + pi−1(v))

+ λi (v,v − 1)(v · πi (v) − pi (v) −v · πi (v − 1) + pi (v − 1))
+ λi (v,v + 1)(v · πi (v) − pi (v) −v · πi (v + 1) + pi (v + 1))

]
.

– Subect to:

∗ Λ ≥ 0.
7

• Subject to:

– π1(0) = p1(0) = 0 (Individual Rationality).

– πi (v) ≤ 1, for all i,v (Feasibility).

Again by strong duality, the optimal dual variables in the solution solve the following min-max

program (the same as Max-Min1 with the min and max �ipped):

Min-Max1:

• Minimize: Lmax(Λ), where Lmax(Λ) is the value of the following LP1(Λ):
– Maximize

∑
i,v fi (v)pi (v) +

∑
i γi (biπi (v̄) − pi (v̄))

+
∑

i,v
[
αi (v)(vπi (v) − pi (v) −vπi−1(v) + pi−1(v))

+ λi (v,v − 1)(v · πi (v) − pi (v) −v · πi (v − 1) + pi (v − 1))
+ λi (v,v + 1)(v · πi (v) − pi (v) −v · πi (v + 1) + pi (v + 1))

]
.

– Subect to:

∗ π1(0) = p1(0) = 0 (Individual Rationality).

∗ πi (v) ≤ 1, for all i,v (Feasibility).

• Subject to: Λ ≥ 0.

Cai et al. [2016] characterize possible solutions to Min-Max1 as �ows. Speci�cally, they show the

following:

Proposition 2.2 ([Cai et al., 2016]). Lmax(Λ) < ∞ if and only if Λ forms a �ow. �at is, Λ ≥ 0

and for all (i,v) , (1, 0):
fi (v) + λi (v + 1,v) + λi (v − 1,v) + αi+1(v) = λi (v,v − 1) + λi (v,v + 1) + αi (v) + I (v = v̄) · γi .

�erefore, Min-Max1 clearly a�ains its minimum at a �ow. �ey further de�ne
8

ΦΛ
i (v) = v −

λi (v + 1,v) − λi (v − 1,v)
fi (v)

, for all v < v̄,

ΦΛ
i (v̄) = v̄ −

−λi (v̄ − 1, v̄) + γi (v̄ − b)
fi (v)

,

(for simplicity of notation in future sections, we will de�ne ΦΛ
1
(0) = −∞,) and observe the following:

7
By this we mean λi (v, v ′) ≥ 0, αi (v) ≥ 0, and γi ≥ 0 for all i, v, v ′.

8
Technically, they did not consider budgets, but the derivation of ΦΛ(·) used here is exactly along their calculations.
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Proposition 2.3 ([Cai et al., 2016]). For any �ow Λ, Lmax is equal to the value of LP2(Λ), where
LP2(Λ) := Maximize

∑
i
∑
v fi (v) · πi (v) · ΦΛ

i (v) (Expected Virtual Welfare), subject to:
• π1(0) = p1(0) = 0 (Individual Rationality).
• πi (v) ≤ 1, for all i,v (Feasibility).

So ΦΛ(·) can be thought of as a virtual valuation function, and Min-Max1 can be rewri�en as:

Min-Max2:

• Minimize: Lmax(Λ).
• Subject to:

– Λ ≥ 0.

– fi (v) + λi (v + 1,v) + λi (v − 1,v) + αi+1(v) = λi (v,v − 1) + λi (v,v + 1) + αi (v) + I (v =
v̄) · γi , for all (i,v) , (1, 0).

Theorem 2.4 (Strong Duality). �e following are equivalent:
• Λ solves Min-Max2 and ( ®π , ®p) solves LP1.
• (®π , ®p) solves LP2(Λ) and ( ®π , ®p) and Λ satisfy complementary slackness.9

Our approach will be the following: First, we’ll characterize possible solutions for Min-Max2.

�en, we’ll characterize the mechanisms that can possibly maximize virtual welfare and satisfy

complementary slackness (for these solutions). In the following sections, we’ll reference Min-Max2,

LP2(Λ), and Lmax(Λ). We conclude with some quick observations about LP2(Λ):

Observation 1 ([Cai et al., 2016]). Every optimal solution to LP2(Λ) has πi (v) = 1 if ΦΛ
i (v) > 0,

and πi (v) = 0 if ΦΛ
i (v) < 0 (if ΦΛ

i (v) = 0, then any πi (v) ∈ [0, 1] is possible). �erefore, Lmax(Λ) =∑
i
∑
v max{ fi (v) · ΦΛ

i (v), 0}.

Observation 2 (Folklore). If a bidder with value v and v ′ , v are both indi�erent between two
(allocation, price) pairs, then the two (allocation, price) pairs must be the same.

De�nition 2.5 (Ironed inverval). We say that [v,w] is an ironed interval within budget bi for dual

Λ if:

• λi (x ,x + 1) > 0 for all x ∈ [v,w − 1].
• λi (x ,x − 1) > 0 for all x ∈ [v + 1,w].
• λi (v − 1,v) = λi (w,w + 1) = 0.

By Observation 2, any mechanism satisfying complementary slackness with Λ awards the same

(allocation, price) pair to an entire ironed interval.

3 WARMUP: PUBLIC BUDGET
In this section, we’ll consider the case k = 1, which can be interpreted as a single buyer with a

publicly known budget (b1) and a value drawn from a distribution with density f1(·). �e outline of

our approach is as follows. Due to space constraints, many proofs can be found in Appendix B. None

of the proofs are overly technical, but the point of this warm-up is to give a high-level overview of

the approach in a less technical se�ing, not to give a complete proof of known results.

(1) In Section 3.1, we’ll characterize possible solutions to Min-Max2. We’ll do this by de�ning

a sequence of elementary operations that can only decrease Lmax(Λ), and conclude that

there exists a solution to Min-Max2 resulting from these operations.

(2) In Section 3.2, we’ll characterize what mechanisms can possibly satisfy Strong Duality with

a dual from Section 3.1. Strong Duality guarantees an optimal mechanism of this format.

9
�at is, λi (v, v − 1) > 0⇒ v · πi (v) − pi (v) = v · πi (v − 1) − pi (v − 1), etc.
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(3) In Section 3.3, we’ll strengthen the characterization when f1(·) is regular or DMR.
10

3.1 Warmup: Characterizing the Optimal Dual
Here, we characterize possible solutions to Min-Max2. Note that as there is only one possible

budget, there are no ®α variables, and there is only one γ multiplier. So we will simplify notation

and just discuss λ(v,v ′) and γ (and drop the subscript of 1). Some of our intermediate lemmas are

more general though, and will be stated with general subscripts when appropriate. �e plan of

a�ack is to show that there is always an optimal dual resulting in monotone non-decreasing virtual

values. We begin with a lemma of Cai et al. [2016], which describes an “ironing” procedure that

can be used to modify any �ow-conserving dual.

Lemma 3.1 ([Cai et al., 2016]). For any v,x , de�ne λ′(·, ·) so that λ′(w,w ′) = λ(w,w ′) + x
whenever {w,w ′} = {v,v − 1}, and λ′(w,w ′) = λ(w,w ′) otherwise. �en if Λ = (λ,γ ) is �ow-
conserving, Λ′ = (λ′,γ ) is also �ow-conserving, and the following hold:

• ΦΛ′(w) = ΦΛ(w), for allw < {v,v − 1}.
• ΦΛ′(v) = ΦΛ(v) + x/f (v).
• ΦΛ′(v − 1) = ΦΛ(v − 1) − x/f (v − 1).
• f (v) · ΦΛ′(v) + f (v − 1) · ΦΛ′(v − 1) = f (v) · ΦΛ(v) + f (v − 1) · ΦΛ(v − 1).

More speci�cally, Lemma 3.1 states that we can always add a cycle to any �ow-conserving dual,

and it will preserve the average virtual value among the two values. Now, we want to argue that

this procedure can be used to iron out any non-monotonicities, and that this can only make the

dual be�er (this and all other missing proofs in Appendix B).

Corollary 3.2. �ere exists a solution to Min-Max2, Λ, such that the resulting ΦΛ(·) is monotone
non-decreasing, and λ(v − 1,v) > 0⇒ ΦΛ(v) = ΦΛ(v − 1). �ere also exists a solution to Min-Max2
such that the resulting ΦΛ(·) has f (·) · ΦΛ(·) monotone non-decreasing, and Λ(v − 1,v) > 0 ⇒
f (v) · ΦΛ(v) = f (v − 1) · ΦΛ(v − 1).

In light of Corollary 3.2, we’ll introduce the following terminology. Note that below, we are

ironing so that fi (·) · ΦΛ
i (·) is monotone non-decreasing, and not so that ΦΛ

i (·) is monotone non-

decreasing.

De�nition 3.3 (Proper ironing). We say that a dual solutionΛ is properly ironed if for all i , ΦΛ
i (·)· fi (·)

is monotone non-decreasing and λi (v − 1,v) > 0⇒ fi (v) · ΦΛ
i (v) = fi (v − 1) · ΦΛ

i (v − 1).

Now, we turn to addressing what properties we can guarantee in an optimal dual related to the

budget. We’ll again name these conditions. Essentially one should interpret budget-feasible as

meaning “it is possible to award v̄ the item with non-zero probability in an IC mechanism that

respects the budget constaint, while solving LP2(Λ) and satisfying complementary slackness.”

De�nition 3.4 (Budget-feasible dual). We say that Λ is budget-feasible at i if (for the warmup, we

will just say budget-feasible):

• ΦΛ
i (bi ) ≥ 0.

• Either γi = 0, or ΦΛ
i (bi − 1) ≤ 0.

• �ere exists an x ≥ bi with λi (x − 1,x) = 0.

10
We say that a discrete distribution with integral support, PDF f and CDF F is regular if v − 1−F (v )

f (v ) is monotone

non-decreasing. We say that it is DMR if vf (v) − (1 − F (v)) is monotone non-decreasing.
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Lemma 3.5. If Λ is properly ironed, but not budget-feasible at i , then all feasible, IC, budget-
respecting ( ®π , ®p) that solve LP2(Λ) and satisfy complementary slackness have πi (v) = pi (v) = 0 for all
v (if such a ( ®π , ®p) even exists).

Proof. Consider any mechanism with πi (v̄) > 0. First, consider the case where ΦΛ
i (bi ) < 0.

Observe also that if λi (bi + 1,bi ) = 0, then ΦΛ
i (bi ) ≥ bi . �is can be seen immediately from the

de�nition of ΦΛ
. So we may also conclude that λi (bi + 1,bi ) > 0. �en to solve LP2(Λ), we must

have πi (bi ) = 0. But to satisfy complementary slackness with λi (bi + 1,bi ) and also IC, we must

have pi (v̄) ≥ (bi + 1) · πi (v̄), so no mechanism can be feasible, IC, budget-respecting, solve LP2(Λ)
and satisfy complementary slackness with πi (v̄) > 0.

�e remaining properties characterize the ironed interval containing bi in case the budget

constraint binds, and we can actually prove that they hold no ma�er what. Suppose that γi > 0 and

ΦΛ
i (bi − 1) > 0. In this case, any solution to LP2(Λ) must have πi (bi − 1) = 1 and pi (bi − 1) ≤ bi − 1.

(i, v̄) will certainly prefer this to any option with pi (v̄) = bi , so no IC solution to LP2(Λ) results in

the ith budget constraint binding and complementary slackness is violated.

Now if λi (x −1,x) > 0 for all x ≥ bi , by Observation 2 any mechanism satisfying complementary

slackness necessarily awards the same (allocation, price) pair to all (i,x) with x ≥ bi − 1. If such a

mechanism is additionally IC, the price must be at most bi − 1, and therefore pi (v̄) < bi .
As γi > 0, complementary slackness fails in either case. So there is no IC mechanism that satis�es

complementary slackness with such a Λ at all.

Finally, brie�y observe that if Λ is properly ironed and γi = 0, then ΦΛ
i (v̄) = v̄ > ΦΛ

i (v̄ − 1), so

λi (v̄ − 1, v̄) = 0 and the �nal bullet is also satis�ed when γi = 0.

Just to summarize: we have shown that the second and third conditions above must hold for

any Λ that can possibly have a feasible, IC, budget-respecting mechanism solve LP2(Λ) and satisfy

complementary slackness. If the �rst condition fails, to hold, then all such mechanisms must have

πi (v) = 0 for all v . �

Corollary 3.6. With a single budget, there exists an optimal solution to Min-Max2, Λ, such that:
• Λ is properly ironed.
• Λ is budget-feasible.

Proof. We just need to observe that clearly the optimal mechanism is not to just award the item

with probability 0 and make zero revenue. So by Corollary 3.2, there exists a solution to Min-Max2,

Λ, that is properly ironed. By Lemma 3.5, it must also be budget-feasible. �

3.2 Warmup: Characterizing the Optimal Primal
In this section, we characterize what any mechanism that solves LP2(Λ) and satis�es complementary

slackness must look like for a dual of the form guaranteed by Corollary 3.6.

Theorem 3.7 ([Chawla et al., 2011]). �e solution to LP1 corresponds to a menu with at most
two options. �e �rst o�ers the item with probability 1 at price b. �e second o�ers the item with
probability of q < 1 at price p < qb. �e second option need not exist.

Intuitively, when the budget doesn’t bind, a posted price is optimal. Here is what’s going on in

the γ > 0 case: if there is no ironing around b, or if b is at the lower end of an ironed interval, then

we could just set price b. Unfortunately, b might lie in the strict interior of an ironed interval, in

which case such a mechanism wouldn’t satisfy complementary slackness (beacuse the Rightwards

IC constraint from b − 1 to b wouldn’t be tight, yet λi (b − 1,b) > 0). Similarly, we can’t just set

price equal to the minimum v such that ΦΛ(v) > 0, as then the budget constraint wouldn’t bind. So

we may need to award the item to types in the ironed interval containing b with probability strictly
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between 0 and 1 in order to get the budget constraint to bind and respect all ironed intervals. But

fortunately, Corollary 3.6 guarantees that no additional randomization is necessary.

3.3 Warmup: Regular Distributions
In this section, we prove a tighter characterization in the case that F is regular or DMR. We �rst

prove that a tighter characterization is not possible in general with an example.

Example 3.8. Let b = 11, f (20) = f (2) = 1/2. �en the optimal deterministic mechanism simply

sets a price of 11 on the item and achieves a revenue of 5.5. A strictly be�er mechanism o�ers the

two options (1, 11) and (1/2, 1), and achieves a revenue of 6 (this is in fact optimal).

So Example 3.8 and �eorem 3.7 together say that two options are both necessary and su�cient

to characterize the optimal mechanism for arbitrary F . But it turns out the additional option is

not necessary in the special case that F is regular or DMR [La�ont and Robert, 1996]. �e proof

for DMR is more straight-forward, which we include in the body. �e proof for regular is nearly

identical a�er one additional technical lemma (which essentially shows that regular distributions

are also DMR below the Myerson reserve). We will use the notation φ(v) := v − 1−F (v)
f (v) to denote

Myerson’s virtual valuation (which can be achieved by a �ow in the discrete se�ing as well).

Proposition 3.9. Let F be DMR or regular, and let r denote the maximumv ≤ b with ΦΛ(v−1) ≤ 0.
�en there exists an optimal solution to Min-Max2, Λ, such that:

• Λ is properly ironed.
• ΦΛ(b) ≥ 0.
• λ(r − 1, r ) = 0.
• Either γ = 0 or r = b.

Proof (for DMR, for regular see Appendix B). For a �xedγ , consider the following
®λ: λ(v,v−

1) = 1−γ − F (v − 1). It is easy to verify that Λ is �ow-conserving, and results in ΦΛ(v̄) = v̄ − (v̄−b)γf (v̄) ,

ΦΛ(v) = v − 1−F (v)−γ
f (v) for v < v̄ . Observe that as F is DMR, we have:

v f (v) − (1 − F (v)) ≥ (v − 1)f (v − 1) − (1 − F (v − 1)) ⇒ f (v)ΦΛ(v) ≥ f (v − 1)ΦΛ(v − 1),∀v < v̄ .
So except for at v̄ , f (·)ΦΛ(·) is already monotone non-decreasing. It is easy to see the procedure

described in Corollary 3.2 will result in a single ironed interval [v∗, v̄] at the top, and λ(v − 1,v) = 0

for all v ≤ v∗. Observe that we must have v∗ ≥ b, as otherwise complementary slackness cannot

be satis�ed: v∗ , v̄ implies γ > 0, and v∗ < b implies p(v̄) < b in any IC mechanism. For all v ≤ v∗,
we have λ(v − 1,v) = 0. In particular, as r ≤ b ≤ v∗, we have λ(r − 1, r ) = 0.

Finally, if γ > 0, we must have r = b due to complementary slackness, as no IC mechanism can

simultaneously optimize LP2(Λ) and have p(v̄) = bπ (v̄) - if r < b, then ΦΛ(b − 1) > 0.

Characterizing the optimal dual for regular distributions requires one additional technical lemma

(Lemma 3.10), which essentially says that regular distributions are also DMR below the Myerson

reserve. �

Lemma 3.10. Let F be regular,v ≤ w , and φ(v) ≤ 0. �env f (v)− (1−F (v)) ≤ w f (w)− (1−F (w)).

Proposition 3.11. For any (Λ) of the form guaranteed by Proposition 3.9, the mechanism that
sets price r (formally, (π (v),p(v)) = (1, r ) for all v ≥ r , (π (v),p(v)) = (0, 0) for all v < r ) optimizes
LP2(Λ) and satis�es complementary slackness.
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Proof. All IC constraints are tight, except for the one between r − 1 and r . However, we are

guaranteed that λ(r − 1, r ) = 0. Moreover, we are also guaranteed that whenever γ > 0, r = b and

therefore p(v̄) = b. So complementary slackness is satis�ed.

It’s also easy to see that the proposed mechanism solves LP2(Λ): it awards the item to every type

with non-negative virtual value. �

�e last remaining observation is that we can characterize exactly what r is:

Theorem 3.12 ([Laffont and Robert, 1996]). Let F be regular or DMR, and let x be the minimum
v such that φ(v) ≥ 0. �en the optimal mechanism sets reserve min{b,x}.

4 MAIN RESULT: PRIVATE BUDGET
In this section, we consider the general case. �e outline of our approach follows that of the

warm-up, but each part will be more technically challenging. Many proofs of technical lem-

mas/observations/etc. are omi�ed and can be found in Appendix C.

(1) In Section 4.1, we’ll characterize possible solutions to Min-Max2. Similarly to the warm-up,

we’ll de�ne a sequence of elementary operations that can only decrease Lmax(Λ) and

conclude that there exists an optimal dual resulting from these operations. With multiple

budgets, we will have to de�ne additional operations beyond just the ironing considered in

the warm-up to guarantee a “nice” dual.

(2) In Section 4.2, we’ll characterize what mechanisms (primal solutions) can possibly satisfy

Strong Duality with the duals found in Section 4.1. �ere are two parts to our approach

here. �e �rst half looks a lot like the solution to the FedEx Problem [Fiat et al., 2016]:

once we set a menu for budget b1, we describe how to generate menus for the larger

budgets that respects/makes tight all necessary IC constraints (but may not respect all

budget constraints). �e second half is proving that there exists a menu for b1 such that

the mechanism resulting from this procedure respects/makes tight all necessary budget

constraints as well.

(3) We defer to Appendix D, a stronger characterization in the case that each fi (·) is DMR [Che

and Gale, 2000] - the proof is quite similar to that of �eorem 3.12.
11

4.1 The General Case: Characterizing the Optimal Dual
Here, we characterize the possible solutions to Min-Max2 in the general case. �ings will be more

technical here than in Section 3.1 due to the multiple budgets (and in particular, the existance of

the ®α variables). We’ll describe a set of modi�cations that can be performed on any potential dual

solution that can only decrease Lmax(Λ). At a high level, the modi�cations are the following:

(1) Properly ironing Λ can only help.

(2) If (i,v) isn’t at the bo�om of an ironed interval, then “spli�ing” αi (v) between αi (v + 1)
and αi (v − 1) can only help.

(3) Subject to (1) above, if ΦΛ
i (v − 1) < 0, then “boosting” αi (v) can only help.

(4) Subject to (1), if ΦΛ
i (v − 1) > 0 and αi (v) > 0, then “re-routing” �ow from αi (v) to αi (v − 1)

can only help.

Below, we’ll make these claims formal and conclude the subsection with a characterization of

potentially optimal solutions to Min-Max2.

11
We leave as an open problem whether the strengthened characterization extends to regular distributions as well.
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4.1.1 Characterizing The Optimal Dual: Proper Ironing can Only Help. Here, we prove the analogy

of Corollary 3.6. �e majority of the proof is identical and omi�ed. �e only di�erence is that

we can’t necessarily guarantee that Λ is budget-feasible at i for all i , because it may simply be

that ΦΛ
i (v̄) = 0 and the item is never awarded (in which case the mechanism need not charge any

budget-respecting price).

Corollary 4.1. �ere exists an optimal solution Λ to Min-Max2 such that:
• Λ is properly ironed.
• For all i , either Λ is budget-feasible at i , or ΦΛ

i (v̄) = 0.

Proof. �at Λ may be properly ironed follows exactly the proof of Corollary 3.6. For the second

bullet, we observe that by exactly the same proof as Corollary 3.6, if we are to have πi (v̄) = 1, then

we necessarily have Λ budget-feasible at i . If ΦΛ
i (v̄) > 0, then we necessarily have πi (v̄) = 1 in an

solution to LP2(Λ), and we can invoke this argument. So the only way that Λ can be optimal yet

not budget-feasible at i is if ΦΛ
i (v̄) = 0. �

4.1.2 Characterizing the Optimal Dual: How to Set ®α . In this section, we’ll see what ®α must look

like in an optimal solution. Let’s �rst consider three possible modi�cations to Λ. We’ll call the �rst

boosting, the second re-routing, and the third spli�ing. All modi�cations will preserve that Λ is

�ow-conserving.

De�nition 4.2. Consider any (i,v). We say that we are boosting αi (v) by c if we increase αi (v) by

c , decrease λi (w,w − 1) by c for all w ≤ v , and increase λi−1(w,w − 1) by c for all w ≤ v .

Observation 3. Boosting αi (v) by c increases fi (w) · ΦΛ
i (w) by c , and decreases fi−1(w) · ΦΛ

i−1
(w)

by c for allw < v .

De�nition 4.3. Consider any (i,v) such that αi (v) > 0. We say that we are re-routing αi (v) by c if

we decrease αi (v) by c , and increase λi (v,v − 1),αi (v − 1), and λi−1(v − 1,v) by c .

Observation 4. Re-routing αi (v) by c decreases fi (v − 1) · ΦΛ
i (v − 1) by c and increases fi−1(v) ·

ΦΛ
i−1
(v) by c .

De�nition 4.4. Consider any (i,v),v ∈ (0, 1) such that αi (v) > 0, λi (v−1,v) > 0, and λi (v+1,v) >
0. We say that we are spli�ing αi (v) by c if we:

• Increase αi (v + 1) and λi−1(v + 1,v) by c/2, and decrease λi (v + 1,v) and αi (v) by c/2.

• Increase αi (v − 1) and λi−1(v − 1,v) by c/2, and decrease λi (v − 1,v) and αi (v) by c/2.

If αi (v̄) > 0, λi (v̄ − 1, v̄) > 0, and γi > 0, we say that we are spli�ing αi (v̄) by c if we:

• increase αi (v̄ − 1) and λi−1(v̄ − 1, v̄) by c , and decrease λi (v̄ − 1, v̄) and αi (v̄) by c .

• increase αi (v̄) and γi−1 by
c

v̄−bi , and decrease γi by
c

v̄−bi .

Observation 5. For v < v̄ , spli�ing αi (v) by c doesn’t change ΦΛ
i (·) anywhere.

Observation 6. Spli�ing αi (v̄) by c decreases ΦΛ
i−1
(v̄) by c

(
v̄−bi−1

v̄−bi − 1

)
.

It’s obvious that we can always split any αi (v) without harming the quality of Λ (as all virtual

values remain unchanged or decrease). We’ll now prove that boosting and re-routing can only help

as well, as long as Λ is properly ironed.

Proposition 4.5. Let Λ be any properly ironed dual, and let fi (v − 1) · ΦΛ
i (v − 1) = −ϵ < 0 for

some i > 1, v > 0. If Λ′ denotes Λ a�er boosting αi (v) by ϵ , then Lmax(Λ′) ≤ Lmax(Λ).
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Proof. Because fi (·) · ΦΛ
i (·) is presently monotone non-decreasing, fi (w) · ΦΛ

i (w) ≤ −ϵ for all

w ≤ v − 1. �e solution to LP2(Λ) therefore necessarily has πi (w) = 0 for all w ≤ v . Intuitively

what we are doing is this: boosting αi (v) by ϵ causes fi (w) · ΦΛ
i (w) to increase for all w < v . A

priori, this could be bad: increasing virtual values could cause Lmax to increase. But because all

considered virtual values are already negative, they don’t contribute to Lmax anyway, as πi (w) is 0

regardless. So in a sense we can increase ΦΛ
i (v − 1) to 0 “for free.” �is certainly doesn’t hurt, but

maybe it helps since it allows us to decrease ΦΛ
i−1
(w) for all w < v , which can only help.

A li�le more formally, by Observation 1, Lmax(Λ) − Lmax(Λ′) =
∑
w<v max{0, fi (w) · ΦΛ

i (w)} −
max{0, fi (w)·ΦΛ

i (w)+ϵ}+max{0, fi−1(w)·ΦΛ
i−1
(w)}−max{0, fi−1(w)·ΦΛ

i−1
(w)−ϵ}. As fi (w)·ΦΛ

i (w) ≤
−ϵ for all w < v , the �rst two terms are always both zero, and the di�erence of the last two terms

is clearly non-negative. So Lmax(Λ′) ≤ Lmax(Λ), and we have only improved. �

Proposition 4.6. Let Λ be any properly ironed dual and suppose that min{αi (v), fi (v − 1) ·
ΦΛ
i (v − 1)} = ϵ > 0 for some i > 1, v > 0. If Λ′ denotes Λ a�er re-routing αi (v) by ϵ , then
Lmax(Λ′) ≤ Lmax(Λ).

�e proof is very similar to that of Proposition 4.5 and can be found in Appendix C.

4.1.3 Characterizing the Optimal Dual: Final Steps. Here, we combine the propositions from

the previous sections with one extra step to prove our main theorem characterizing the dual. We

already know that we may take the optimal solution to be properly ironed and for all i to either be

budget-feasible or have ΦΛ
i (v̄) = 0. �roughout this section, we’ll use v+i to denote the minimum v

such that ΦΛ
i (v) > 0, if one exists.

We can derive some additional properties with li�le extra work using the results of Section 4.1.2.

We �rst separate out one extra property we’d like that is a bit more technical to prove. Intuitively,

we want to de�ne two budgets to be linked if for every ( ®πi−1, ®pi−1), there is at most one ( ®πi , ®pi )
such that ( ®π , ®p) can possibly satisfy complementary slackness and solve LP2(Λ). We provide formal

conditions below, and prove that they have the desired semantic meaning.

De�nition 4.7. We say that Λ links budgets i and i − 1 if for every ironed interval within budget i ,
[w,v], either αi (w) > 0 or ΦΛ

i (w − 1) > 0. Formally, λi (w − 1,w) = 0⇒ αi (w) > 0∨ΦΛ
i (w − 1) > 0.

�ere is one exception to the rule: if ΦΛ
i (v̄) = 0 and [bi , v̄] is an ironed interval within budget i ,

then Λ does not link budgets i and i − 1, even if the above conditions hold.

Lemma 4.8. If Λ links budgets i and i − 1, and ( ®π , ®p) and ( ®π ′, ®p ′) both solve LP2(Λ) and satisfy
complementary slackness, and ( ®πi−1, ®pi−1) = ( ®π ′i−1

, ®p ′i−1
), then ( ®πi , ®pi ) = ( ®π ′i , ®p ′i ) as well.

Proof. We basically observe that the (allocation,price) pair for each ironed interval has two

variables and two non-degenerate linear constraints it must satisfy. Speci�cally, for any ironed

interval [w,v], with v < v̄ and ΦΛ
i (w) ≤ 0, we know that (i,v + 1) is indi�erent between their

own (allocation, price) and that of (i − 1,v + 1) by complementary slackness (as αi (v + 1) > 0 by

linkage). We also know that (i,v + 1) is indi�erent between their own (allocation, price) and that

of (i,v) (again by complementary slackness). So (i,v + 1) is indi�erent between the (allocation,

price) awarded to the ironed interval and that awarded to (i − 1,v + 1). Similarly by linkage, we

know that αi (w) > 0, and therefore (i,w) is indi�erent between the (allocation, price) awarded

to the ironed interval and that awarded to (i − 1,w). So this results in two non-degenerate linear

equations for the (allocation, price) awarded to the ironed interval, and its solution is unique.

Now consider the minimum w such that ΦΛ
i (w) > 0, if one exists. �e reasoning above says that

(πi (w − 1),pi (w − 1)) is already determined. So as we must have πi (w) = 1 to solve LP2(Λ), and

(i,w) indi�erent between her (allocation, price) and that of (i,w − 1), this is again two variables
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and two constraints. IC then implies that all v > w receive the same (allocation, price) as well, so

the entire menu is determined.

If instead ΦΛ
i (v̄) = 0, then we clearly have γi > 0. In this case, all (allocation, price) pairs for all

ironed intervals except for [v+i , v̄] have been determined. �e (allocation, price) awarded to this

interval is again governed by two constraints: that pi (v̄) = bi · πi (v̄), and that (i,v+i ) is indi�erent

between the (allocation, price) awarded to this ironed interval, and that awarded to (i,v+i − 1). As

long as v+i , bi , these two constraints are non-degenerate and have a unique solution. If v+i = bi ,
then the constraints are degenerate - either no solution exists or there could be in�ntiely many

solutions. �

Corollary 4.9. Suppose that Λ links budgets i and i − 1, and ( ®π , ®p) solves LP2(Λ) and satis�es
complementary slackness with ( ®πi−1, ®pi−1) = (®0, ®0).

• If ΦΛ
i (v̄) = 0 then ( ®πi , ®pi ) = (®0, ®0) as well.

• If ΦΛ
i (v̄) > 0,then

– πi (v) = pi (v) = 0 for all v < v+i .
– (πi (v),pi (v)) = (1,v+i ) for all v ≥ v+i .

Theorem 4.10. �ere exists an optimal solution Λ for Min-Max2 with the following properties:
• Λ is properly ironed.
• For all i , either Λ is budget-feasible at i or ΦΛ

i (v̄) = 0.
• ΦΛ

i (v) ≥ 0 for all v and i > 1.
• αi (v) > 0⇒ (ΦΛ

i (v − 1) = 0 AND λi (v − 1,v) = 0).
• γi > 0⇒ ΦΛ

i−1
(v̄) ≤ 0.

Bullet points two and �ve necessarily hold in any solution to Min-Max2. Whenever bullet points

one, three, or four don’t hold, there exist elementary operations (proper ironing, boosting, re-

reouting, spli�ing) that can only improve the dual. So these operations can be repeatedly performed

until all bullet points hold.

4.2 The General Case: Characterizing the Optimal Primal
In this section, we show that there exists a mechanism of a certain format that solves LP2(Λ) and

satis�es comlementary slackness for a dual of the form guaranteed by �eorem 4.10. We begin by

proposing one method for generating a menu for types with budget bi from the menu for types

with budget bi−1. It is essentially assuming that budgets i and i − 1 are linked, and propagating the

equalities.

Generate-Menu(i, ®πi−1, ®pi−1):

• If ΦΛ
i (v̄) > 0, let v+i be the miminum v such that ΦΛ

i (v) > 0.

• Else, let v+i be the maximum v such that λi (v − 1,v) = 0 (bo�om of the ironed interval in budget

i containing v̄ : v+i might be 0).

– Consider any ironed interval [w,v] with w < v+i .

∗ If (i − 1,w) and (i − 1,v) receive the same (allocation, price) under ( ®πi−1, ®pi−1), then

copy this option for the entire ironed interval [w,v] for budget i . Formally: if

(πi−1(w),pi−1(w)) = (πi−1(v),pi−1(v)), then set (πi (x),pi (x)) = (πi−1(x),pi−1(x)) for

all x ∈ [w,v].
∗ It (i − 1,w) and (i − 1,v) receive di�erent (allocation, price) under ( ®πi−1, ®pi−1), set

(πi (x),pi (x)) (for all x ∈ [w,v]) so that (i,w) is indi�erent between (πi (x),pi (x)) and

(πi−1(w),pi−1(w)), and (i,v+1) is indi�erent between (πi (x),pi (x)) and (πi−1(v),pi−1(v)).
Note that there are two variables and two linear constraints, so such a se�ing of
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(πi (x),pi (x)) always exists (although it is not guaranteed that πi (x) ∈ [0, 1], pi (x) ≥ 0).

Also observe that if (πi−1(v),pi−1(v)) = (πi−1(w),pi−1(w)), then the above is just a

special case.
12

Formally: if πi−1(w) < πi−1(v), then set πi (x) = (v+1)πi−1(v+1)−wπi−1(w )−pi−1(v+1)+pi−1(w )
v+1−w ,

and pi (x) = (v + 1)(πi (v) − πi−1(v + 1)) + pi−1(v + 1) = w(πi (w) − πi−1(w)) + pi−1(w)
for all x ∈ [w,v].

– If ΦΛ
i (v̄) > 0, set (πi (x),pi (x)) = (1,pi−1(v+i )+v+i (1−πi−1(v+i ))) for all x ∈ [v+i , v̄]. �is price

guarantees that the IC constraint from (i,v+i ) to (i − 1,v+i ) binds, as does the IC constraint

from (i,v+i ) to (i,v+i − 1) (by how (πi (v+i − 1),pi (v+i − 1) is determined above).

– Else, set (πi (x),pi (x) = (
v+i πi−1(v+i )−pi−1(v+i )

v+i −bi
,bi · πi (x)) for all x ≥ v+i . �is price guarantees

that the IC constraints from (i,v+i ) to (i − 1,v+i ) and (i,v+i ) to (i,v+i − 1) bind, as does the

ith budget constraint bind (but not necessarily that πi (v̄) ∈ [0, 1],pi (v̄) ≥ 0).

Note that Generate-Menu(i, ®πi−1, ®pi−1) might sometimes output probabilities outside of [0, 1],
negative prices, or have unde�ned behavior depending on the input. But we claim that when

properly seeded with a menu for types with budget b1, and with a dual of the form guaranteed by

�eorem 4.10, the resulting menus have nice properties. Let’s begin by proving that complementary

slackness is at least satis�ed for all IC constraints. Many of the following are essentially what is

shown in [Fiat et al., 2016], but in di�erent language.

We begin by proving several small claims to show that when ( ®πi , ®pi ) is su�ciently reasonable,

Generate-Menu(i + 1, ®πi , ®pi ) is somewhat reasonable as well. We break these up into smaller

subsections to make the big picture clearer.

4.2.1 Generate Menu: When is the Output Feasible? In this section, we’ll prove some small claims

to address when we can claim that the output of Generate-Menu has all allocation probabilities in

[0, 1] and all prices ≥ 0. Most of these claims are already known due to Fiat et al. [2016], and are

just presented here in a di�erent language.

Proposition 4.11 (First two bullet points are in [Fiat et al., 2016]). Let ( ®πi , ®pi ) satisfy
all le�wards/rightwards IC constraints, and πi (v) ∈ [0, 1],pi (v) ≥ 0 for all v , and ( ®πi+1,pi+1) =
Generate-Menu(i + 1, ®πi , ®pi ). �en

• πi+1(v) ∈ [0, 1] and pi+1(v) ≥ 0 for all v < v+i .
• Further, if ΦΛ

i+1
(v̄) > 0, then πi+1(v̄) ∈ [0, 1] and pi+1(v̄) ≥ 0.

• If Λ is budget-feasible at i , then πi+1(v),pi+1(v) ≥ 0 for all v .
• If v+i · πi (v+i ) − pi (v+i ) ≤ v+i − bi+1, then πi+1(v) ∈ [0, 1] and pi+1(v) ≥ 0 for all v .

We provide a complete proof of all bullets separated as small lemmas in Appendix C. Below is a

useful observation speci�cally about Generate-Menu when given the trivial menu as input.

Observation 7. If Λ is budget-feasible at i , then Generate-Menu(i, ®0, ®0) outputs a feasible menu.

So at this point, here is what we know: if we input a feasible menu for budget bi−1 into Generate-

Menu, and ΦΛ
i (v̄) > 0, then we will de�nitely get out a feasible menu for budget bi . If ΦΛ

i (v̄) = 0,

then we de�nitely get a feasible menu for all ironed intervals except the highest. For the highest

ironed interval, it’s possible that the options on the input menu were “too cheap” to possibly

make budget bi bind with πi (v+i ) ∈ [0, 1]. So the only possible issue with feasibility is maybe
πi (v̄) < [0, 1] when ΦΛ

i (v̄) = 0.

12
�is requires observing that in this case we necessarily have pi−1(v + 1) = (v + 1)(πi−1(v + 1) − πi−1(w )) + pi−1(w ).
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4.2.2 Generate-Menu: Where does Complementary Slackness Hold? In this section, we’ll �gure

out which constraints de�nitely satisfy complementary slackness with an output of Generate-Menu,

and which we need to keep an eye out for. To ease notation, we will say that a constraint ®a · ®x ≤ b
with dual variable β is strongly satis�ed by ®y if β = 0 and ®a · ®y ≤ b, or β > 0 and ®a · ®y = b.

Proposition 4.12 ([Fiat et al., 2016]). If ( ®π1, ®p1) strongly satis�es all le�wards/rightwards IC con-
straints within budgetb1, then the full ( ®π , ®p) obtained by iterating ( ®πi , ®pi ) = Generate-Menu(i, ®πi−1, ®pi−1)
strongly satis�es all le�wards/rightwards/downwards IC constraints.

So at least we know that all IC constraints are strongly satis�ed. Now, let’s con�rm that Generate-

Menu indeed results in a menu that solves LP2(Λ), assuming it outputs a feasible mechanism.

Corollary 4.13. Let π1(v) = 1 if ΦΛ
1
(v) > 0 and π1(v) = 0 if ΦΛ

1
(v) < 0. Let also ( ®π1, ®p1) strongly

satisfy all le�wards/rightwards IC constraints, and de�ne ( ®πi+1,pi+1) = Generate-Menu(i + 1, ®πi , ®pi )
for all i . �en if πi (v) ∈ [0, 1],pi (v) ≥ 0 for all v , ( ®π , ®p) solves LP2(Λ).

Let’s now parse what possible problems might arise when iterating Generate-Menu from an

arbitrary menu for budget b1 (that at least strongly satis�es the le�wards/rightwards IC constraints

within budget b1, and the budget constraint).

• De�nitely, all IC constraints are strongly satis�ed.

• If the resulting mechanism is feasible, it de�nitely solves LP2(Λ) (but we might have

πj (v̄) > 1 when ΦΛ
j (v̄) = 0).

• If i denotes the minimum i such that ΦΛ
i (v̄) > 0, then all budget constraints for j < i are

de�nitely strongly satis�ed (this is by de�nition in Generate-Menu).

• For the above, if we are able to strongly satisfy the ith budget constraint, then de�nitely

we will strongly satisfy all budget constraints, as the most expensive menu option awarded

to buyers with budgets ≥ bi will cost ≤ bi .

So there are only two things we need to watch out for when carefully choosing seeds: that we

choose one in a way so that πj (v̄) ≤ 1 always, and also that that pi (v̄) = bi if γi > 0 and ΦΛ
i (v̄) > 0.

4.2.3 Generate-Menu: Se�ing Appropriate Seeds. �is is perhaps the most technical part of the

proof, and will require the concept of “linked” budgets to get all the way to the main result. In

Appendix C, we’ll build up to the main result stated below in a couple steps.

• Observe that if ΦΛ
1
(v̄) > 0, then we are basically just the FedEx Problem, except that maybe

budget 1 binds. So we need to be a li�le careful how we set the menu for budget 1, but

otherwise the approach looks very similar to that of Fiat et al. [2016] (Proposition C.4).

• Observe that if we seed Generate-Menu with the trivial menu for budget 1, this will

propagate through all j such that ΦΛ
j (v̄) = 0. Generate-Menu will introduce a single

non-trivial menu option at the �rst i with ΦΛ
i (v̄) > 0 with allocation probability 1, but

possibly price > bi . So all feasibility concerns are addressed, but budget constraints might

be violated, and it can only be violated by charging too much (Proposition C.5).

• Observe that if we instead seeded Generate-Menu(i) with a menu for i − 1 that o�ered

the option (1,bi−1), then the menu output for budget i would de�nitely charge a price

≤ bi−1 < bi . Since Generate-Menu is a continuous function, the intermediate value

theorem says that there is some q ∈ [0, 1] such that if a buyer with bidder i − 1 has the

option to purchase (q,q · bi−1), then Generate-Menu(i) will output a menu with the option

(1,bi ) as desired.

• If Λ happens to be budget feasible everywhere, then the above can be achieved by carefully

tuning the menu for budget 1 (to contain the option (q,q · b1) for some q ∈ [0, 1]). But
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if Λ isn’t budget feasible at 1 (or at any j > 1), this approach fails because it proposes a

non-trivial menu for a budget where Λ isn’t budget feasible (Proposition C.6).

• If Λ isn’t budget feasible everywhere, a more complicated approach can be used to �nd an

appropriate “seed budget” to be the �rst one that is seeded with a non-trivial budget. �is

is somewhat complex because if budgets i and i − 1 are linked, we can’t just set the menu

for budget i arbitrarily once we’ve decided that the menu for budget i − 1 is trivial (exactly

the de�nition of being linked). �is is discussed (without proofs) below.

De�nition 4.14 (Seed budget). De�ne the seed budget, s∗, (which will be the �rst non-trivial menu

used to seed Generate-Menu) in the following way:

• First, set s∗ to be the minimum i such that ΦΛ
i (v̄) > 0.

• Iterate the following until termination: If γs∗ > 0 and Λ links s∗ to s∗ − 1, then update

s∗ := s∗ − 1.

Lemma 4.15. Λ is budget-feasible for all i ≥ s∗.

Proposition 4.16. Let s∗ be the seed budget for Λ. Let also [v+, v̄] denote the ironed interval within
budget s∗ containing v̄ , and [v−,x] the ironed interval containing bs∗ . �ere exists a q ∈ [0, 1] such
that the following mechanism solves LP2(Λ) and satis�es complementary slackness.

• (πi (v),pi (v)) = (0, 0) for all v and i < s∗.
• (πs∗ (v),ps∗ (v)) = (0, 0) for all v < v−.
• (πs∗ (v),ps∗ (v)) = (q,bs∗q) for all v ≥ v+, and (πs∗ (v),ps∗ (v)) = (q v

+−bs∗
v+−v− ,v

−q · v
+−bs∗
v+−v− ) for

all v ∈ [v−,v+).
• (®πi , ®pi ) = Generate-Menu(i, ®πi−1, ®pi−1) for all i > s∗.

Theorem 4.17 (processes format of Proposition 4.16). �e optimal mechanism takes the
following form, where `i denote the number of non-trivial menu options for types with budget bi .

• �ere exists an i such that bj · πj (v̄) = pj (v̄) for all j ≤ i , and there exists an a such that
πj (v̄) = 1 for all j ≥ a. �ere exists a c such that πj (v) = pj (v) = 0 for all v and j < c .
• Above, c ≤ a and a ∈ {i, i + 1}. So there is at most one j with bj · πj (v̄) = pj (v̄) and πj (v̄) = 1.
• `c ≤ 2, and `j ≤ 2`j−1 + 1 for all j.
• �e menu for types with budget bj is obtained by Generate-Menu with input equal to the menu
for types with budget bj−1 for all j > c .
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A OTHER RELATEDWORK
La�ont and Robert [1996] consider the budget constrained auction design problem with multiple
bidders. �ey characterize the optimal auction under the assumption that all the bidders have the

same budget which is known to the seller, and that their values are drawn i.i.d. from a regular
distribution. While regularity implies “no pooling” in the absence of budgets [Myerson, 1981],

La�ont and Robert [1996] show that there maybe pooling at the top when the budget constraint

is binding; however, regularity still ensures that there is no additional pooling at the bo�om.

Pai and Vohra [2014] consider the case where the budgets are di�erent and private, under the

assumption that the distribution of budgets and values are independent of each other, and that

the marginal distribution over values satis�es the monotone hazard rate (MHR) and the decreasing
density conditions.

13
�eir techniques could also be applied to the social welfare maximizing auction,

under similar assumptions. �is was preceded by Maskin [2000] who characterized the social

welfare maximizing auction, with 3 bidders with a common budget constraint. �ere are several

open questions here, about how to obtain improvements that are analogous to our result over Che

and Gale [2000]: characterize the optimal multi bidder auction with no assumption about the value

distributions.

�e computer science community has addressed the di�culty of characterizing optimal mecha-

nisms by designing apprximations. An α-approximate mechanism is one whose revenue is always

guaranteed to be within an α multiplicative factor of the revenue of the optimal mechanism. Chawla

et al. [2011] design constant factor approximations for several cases: single dimensional buyer types

with public budgets and a seller facing downward closed service constraints (this includes single item

auctions), single dimensional buyer types drawn from an MHR distribution with private budgets

and a seller facing matroid service constraints, and multidimensional unit-demand buyer types with

public budgets and a seller facing matroid service constraints. �ey also have similar guarantees

for welfare maximization. Bha�acharya et al. [2010] give a constant factor approximation with

multiple buyers and multiple items, when buyers valuations are additive, and are drawn from MHR
distributions, under the public budgets assumption. Daskalakis et al. [2015b] improved this to

a 3-approximation, for all distributions, and private budgets. In the much harder prior-free (aka

worst case) se�ing, there have been several approximation results on both revenue and welfare

maximization [Abrams, 2006, Borgs et al., 2005, Devanur et al., 2013], as well as on the design of

Pareto optimal auctions [Dobzinski et al., 2008, Goel et al., 2012].

Others have studied how standard auctions are a�ected by the presence of budget constraints.

Che and Gale [1998] rank di�erent auction formats and show that all-pay auctions do best followed

by �rst price auctions and then second price auctions. In general, all-pay auctions are a good idea

in the presence of budget constraints since the payments for any one bidder are the lowest and

hence the budget constraints are the least binding. Benoit and Krishna [2001], Huang et al. [2012],

Pitchik [2009], Pitchik and Scho�er [1988] all study sequential auctions with budget constraints

and characterize sub game perfect Bayes Nash equilibria. �is has been di�cult to do beyond very

simple se�ings. Finally, Che et al. [2012] study welfare maximizing mechanisms when the buyers

are allowed to trade goods a�er the auction. �ey show that random assignments/subsidies and

allowing ex-post trade leads to higher social welfare.

B OMITTED PROOFS FROM SECTION 3

13
A distribution with a cdf F and density f satis�es the monotone hazard rate condition if

1−F (v )
f (v ) is non increasing. It

satis�es the decreasing density condition if f (v) is decreasing.
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Proof of Corollary 3.2. Consider any Λ such that ΦΛ(v) < ΦΛ(v − 1), and consider x such

that ΦΛ(v) + x/f (v) = ΦΛ(v − 1) − x/f (v − 1) (such an x clearly exists as ΦΛ(v) < ΦΛ(v − 1)). By

Lemma 3.1, adding a cycle of weight x between v and v − 1 results in ΦΛ′(v) = ΦΛ′(v − 1), while

maintaining f (v) · ΦΛ′(v) + f (v − 1) · ΦΛ′(v − 1) = f (v) · ΦΛ(v) + f (v − 1) · ΦΛ(v − 1). Similarly,

adding a cycle of weight y between v and v − 1, where y = (ΦΛ(v − 1)f (v − 1) − ΦΛ(v)f (v))/2
results in ΦΛ′(v)f (v) = ΦΛ′(v − 1)f (v − 1), while maintaining f (v) ·ΦΛ′(v)+ f (v − 1) ·ΦΛ′(v − 1) =
f (v) · ΦΛ(v) + f (v − 1) · ΦΛ(v − 1). Let’s now compare the optimal solution to LP2(Λ) to that of

LP2(Λ′) in either case.

By Observation 1,Lmax(Λ)−Lmax(Λ′) is exactly max{0, f (v)ΦΛ(v)}+max{0, f (v−1)ϕΛ(v−1)}−
max{0, f (v)ΦΛ(v) + f (v − 1)ΦΛ(v − 1)}, which is clearly non-negative. Here, we are basically just

observing the sum of maxes is at least as large as the max of sums. �erefore, Lmax(Λ) ≥ Lmax(Λ′),
and if Λ solves Min-Max2, then so does Λ′.

�e above argument can be iterated to eventually yield a Λ where ΦΛ(·) is monotone non-

decreasing.

To see the second claim, observe that whenever λ(v − 1,v) = x > 0, there is a cycle of weight

x between v − 1 and v . So the weight of this cycle can be decreased by any y < x , similarly

preserving ΦΛ(v) · f (v)+ΦΛ(v − 1) · f (v − 1), except it will increase ΦΛ(v − 1) and decrease ΦΛ(v). If

ΦΛ(v) > ΦΛ(v − 1), then the exact same reasoning above shows that decreasing the weight on the

cycle can only decrease Lmax(Λ). �e argument can again be iterated to eventually yield a Λ where

ΦΛ(·) that is both monotone non-decreasing, and satis�es λ(v − 1,v) > 0 ⇒ ΦΛ(v) = ΦΛ(v − 1),
and an identical argument completes the proof for f (·) · ΦΛ(·) as well. �

Proof of Theorem 3.7. Consider any dual of the form promised by Corollary 3.6. First consider

the case that γ = 0. In this case, let x denote the minimum value with ΦΛ(x) ≥ 0, which is

guaranteed to be at most b. Now, consider the mechanism that simply sets price x on the item

(formally, (π (v),p(v)) = (1,x) for v ≥ x and (π (v),p(v)) = (0, 0) for v < x). �is is certainly IC,

and certainly solves LP2(Λ). Moreover, all IC constraints between any two types ≥ x are tight

(they get the same allocation/price), as are any IC constraints between any two types < x . �e

IC constraint between x and x − 1 is also tight, and the IC constraint between x − 1 and x is not.

However, Corollary 3.6 promises that λ(x − 1,x) = 0, as we necessarily have ΦΛ(x) > ΦΛ(x − 1),
and therefore complementary slackness is satis�ed. So in this case, there is a mechanism that solves

LP2(Λ) and satis�es complementary slackness, and it is therefore optimal.

Next, consider the case that γ > 0 and ΦΛ(b − 1) ≤ 0. Let y denote the minimum v such that

ΦΛ(v) ≥ 0 (y ≤ b by Corollary 3.6). �en by Corollary 3.6, λ(y,y − 1) = 0. Let also x denote

the maximum v such that λ(v,v − 1) = 0. By Corollary 3.6, x ≥ b. As y ≤ b, and x ≥ b, there

exists a q ∈ [0, 1] such that b = qy + (1 − q)x . Consider the mechanism that o�ers the two options

(1,b) and (q,qy) (formally, (π (v),p(v)) = (1,b) for v ≥ x , (π (v),p(v)) = (q,qy) for v ∈ [y,x),
(π (v),p(v)) = (0, 0) for v < y). �is mechanism is clearly IC, solves LP2(Λ), and has p(v̄) = b. �e

only two IC constraints that aren’t tight are those between x − 1 and x , and y − 1 and y, but we are

guaranteed to have λ(x − 1,x) = λ(y − 1,y) = 0 by Corollary 3.6, and complementary slackness

holds.

So in either case, there exists a mechanism of the desired form that solves LP2(Λ) and satis�es

complementary slackness. By Strong Duality, such a mechanism solves LP1 (and is therefore

optimal). �
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Proof of Lemma 3.10. Let’s �rst prove the lemma for w = v + 1, and then for all w ≥ v + 1 at

the end.

(v + 1)f (v + 1) − 1 + F (v + 1) −v f (v) + 1 − F (v)
= (v + 1)f (v + 1) −v f (v) + f (v + 1)
= v(f (v + 1) − f (v)) + 2f (v + 1).

So maybe f (v + 1) ≥ f (v), in which case v(f (v + 1) − f (v)) + 2f (v + 1) is clearly positive, and

we have v f (v) − (1 − F (v)) ≤ (v + 1)f (v + 1) − (1 − F (v + 1)) as desired. In case f (v + 1) < f (v),
consider the following two inequalities which we know to be true:

0 ≥ φ(v)
φ(v + 1) ≥ φ(v).

�e second equation is due to F being regular. Now consider multiplying the �rst equation by

f (v) − f (v + 1), which is positive by assumption, and the second by f (v + 1). �en we get:

f (v + 1)φ(v + 1) ≥ f (v)φ(v),
as desired. To see that this holds for any w ≥ v + 1, observe that we can chain the above

from v up thru any w such that φ(w) ≤ 0. For any w such that φ(w) > 0, we clearly have

f (w)φ(w) > 0 ≥ f (v)φ(v). �

Corollary B.1. Let F be regular, and let r denote the maximum v ≤ b with ΦΛ(v − 1) ≤ 0. �en
there exists an optimal solution to Min-Max2, Λ, such that:

• Λ is properly ironed.
• ΦΛ(b) ≥ 0 (so r exists).
• λ(r − 1, r ) = 0.
• Either γ = 0 or r = b.

Proof. Again, consider a �xed γ and the following
®λ: λ(v,v − 1) = 1 − γ − F (v − 1). Recall that

(Λ) is �ow-conserving, and results in ΦΛ(v̄) = v̄ − (v̄−b)γf (v̄) , ΦΛ(v) = v − 1−F (v)−γ
f (v) for v < v̄ . Observe

that as F is regular, we have (by Lemma 3.10):

v f (v) − (1 − F (v)) ≤ w f (w) − (1 − F (w)) ⇒ f (v)ΦΛ(v) ≥ f (w)ΦΛ(w),∀v < w,φ(v) ≤ 0.

So for all v such that φ(v) ≤ 0, f (·)ΦΛ(·) is already monotone non-decreasing. It is easy to see

the procedure described in Corollary 3.2 will result in potentially multiple ironed intervals of

the following form. �ere will be a single ironed interval [v∗, v̄] at the top, and potentially other

ironed intervals [v,w] with φ(v) > 0 (and therefore also ΦΛ(v) > 0). But it is not possible to have

an ironed interval [v,w] with φ(v) ≤ 0 and w < v̄ by the work above, because we would have

already had ΦΛ(v) ≤ ΦΛ(v ′) for all v ′ ∈ [v,w]. As in Proposition 3.9, we must have v∗ ≥ b, as

otherwise complementary slackness cannot be satis�ed - v∗ , v̄ implies γ > 0, and v∗ < b implies

p(v̄) < b in any IC mechanism. Now, let x be the minimum v such that φ(v) ≥ 0. If b ≤ x , then

we necessarily have λ(r − 1, r ) = 0, as r − 1 cannot be in an ironed interval (it cannot be in the

interval [v∗, v̄] as r ≤ b ≤ v∗, and it cannot be in any other ironed interval due to the work above

as φ(r − 1) ≤ 0). If b > x , then we also have r ≤ x : x is clearly not in the ironed interval [v∗, v̄]
as x < b ≤ v∗. Moreover, for all v ∈ [x ,v∗), we have (before ironing) ΦΛ(v) ≥ φ(v) ≥ 0. So every

ironed interval (except possibly [v∗, v̄]) contains only values with ΦΛ(v) ≥ 0 before ironing, and

therefore ΦΛ(v) ≥ 0 a�er ironing as well. Together, this implies that ΦΛ(x) ≥ 0, and therefore

r ≤ x . As we have λ(v − 1,v) = 0 for all v ≤ x , we conclude that λ(r − 1, r ) = 0 as well. In both
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cases, similarly to Proposition 3.9, if γ > 0, we must have r = b due to complementary slackness,

as no IC mechanism can simultaneously optimize LP2(Λ) and have p(v̄) = bπ (v̄) (this is because

r , b ⇒ ΦΛ(b − 1) > 0). �

Note that Corollary B.1 completes the proof of Proposition 3.9.

Proof of Theorem 3.12. If x ≤ b, then the optimal mechanism clearly sets reserve x (as this

is optimal even without the budget constraint). If x > b, then the optimal dual necessarily has

γ > 0 (the budget constraint is binding), in which case Proposition 3.11 tells us that the optimal

mechanism sets price b. �

C OMITTED PROOFS FROM SECTION 4

Proof of Observation 3. Simply check through the de�nition of ΦΛ
i (·). Decreasing λi (w+1,w)

by c increases ΦΛ
i (w) by c/fi (w). Any change in αi (v) doesn’t directly a�ect any virtual values (the

e�ect is indirect due to how
®λ necessarily changes to conserve �ow). Increasing λi−1(w + 1,w) by c

decreases ΦΛ
i−1
(w) by c/fi (w). �

Proof of Observation 4. Again the proof just requires checking the de�nition of ΦΛ
i (·). In-

creasing λi (v,v − 1) by c decreases ΦΛ
i (v − 1) by c/fi (v − 1). �e change in αi (v) and αi (v − 1)

doesn’t directly a�ect any virtual values. Increasing λi (v − 1,v) by c inreases ΦΛ
i−1
(v) by c/fi−1(v).

�

Proof of Observation 5. Again, just check the de�nition of ΦΛ
i (·). (i,v) gets c/2 less �ow in

from both (i,v + 1) and (i,v − 1), so the e�ects cancel. (i − 1,v) gets c/2 more �ow in from both

(i − 1,v + 1) and (i − 1,v − 1), so again the e�ects cancel. �

Proof of Observation 6. First, observe that bi < v̄ always (otherwise the budget constraint

is already implied by IR). �e remainder of the proof again just chases through the de�nition of

ΦΛ
j (v̄). Observe that decreasing γi by

c
v̄−bi increases ΦΛ

i (v̄) by c , while decreasing λi (v̄ − 1, v̄) by

c decreases ΦΛ
i (v̄) by c , so ΦΛ

i (v̄) is unchanged. Similarly, the change to ΦΛ
i−1
(v̄) is c − c(v̄−bi−1)

v̄−bi .

Observe that as bi−1 < bi , we do in fact guarantee that ΦΛ
i−1
(v̄) decreases. �

Proof of Proposition 4.6. �e intuition is similar to the proof of Proposition 4.5: this operation

decreases fi (v−1)·ΦΛ
i (v−1), which is de�nitely helping to lowerLmax because fi (v−1)·ΦΛ

i (v−1) > 0.

�e possible catch is that we are increasing fi−1(v) · ΦΛ
i−1
(v), which could hurt. But we can show

that the hurt can never outweigh the help. A li�le more formally, Observation 1 shows that

Lmax(Λ)−Lmax(Λ′) = max{0, fi (v−1)·ΦΛ
i (v−1)}−max{0, fi (v−1)·ΦΛ

i (v−1)−ϵ}+max{0, fi−1(v)·
ΦΛ
i−1
(v)} −max{0, fi−1(v) · ΦΛ

i−1
(v) + ϵ}. As fi (v − 1) · ΦΛ

i (v − 1) = ϵ , the di�erence between the

�rst two terms is exactly ϵ . �e di�erence between the last two terms is clearly at least −ϵ , so the

total di�erence is non-negative, and Lmax(Λ) ≤ Lmax(Λ), and we have only improved. �
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Proof of Corollary 4.9. Suppose that ΦΛ
i (v̄) = 0. Simply observe that (®0, ®0) satis�es all the

necessary IC constraints as well as the budget constraint. �erefore, by Lemma 4.8, it is the unique

possibility.

Now suppose that ΦΛ
i (v̄) > 0. Again, simply observe that the proposed menu satis�es all the

necessary IC constraints as well as the budget constraint (due to budget-feasibility). �erefore, by

Lemma 4.8, it is the unique possibility. �

Proof of Theorem 4.10. �e �rst two bullets follow directly from Corollary 4.1. �e third bullet

follows from Proposition 4.5: once Λ is properly ironed, if there is some v, i > 0 with ΦΛ
i (v − 1) < 0,

we can always boost αi (v) to make it 0 instead. �e fourth bullet follows from Proposition 4.6, and

Observations 5 and 6. Assume �rst that there is some αi (v) > 0 with ΦΛ
i (v − 1) > 0 as well. �en

Proposition 4.6 says that we can reroute αi (v) and only improve Λ. Now assume that αi (v) > 0,

ΦΛ
i (v − 1) = 0, and λi (v − 1,v) > 0. Observe that becasuse Λ is properly ironed, that ΦΛ

i (v) = 0

as well. Next, observe that in order to possibly have ΦΛ
i (v) = 0, we must have λi (v + 1,v) > 0 (or

γi > 0 if v = v̄), so αi (v) is a candidate for spli�ing. �e ��h bullet follows from the following

observation: If ΦΛ
i−1
(v̄) > 0, then any IC and budget-respecting solution to LP2(Λ) must have

πi−1(v̄) = 1 and pi−1(v̄) ≤ bi−1, and therefore also have pi (v̄) ≤ bi−1 (as otherwise, (i, v̄) would

clearly rather lie and report (i − 1, v̄)). So no IC, ex-post budget-respecting solution to LP2(Λ)
can possibly satisfy complementary slackness, and by Strong Duality (Λ) cannot possibly solve

Min-Max2. To summarize, bullet points two and �ve necessarily hold in any solution to Min-Max2.

Whenever bullet points one, three, or four don’t hold, there exist elementary operations (proper

ironing, boosting, re-reouting, spli�ing) that can only improve the dual. So these operations can be

repeatedly performed until all bullet points hold. �

Proposition C.1 ([Fiat et al., 2016]). Let ( ®πi , ®pi ) satisfy all le�wards/rightwards IC constraints,
and πi (v) ∈ [0, 1],pi (v) ≥ 0 for all v , and ( ®πi+1,pi+1) = Generate-Menu(i + 1, ®πi , ®pi ). �en πi+1(v) ∈
[0, 1] and pi+1(v) ≥ 0 for all v < v+i .

Proof. Consider any ironed interval [w,v]. Note that (v+1)πi (v+1)−wπi (w)−pi (v+1)+pi (w)
is just the utility that (i,v +1) receives minus the utility that (i,w) receives. Asv ≥ w , this is clearly

positive. �erefore, πi (v) = (v+1)πi (v+1)−wπi (w )−pi (v+1)+pi (w )
v+1−w ≥ 0. Also, the di�erence in utility is

maximized when πi (w) = 1 (over all menus that satisfy le�wards/rightwards IC), in which case

πi (v) = (v+1)πi (v+1)−wπi (w )−pi (v+1)+pi (w )
v+1−w = 1. So no ma�er what, πi+1(v) ∈ [0, 1]. Also,

pi (v) = w
(v + 1)πi (v + 1) −wπi (w) − pi (v + 1) + pi (w)

v + 1 −w −wπi (w) + pi (w)

=
w(v + 1)πi (v + 1) −w2πi (w) −wpi (v + 1) +wpi (w) −w(v + 1)πi (w) +w2πi (w) + (v + 1)pi (w) −wpi (w)

v + 1 −w
=
w(v + 1)(πi (v + 1) − πi (w)) −wpi (v + 1) + (v + 1)pi (w)

v + 1 −w
≥ w(v + 1)(πi (v + 1) − πi (w)) −wpi (w) −w(v + 1)(πi (v + 1) − πi (w)) + (v + 1)pi (w)

v + 1 −w
=
(v + 1 −w)pi (w)

v + 1 −w ≥ 0.

Where the penultimate line follows because pi (v + 1) ≤ pi (w) + (v + 1)(πi (v + 1) − πi (w)). �
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Corollary C.2 ([Fiat et al., 2016]). Let ( ®πi , ®pi ) satisfy all le�wards/rightwards IC constraints,
πi (v) ∈ [0, 1],pi (v) ≥ 0 for all v , and ΦΛ

i+1
(v̄) > 0. �en πi+1(v) ∈ [0, 1] and pi+1(v) ≥ 0 for all v

when ( ®πi+1,pi+1) = Generate-Menu(i + 1, ®πi , ®pi ).

Proof. As πi (v+i ) ∈ [0, 1], this immediately follows from the penultimate line in the description

of Generate-Menu combined with Proposition C.1. �

Corollary C.3. Let ( ®πi , ®pi ) satisfy all le�wards/rightwards IC constraints, πi (v) ∈ [0, 1],pi (v) ≥ 0

for all v , and ΦΛ
i+1
(v̄) = 0. �en if Λ is budget-feasible at i , πi+1(v),pi+1(v) ≥ 0 for all v when

( ®πi+1,pi+1) = Generate-Menu(i + 1, ®πi , ®pi ).
Moreover, if v+i · πi (v+i ) − pi (v+i ) ≤ v+i − bi+1, πi+1(v) ∈ [0, 1] and pi+1(v) ≥ 0 for all v when
( ®πi+1,pi+1) = Generate-Menu(i + 1, ®πi , ®pi ).

Proof. Again, immediately follows from Proposition C.1 combined with the �nal line in the

description of Generate-Menu. When v+i ≥ bi , the allocation and price are clearly non-negative

(although perhaps in�nite). For the “moreover” portion: intuitively, v+i · πi (v+i ) −pi (v+i ) ≤ v+i −bi+1

ensures that (i + 1,v+i ) at least prefers to receive the item with probability 1 and pay bi+1 than

receive (πi (v+i ),pi (v+i )). If this condition is satis�ed, there is certainly some πi+1(v+i ) ≤ 1 with

which we can award the item to (i + 1,v+i ), charge her bi+1 · πi+1(v+i ), and have the desired IC

constraints be tight. If this condition fails to hold, then we might need to charge a negative price or

allocate at a “probability” > 1. As a sanity check, observe that there is absolutely no way for the

hypotheses of the corollary statement to be satis�ed if Λ isn’t budget-feasible at i . We know that

ΦΛ
i (v) = 0 for allv , so the �rst and second conditions of budget-feasibility are certainly satis�ed. So

if there’s an issue, it’s with the third condition. If the third condition is violated, it essentially means

that there’s one very long ironed interval going from (i, v̄) all the way below bi , and therefore

v+i < bi , and the RHS in the corollary’s hypothesis is negative. �

Proof of Observation 7. Just observe that by budget-feasibility at i , v+i will be ≥ bi . It is then

easy to check that (®0, ®0) satis�es all the hypotheses of Corollary C.3. �

Proof of Proposition 4.12. Observe that all le�wards/rightwards IC constraints within budget

b1 are strongly satis�ed by assumption. Now let’s proceed by induction and assume that all

le�wards/rightwards IC constraints are strongly satis�ed within budget bi and consider all IC

constraints involved with budget bi+1. First, observe that all rightwards IC constraints are certainly

strongly satis�ed, as everyone in the same ironed interval receives the same allocation/price. Next,

observe that for duals of the form guaranteed by �eorem 4.10 that αi (v) > 0⇒ λi (v − 1,v) = 0.

In other words, if αi (v) > 0, then v is at the bo�om of an ironed interval. Checking through

the algebra/English description of the Generate-Menu procedure, we see that (πi (·),pi (·)) are set

exactly so that all (i + 1,v) at the bo�om of an ironed interval are indi�erent between what they

receive and what (i,v) receives, and indi�erent between what (i,v) receives and what (i + 1,v − 1)
receives. Together, this implies that (i + 1,v) is also indi�erent between what she receives and

what (i + 1,v − 1) receives. �erefore, all le�wards IC constraints as well as all downwards IC

constraints are strongly satis�ed as well. �
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Proof of Corollary 4.13. Observe that whenever ΦΛ
i (v) > 0, we have hard-coded πi (v) = 1

into Generate-Menu. Additionally, for all i > 1, ΦΛ
i (v) ≥ 0, and any value is acceptable when

ΦΛ
i (v) = 0 (and for all i > 1 such that ΦΛ

i (v̄) = 0 for all v). However, we still can’t guarantee that

the resulting menu is feasible without additional hypotheses (e.g. Corollary C.3), so we just leave it

as a hypothesis in the corollary statement. �

Proposition C.4. Let ΦΛ
1
(v̄) > 0. If γ1 = 0, letv+ = v− = min{v |ΦΛ

1
(v) ≥ 0}. Else, let [v−,v+ − 1]

denote the ironed interval containing b1 (could be [b1,b1]). �en the following mechanism solves
LP2(Λ) and strongly satis�es complementary slackness.

• (π1(v),p1(v)) = (0, 0) for all v < v−.
• If γ1 = 0, (π1(v),p1(v)) = (1,v−) for all v ≥ v−.
• Else, (π1(v),p1(v)) = (1,b1) for all v ≥ v+, and (π1(v),p1(v)) = ( v

+−b1

v+−v− ,v
− · v

+−b1

v+−v− ) for all
v ∈ [v−,v+).
• (®πi , ®pi ) = Generate-Menu(i, ®πi−1, ®pi−1) for all i > 1.

Proof of Proposition C.4. �ickly note that by �eorem 4.10, Λ is budget-feasible at 1, so the

above algebra always results in a feasible menu. Also, note that as there are no j such that ΦΛ
j (v̄) = 0,

there’s no possibility that such j have πj (v̄) > 1. So the �rst concern is immediately addressed - the

resulting menu is certainly feasible. Finally, observe that certainly the �rst budget constraint is

strongly satis�ed - essentially becuase Λ is budget-feasible at 1 and we have chosen the correct

menu to strongly satisfy the budget constraint. If γ1 = 0, then we charge the minimum possible

price, which is guaranteed to be at most b1. If γ1 > 0, we have hard-coded ( ®π1, ®p1) so that p1(v̄) = b1.

So both concerns are addressed, and by the previous observations/corollaries/propositions, the

proposition is proved. �

Proposition C.5. Let ΦΛ
1
(v̄) = 0. �en the following mechanism solves LP2(Λ) and almost strongly

satis�es complementary slackness. �ere might exist one i with γi > 0 but pi (v̄) > bi · πi (v̄), but
complementary slackness is strongly satis�ed for all other constraints. Additionally, there might exist
some j ≥ i with pj (v̄) > πj (v̄) · bj .

• (π1(v),p1(v)) = (0, 0) for all v .
• (®πi , ®pi ) = Generate-Menu(i, ®πi−1, ®pi−1) for all i > 1.

Proof of Proposition C.5. Again, recall that we only need to check two concerns. Note that

in this case, we will have πj (v̄) = pj (v̄) = 0 for all j such that ΦΛ
j (v̄) = 0, so the �rst concern

is addressed. However, we can’t make any claims about pi (v̄) for the unique (if it exists) i such

that γi > 0 and ΦΛ
i (v̄) > 0. Note that the payment can only be too large (and not too small), as

v+i ≥ bi . �

Proposition C.6. Let Λ be budget-feasible at all budgets, and ΦΛ
1
(v̄) = 0. Let also [v−,v+ − 1]

be the ironed interval containing (1,b1). �ere exists a q ∈ [0, 1] such that the following mechanism
solves LP2(Λ) and strongly satis�es complementary slackness.

• (π1(v),p1(v)) = (0, 0) for all v < v−.
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• (π1(v),p1(v)) = (q,b1q) for all v ≥ v+, and (π1(v),p1(v)) = (q v+−b1

v+−v− ,v
−q · v

+−b1

v+−v− ) for all
v ∈ [v−,v+).
• (®πi , ®pi ) = Generate-Menu(i, ®πi−1, ®pi−1) for all i > 1.

Proof of Proposition C.6. �e high-level idea is that as we increase q all the way to 1, we get

an IC mechanism that charges b1 to receive the item deterministically. In this case, clearlypi (v̄) < bi .
If we keep q all the way at 0, we might instead have pi (v̄) > bi . Note that pi (v̄) is a continuous

function in q, so by the intermediate value theorem, there is some q such that pi (v̄) = bi . Observe

that for this q, we necessarily have πj (v̄) < 1 for all j < i , as otherwise we couldn’t possibly have IC,

pj (v̄) = bj ·πj (v̄), and πi (v̄) = 1, all three of which are guaranteed to hold for all q by Corollary 4.13.

Finally, we just need to ensure that πj (v̄) ≥ 0 for all j < i . �is is a potential concern if Λ is not

budget-feasible at j (i.e. if v+j < bj , then we might wind up with negative probabilities/prices). But

due to Corollary C.3, this will never result when Λ is budget-feasible at j. �

Proof of Lemma 4.15. First, consider the case that ΦΛ
s∗ (v̄) > 0. �en immediately from the

second bullet of �eorem 4.10, the corollary follows. If instead ΦΛ
s∗ = 0, it is because we went

backwards in step above, which means that s∗ + x is linked to s∗ + x − 1 for all x such that

ΦΛ
s∗+x−1

(v̄) = 0. Let y be the largest such x . So if there exists some x ∈ [0,y] where Λ isn’t

budget-feasible at s∗ + x , consider the consequences:

• If x = y, there is an immediate contradiction to the second bullet in �eorem 4.10.

• Otherwise, we must have πs∗+x (v) = ps∗+x (v) = 0 for all v by Lemma 3.5.

• By Corollary 4.9, we necessarily have πs∗+z (v) = ps∗+z (v) = 0 for all v and all z ∈ [x ,y).
• Because Λ links s∗ + y and s∗ + y − 1, by Corollary � there is a unique menu that can

possibly be o�ered to budget s∗+y. Because πs∗+y−1(v) = ps∗+y−1(v) = 0 for allv , this menu

necessarily o�ers a single non-trivial option, and to the highest ironed interval, [v+, v̄] to

receive the item with probability 1 at price v+.

• Because Λ links s∗ + y and s∗ + y − 1, we must have v+ , bs∗+y (this is the reason for

the exception in the de�nition). So the budget constraint won’t bind, which violates

complementary slackness as we necessarily had γs∗+y > 0 to start going backwards in the

�rst place.

So all together, this says that we reach a contradiction if Λ isn’t budget-feasible above the seed

budget. �

Proof of Proposition 4.16. Identical to that of Proposition C.6, combined with Lemma 4.15

to guarantee that Λ is budget-feasible wherever the above proposes a non-trivial menu. We also

observe that because (by de�nition), Λ does not link s∗ to s∗ − 1, αi (v+) = 0. �is means that we

are free to set πs∗ (·),ps∗ (·) as above without violating complementary slackness, as v+ need not be

indi�erent between their (allocation, price) and (0, 0). �

D THE GENERAL CASE: VALUE-REGULAR DISTRIBUTIONS
In this section, we provide a tighter characterization in the event that each Fi is value-regular. �e

result matches that of Che and Gale.
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Theorem D.1 ([Che and Gale, 2000]). Let each Fi be value-regular. �en the optimal mechanism
takes the following form, where `i denote the number of non-trivial menu options for types with budget
bi .

• �ere exists an i such that bj · πj (v̄) = pj (v̄) for all j ≤ i , and there exists an a such that
πj (v̄) = 1 for all j ≥ a.
• Above, a ∈ {i, i + 1}. So there is at most one j for which both bj · πj (v̄) = pj (v̄) and πj (v̄) = 1.
• `1 ≤ 1, and `j ≤ `j−1 + 1 for all j ≤ a. `j ≤ `j−1 for all j > a.
• �e menu for types with budget bj is obtained by Generate-Menu with input equal to the menu
for types with budget bj−1.

Proof. Let Λ denote an optimal dual of the form from �eorem 4.10. Let’s �rst consider the

�ow that sets γ ′i = α ′i (v) = λ′i (v − 1,v) = 0 for all i,v , and λ′i (v,v − 1) = 1 − Fi (v) for all i,v .

�is results in Φλ
′

i (v) = v −
1−Fi (v)
fi (v) , and as each Fi is value-regular, we have fi (·)Φλ

′
i (·) monotone

non-decreasing at this point. Now, let’s consider changing γ ′i and α ′i (v) one i at a time, starting

from i = k . First change γ ′i from 0 to γi . �is decreases fi (v̄) · Φλ
′

i (v̄) by γi (v̄ − bi ), and increases

fi (v) · Φλ
′

i (v) by γi for all v < v̄ . So fi (·)Φλ
′

i (·) is almost monotone non-decreasing, except perhaps

up at v̄ . Ironing will therefore create a single ironed interval at the top, [v∗i , v̄], and there will be

no other ironing. Next, increase α ′i (v) to αi (v) as in Proposition 4.5. �is won’t create any new

ironed intervals within budget bi . Moreover, fi−1(w) · Φλ
′

i−1
(w) will decrease by

∑
v>w αi (v), so we

maintain monotonicity within budget i − 1. So at the end of the above procedure, we wind up with

the dual exactly Λ, of the form guaranteed by �eorem 4.10. Each i has only one ironed interval, at

the top. Chasing through what this means for the procedure Generate-Menu, we see that none of

the menu options for budget i get “split” into two options on the menu for budget i + 1. Moreover,

as F1 is itself value-regular, no ironing is needed in the menu for budget b1 either. �e reason that

no new menu options arise as we go from j to j + 1 when j ≥ a is because one of the options on the

menu for j was to receive the item with probability 1 at some price. �e “new” option on the menu

for j + 1 is to receive the item with probability 1 at a possibly lower price. So if there is a “new”

option on the menu for j + 1, it is because it “kicks out” an option on the menu for j. �
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