
Cloud Scheduling with Setup Cost

Yossi Azar
∗

Blavatnik School of Computer
Science, Tel-Aviv University.

azar@tau.ac.il

Naama Ben-Aroya
†

Blavatnik School of Computer
Science, Tel-Aviv University.

Nikhil R. Devanur
Microsoft Research,

Redmond, WA.
nikdev@microsoft.com

Navendu Jain
Microsoft Research,

Redmond, WA.
navendu@microsoft.com

ABSTRACT
In this paper, we investigate the problem of online task
scheduling of jobs such as MapReduce jobs, Monte Carlo
simulations and generating search index from web docu-
ments, on cloud computing infrastructures. We consider the
virtualized cloud computing setup comprising machines that
host multiple identical virtual machines (VMs) under pay-
as-you-go charging, and that booting a VM requires a con-
stant setup time. The cost of job computation depends on
the number of VMs activated, and the VMs can be activated
and shutdown on demand. We propose a new bi-objective
algorithm to minimize the maximum task delay, and the
total cost of the computation. We study both the clairvoy-
ant case, where the duration of each task is known upon its
arrival, and the more realistic non-clairvoyant case.

Categories and Subject Descriptors
F.1.2 [Computation by abstract devices]: Modes of
Computation—Online computation

General Terms
Algorithms, Theory

Keywords
online algorithms, scheduling, cloud computing, competitive
ratio, clairvoyant, non-clairvoyant

1. INTRODUCTION
Scheduling problems involve jobs that must be scheduled

on machines subject to certain constraints to optimize a

∗Supported in part by the Israel Science Foundation (grant
No. 1404/10).
†Supported in part by the Google Inter-university center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SPAA’13, June 23–25, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1572-2/13/07 ...$15.00.

given objective function. The goal is to compute a schedule
that specifies when and on which machine each job is to be
executed. In online scheduling, the scheduler receives jobs
that arrive over time, and generally must schedule the jobs
without any knowledge of the future.

Cloud Computing is a new paradigm for provisioning com-
puting instances, i.e., virtual machines (VMs) to execute
jobs in an on-demand manner. This paradigm shifts the lo-
cation of the computing infrastructure from the user site to
the network thereby reducing the capital and management
costs of hardware and software resources [7]. Public cloud
is available in a pay-as-you-go charging model that allows
end-users to pay for VMs by the hour e.g., $0.12 per hour.
Two key criteria determine the quality of the provided ser-
vice: (a) the dollar price paid by the end-user for renting
VMs and (b) the maximum delay among all given tasks of a
job. The goal is to provide a scheduling algorithm that aims
to minimize the delay and the production cost of executing
a job. We consider arbitrary jobs such as MapReduce jobs,
Monte Carlo simulations and generating search index from
web documents.

In classical scheduling problems, the number of machines
is fixed, and in sequence we have to decide which job to
process on which machine. However, the cloud introduces
a different model in which we can activate and release ma-
chines on demand, and thus control the number of machines
being used to process the jobs. This highlights the trade-
off between the number of machines used and the delay of
processing the jobs. On one hand, if we didn’t have to pay
for each machine, we could use one machine for each task of
the job, and reduce the delay to a minimum. On the other
hand, if we want to minimize cost, we could only use a single
machine for all tasks of the jobs in a work-conserving model.

In this paper we assume that all computing instances
which are available for processing are initially inactive. In
order to assign a task to any machine it should be activated
first. To activate a machine there is a constant duration of
setup until the machine is ready to process. Moreover, when
a machine is no longer in use, it should be shut down, again,
taking a constant duration for turning off. Both setup and
shut down times are included in the production cost of this
service, and therefore will be charged to the end-user. As a
result, the number of machines allocated for a specific job
has a major impact on the total cost.

Our goal is to minimize both the maximum delay (re-
sponse time) and the total cost. The problem of finding the

right balance between delay and cost is a bi-objective opti-
mization problem. The solution to this problem is a set of
Pareto optimal points. A solution is Pareto optimal if it is
impossible to find a solution which improves on one or more
of the objectives without worsening any of the others.

Our Results.
The performance of an algorithm will be described by

competitive analysis where α is the cost ratio of the algo-
rithm to the optimum cost and δ is the delay ratio (see
section 2 for details).

• For the known-duration case (i.e. clairvoyant, task du-
ration known upon its arrival), we present an optimal
algorithm (up to a constant factor) with α = (1 + ε),
and at the same time δ = O

(
1
ε

)
.

• For the unknown-duration (i.e. non-clairvoyant) case,
we present an optimal algorithm with α = (1 + ε), and
at the same time δ = O

(
log µ
ε

)
, where µ is the ratio

of the longest task duration of any job to the shortest
task duration of any job.

Related work.
Due to the importance of task scheduling and because

they are often NP-hard, these kinds of problems have been
much studied. Surveys on scheduling algorithms and online
scheduling can be found in [9], [15] and [11]. Perhaps the
most intuitive measure of Quality of Service (QoS) received
by an individual job is the flow time. The flow time Fi of
the ith job is the difference between its completion time and
its release date. This measurement is equivalent to the de-
lay attribute in our objective function. We next summarize
some of the main prior results for minimizing the total and
maximum flow time of n tasks on fixed number of m parallel
identical machines.

Total flow time: Algorithm SRPT (shortest remaining
processing time) has, within a constant factor, the best pos-
sible competitive ratio of any online algorithm for minimiz-
ing total flow time. It is Θ(min(logµ, logn/m))-competitive
(where µ is the ratio between the maximum and the mini-
mum processing time of a job), and this is known to be op-
timal within a constant factor [10]. SRPT uses both job mi-
grations and pre-emptions to achieve its performance. Awer-
buch, Azar, Leonardi, and Regev developed an algorithm
without job migration (each job is processed on only one ma-
chine) that is O(min(logµ, logn))-competitive [2]. Chekuri,
Khanna, and Zhu developed a related algorithm without mi-
gration that is O(min(logµ, logn/m))-competitive. These
algorithms utilize a central pool to hold some jobs after their
release date. Avrahami and Azar developed an algorithm
without migration with immediate dispatch (each job is as-
signed to a machine upon its release) that isO(min(logµ, logn))-
competitive [1].

While SRPT and the related algorithms perform well on
average, they may starve some jobs in order to serve most
jobs well. The best results known for maximum flow time ob-
jective function come from Bender, Chakrabarti, and Muthukr-
ishnan [4]. They show that FIFO (first in first out) is (3 −
2/m)-competitive, and provide a lower bound of 4/3 for any
non-preemptive algorithm for m ≥ 2.

Non clairvoyant makespan: A general reduction theorem
from [16] shows that in any variant of scheduling in online

environment with makespan objective, any batch-style c-
competitive algorithm can be converted into a 2c-competitive
algorithm in a corresponding variant which in addition al-
lows release times. In [5] it is proved that for a certain class
of algorithms the competitive ratio is increased only by ad-
ditive 1, instead of the factor of 2 in the previous reduction;
this class of algorithms includes all algorithms that use a
greedy approach similar to List Scheduling. The intuition
beyond these reductions is that if the release times are fixed,
the optimal algorithm cannot do much before the last release
time. In fact, if the online algorithm would know which job
is the last one, it could wait until its release, then use the
batch-style algorithm once, and achieve the competitive ra-
tio of c+ 1 easily.

In addition, since the late 1980s, a lot of research was
made with bi-criteria objective function. A survey on such
multicriteria scheduling can be found in [8]. However, none
of these scheduling setups are applicable to the cloud envi-
ronment.

Cloud scheduling: There has been little theoretical work
on online scheduling on computational grids and clouds (where
grids consists of a large number of identical processors that
are divided into several machines at possibly multiple loca-
tions). Moreover, as far as we know, there are no previous
results which differ from our model by only one parameter.

In [17], Tchernykh et al. addressed parallel jobs schedul-
ing problem for computational grid systems. They concen-
trate on two-level hierarchy scheduling: at the first level, a
broker allocates computational jobs to parallel computers.
At the second level, each computer generates schedules of
the parallel jobs assigned to it by its own local scheduler.
Selection, allocation strategies, and efficiency of proposed
hierarchical scheduling algorithms were discussed. Later,
in [18], Tchernykh et al. addressed non-preemptive online
scheduling of parallel jobs on two stage grids. They dis-
cussed strategies based on various combinations of alloca-
tion strategies and local scheduling algorithms. Finally, they
proposed and analysed a scheme named adaptive admissible
allocation. This includes a competitive analysis for different
parameters and constraints. They showed that the algo-
rithm is beneficial under certain conditions and allows for
an efficient implementation in real systems. Furthermore, a
dynamic and adaptive approach is presented which can cope
with different workloads and grid properties.

Schwiegelshohn et al. [12] addressed non-clairvoyant and
non-pre-emptive online job scheduling in grids. In their
model, jobs have a fixed degree of parallelism, and the goal is
to minimize the total makespan. They showed that the per-
formance of Garey and Graham’s list scheduling algorithm
[6] is significantly worse in grids than in multiprocessors,
and presented a grid scheduling algorithm that guarantees
a competitive factor of 5.

In [13], Schwiegelshohn studied the case of non-clairvoyant
scheduling on massively parallel identical processors. The
author pointed out the disadvantages of commonly used
metrics like makespan or machine utilization. Instead, he
suggested to use the total weighted completion time met-
ric. He showed that this metric exhibits many properties
that are similar to the properties of the makespan objective.
Later, in [14], he showed that no constant competitive factor
exists for the extension of the problem to rigid parallel jobs.

Outline.
The remainder of this paper is as follows. Section 2 de-

scribes the scheduling models, the function for computing
the quality of service (QoS), and a brief summary of our re-
sults. Section 3 presents the basic observations used through-
out this paper. In sections 4 and 5 we present our al-
gorithms, and give proofs for lower bound for the known-
duration and unknown-duration cases, respectively.

2. THE MODEL

Input.
The job input consists of multiple tasks that need to be

executed. Tasks arrive over time. A task i has an arrival
time ai and (possibly unknown) duration pi. We denote by
p the minimum duration of a task (we assume it is known)
and by P the maximum duration. Let µ = P/p.

Model.
Each task runs on a single machine (instance). Each

machine can run a single task at a time. Tasks are non-
preemptive, i.e., a task has to run continuously without in-
terruptions. Let ei = ai + pi which is the earliest possible
completion time of task i. Denote by ci the actual comple-
tion time of task i and di = ci − ei as the delay that the
task encounters. We can activate or shut down machines at
any time. In activation of a machine there is Tsetup time
until the machine is available for processing. In shut down
there is Tshutdown time to turn off the machine. For sim-
plicity we may assume that there is only activation time
Ts = Tsetup + Tshutdown and the shut-down is free.

We concentrate on the online problem where no informa-
tion is known on future arrival of tasks, but that the arrivals
of tasks are independent of the scheduling. We consider the
known and unknown task duration model (i.e. clairvoyant
and non-clairvoyant). In the clairvoyant case the duration of
a task is known at its arrival. In the non-clairvoyant model
the duration is unknown at its arrival and becomes known
only once the task has been completed.

The Algorithm.
At any time t the algorithm needs to decide how many ma-

chines M(t) to maintain (and hence to activate or to shut
down machines). In addition it should decide for each task
when and on which machine to run it. Since pre-emption is
not allowed, once a task is started to be processed by a ma-
chine it has to run till completion without any interruption.

Goal function.
The goal function consists of two parts: cost and delay.

Without loss of generality assume that the cost charged per
machine per unit of time is one. Then

G =

∫
t

M(t)dt

is the dollar cost of the algorithm, and GOpt is the dollar
cost of the optimal algorithm. We would like to find an
algorithm for which the dollar cost is close to the optimum
while the the maximum delay of any task is small. Let D be
the maximum delay of the online algorithm (i.e. di ≤ D for
all tasks i), and DOpt be the maximum delay of the optimal
algorithm. Formally the performance of an algorithm will

be described by α - the cost ratio of the algorithm to the
optimum cost (α = G/GOpt), and δ - the delay ratio (δ =
D/DOpt). Let W =

∑
pi be the total volume of the tasks.

Clearly W is a lower bound for the cost. Actually, our online
algorithm will be compared with the volume (as long as the
volume is not too small). This corresponds to an optimal
algorithm with no restriction on the delay (and hence the
delay may be unbounded). On the other hand, the delay
given by our algorithm will be compared to an aggressive
algorithm with a maximum delay of only Ts which is the
minimum possible (assuming at least one task needs to wait
for the setup time). Surprisingly, we can provide an online
algorithm whose performance compares favorably with the
two optimal offline algorithms.
Remark: Let L be the difference between the latest and
earliest release times. We assume that the total volume of
tasks to process is at least the total duration of the process.
Alternatively we may assume that the optimal algorithm is
required to maintain at least one open machine at any time,
and hence

GOpt ≥ L. (1)

The case in which the volume is extremely small and there is
no need to maintain one open machine is not of an interest
(as the total work/cost is very small). If we insist in dealing
with this case we can simply add an additive constant L.
For the remainder of this paper we assume that the cost of
the optimum is at least L.

3. BASIC OBSERVATIONS
We first show that it is not hard to have an algorithm

with an optimal cost. Recall that W is the total volume of
all tasks.

Observation 3.1. For any algorithm (in particular the
optimal algorithm) GOpt ≥ W + Ts. By (1) we also have
GOpt ≥ L. Equality may be achieved only when a single ma-
chine is activated. Hence maintaining a single machine is
optimal with respect to the cost (in a work-conserving sys-
tem).

The drawback of such extremely conservative algorithm is
that the delays are not bounded. The queue of tasks as well
as the delay of each task may go to infinity.

The other extreme possibility is to use a very aggressive
algorithm with possibly low efficiency with respect to the
cost but with a small delay in the completion of each task.
Recall that p is the minimum duration of a task.

Observation 3.2. An algorithm which activates a new
machine for each task upon its arrival has a cost ratio of at
most Ts/p+ 1 and a maximum delay of Ts.

The guarantee on the delay is excellent but the cost may be
very large compared to the optimal cost. We are interested
in achieving a much better efficiency, that is 1 + ε approxi-
mation to the cost with reasonable delays. We note that if
Ts = 0 then the optimal algorithm is trivial.

Observation 3.3. If Ts = 0 then any algorithm with no
idle machine is optimal with respect to the cost GOpt. In
particular, the algorithm which activates a new machine for
each task upon its arrival is optimal. That is, the cost is the
optimal cost (ratio of 1) and the delay of each task is 0 as
task i is completed at ei.

4. KNOWN DURATION OF TASKS
In this section we first assume that the duration of each

task pi is known upon its arrival. Let E = 2Ts
ε

(for 0 < ε <
1). The following algorithm achieves a cost ratio of (1 + ε)
and a delay ratio of O

(
1
ε

)
.

Algorithm Clairvoyant

• Classify a task upon its arrival. It is a long task if
pi ≥ E and otherwise short.

• Upon the arrival of each new long task, activate a new
machine.

• Accumulate short tasks. Activate a machine to process
those tasks at the earliest between

– case 1: the first time the volume of the accumu-
lated tasks becomes above E. In this case, assign
the tasks to a new allocated machine and restart
the accumulation.

– case 2: (E − Ts) time passed from the earliest
release time of those tasks. In this case, continue
the accumulation until the machine is ready (at
time E), assign the tasks to the machine, and
then restart the accumulation. If the volume of
the tasks exceeds E by the time the machine is
ready, stop the accumulation and go to case 1
(these tasks will be classified as case 1).

• Process the tasks on their assigned machine according
to their arrival order. Note that the volume assigned
to a machine is below 2E and each task will start its
processing within at most E time after the assigned
machine is ready.

• Shut down a machine once it completes tasks assigned
to it.

Theorem 4.1. The cost ratio of Algorithm Clairvoyant
is at most (1 + ε). Moreover a long task will have a delay of
Ts. The delay of a short task is at most 2E = 4Ts

ε
.

Proof. Letm be the number of machines opened for long
tasks plus the number of machines opened to process tasks
from case 1, whose accumulative volume was above E. Let r
be the number of machines opened for the tasks from case 2,
of which at least E time passed from the first task’s release
time until the release time of the first task in the next short
tasks group. Clearly

GOpt ≥W + Ts ≥ mE + Ts =
2mTs
ε

+ Ts

and as assumed in (1):

GOpt ≥ L ≥ (r − 1)E =
2(r − 1)Ts

ε
.

The total setup time for all machines is (r + m)Ts. Hence
the cost ratio is at most

W+(r+m)Ts
GOpt

= W+Ts
GOpt

+ (r−1)Ts
GOpt

+ mTs
GOpt

≤ W+Ts
W+Ts

+ (r−1)Ts
2(r−1)Ts/ε

+ mTs
2mTs/ε

= 1 + ε
2

+ ε
2

= 1 + ε

as needed. Next we discuss the delays of the tasks. Once a
long task arrives it will start running after the setup time

and hence be delayed by at most Ts. A short task will get a
machine after at most E−Ts time, then the machine has Ts
setup time and finally it will start running in at most addi-
tional E time. Hence its total delay is 2E as claimed.

We can further save cost and reduce the delay of Algo-
rithm Clairvoyant although it does not improve the perfor-
mance in the worst case. Specifically,

• Once a machine completed its assigned task it can pro-
cess any waiting task. Shut down a machine once it
becomes idle and there are no waiting tasks.

Next we show that if we insist on a total cost of at most
(1 + ε)W , then the loss in the delay ratio is required.

Lemma 4.2. If an online algorithm is limited to a cost of
(1 + ε)W , then its delay is at least Ts

ε
, and the delay ratio

is 1
ε
. This is true even if all of the tasks are of the same

duration.

Proof. For 0 < ε ≤ 1
2
: let p = P = Ts

(
1
ε
− 1
)

(all the
tasks have the same duration). We construct an instance of
4 tasks for which the maximum delay of an online algorithm
would have to be at least Ts

ε
. We denote by Wt the total

volume released by time t.

• At time 0, two tasks arrive (W0 = 2(1−ε)Ts
ε

).

The online algorithm can not activate more than one
machine. If it activates two machines, its cost will be

2Ts +W0 > 2(1− ε)Ts +W0 = εW0 +W0 = (1 + ε)W0.

Hence, its cost will exceed the limitation. Therefore
the online algorithm activates only one machine. At
time Ts, this machine will start to process the first
task, and at time Ts + p it will process the second.

• At time Ts + p, the next two tasks arrive.

Note that the maximum delay of this scheduling is at least
the delay of task 2, which is:

Ts + p = Ts +
(1− ε)Ts

ε
=
Ts
ε
.

The offline algorithm, on the other hand, knows that W =

WTs+p = 4(1−ε)Ts
ε

≥ 2Ts
ε

from the beginning of the process.
Hence, it can open two machines on the arrival of tasks 1
and 2. The total cost is

2Ts +W ≤ εW +W = (1 + ε)W.

Clearly, the delay of the first two tasks is Ts. The next two
tasks can be scheduled immediately after their arrival, at
time Ts + p, exactly after the completion of the first two
tasks (one task for each machine). Therefore, the maximum
delay of the offline algorithm is Ts, and the competitive ratio
is at least δ = 1

ε
.

One may think that if we allow a total cost which is much
higher than the total work then the delay ratio would be-
come 1. We prove that this is not true. Specifically, if the
cost is α times the total work, then the delay ratio is at least
1 + 1

2α
.

Lemma 4.3. If an online algorithm is limited to a cost of
αW (α > 1), its delay ratio is at least 1 + 1

2α
.

Proof. Let p = P = Ts
2(α−1)

(all the tasks have the same

duration). We construct an instance of 4 tasks for which
the maximum delay of an online algorithm would have to be
greater than the delay of an offline algorithm. We denote by
Wt the total volume at time t.

• At time 0, two tasks arrive
(
W0 = Ts

α−1

)
.

The online algorithm can not activate more than one
machine. If it activates two machines, its cost will be

2Ts+W0 = (α−1)
2Ts
α− 1

+W0 > (α−1)W0+W0 = αW0.

Hence, its cost will exceed the limitation. Therefore
the online algorithm activates only one machine. At
time Ts, this machine will start to process the first
task, and at time Ts + p it will process the second.

• At time Ts + p, the next two tasks arrive.

The maximum delay of this scheduling is at least the delay
of task 2, which is:

Ts + p = Ts +
Ts

2(α− 1)
≥ Ts

(
1 +

1

2α

)
.

The offline algorithm knows that W = 2Ts
α−1

from the be-
ginning of the process. Hence, it can open two machines on
the arrival of tasks 1 and 2, with total cost of

2Ts +W = (α− 1)
2Ts
α− 1

+W = (α− 1)W +W = αW.

and a delay of Ts. The next two tasks can be scheduled im-
mediately after their arrival, at time Ts+p, exactly after the
completion of the first two tasks (one task for each machine).
Therefore, the maximum delay of the offline algorithm is Ts,
and the competitive ratio is at least 1 + 1

2α
.

5. UNKNOWN DURATION OF TASKS
The algorithm Clairvoyant from section 4 depends on es-

timates of how long each task will run. However, user esti-
mates of task duration compared to actual runtime are often
inaccurate or overestimated [3]. In this section we focus on
the non-clairvoyant case, where the task duration is known
only on its completion.

Now we present our algorithm for the unknown duration
case. We divide time into epochs and deal with the tasks in
each epoch separately.

Algorithm Non-Clairvoyant

• Divide the time into epochs of F = 4Ts/ε. Let B0 be
the set of tasks given initially (time 0) and for k ≥ 1
let

Bk = {i|(k − 1)F < ai ≤ kF}.

All tasks Bk are handled at time kF separately from
tasks of Bk′ for k′ 6= k.

• Let nk = |Bk| be the number of tasks arrived in epoch
k.

• Let mk = dnkp/F e and activate mk machines.

• Process tasks on machines in arbitrary order for Ts+F
time (this also includes setup times of newly activated

machines) . If after Ts + F time there are still wait-
ing tasks then activate additional mk machines set
mk ← 2mk and repeat this step (note that tasks that
are already running will continue to run with no inter-
ruption).

• Shut down a machine once it becomes idle and there
are no waiting tasks.

Recall that µ is the ratio of the longest to the shortest
task duration.

Lemma 5.1. The cost ratio of Algorithm Non-Clairvoyant
is (1 + ε). Each task is delayed by at most O

(
Ts log µ

ε

)
.

Proof. First we deal with the cost. Let Wk be the vol-
ume of tasks arrived in the kth epoch. Assume that dou-
bling the number of machines happens rk ≥ 0 times until
all these tasks are processed. Hence the final number of ma-
chines was mk2rk . The total setup times of the machines is
Sk = mk2rkTs. We first assume that rk ≥ 1. Since the tasks
were not completed by mk2rk−1 machines it means that

Wk ≥ mkF (2rk−1 + 2rk−2 + . . .+ 20) ≥ mkF2rk−1 .

Hence

Sk
Wk

=
mk2rkTs
Wk

≤ mk2rkTs
mkF2rk−1

=
2Ts

4Ts/ε
=
ε

2
.

We are left with the case that rk = 0 i.e.,all tasks were
completed at the first round. Assume first that nkp/F > 1
and hence mk ≥ 2. In this case mk = dnkp/F e ≤ 2nkp/F .
Then

Sk
Wk

=
mkTs
Wk

≤ mkTs
nkp

≤ 2Tsnkp/F

nkp
=

2Ts
F

=
2Ts

4Ts/ε
=
ε

2
.

The only remaining case is when mk = 1 and rk = 0 i.e.,
all tasks were completed by the single machine. In this case
Sk = Ts.

Let K1 be the set of k for which mk = 1 and rk = 0 and
K2 the set of all the other k’s. Note that for every k ∈ K2:

Sk ≤
ε

2
Wk.

Hence

S =
∑
k

Sk =
∑
k∈K1

Sk +
∑
k∈K2

Sk ≤
∑
k∈K1

Ts +
∑
k∈K2

ε

2
Wk.

Clearly,
∑
k∈K2

Wk ≤W . Recall that L is the difference be-
tween the latest and earliest release times. Since we divided
that time to epochs of F we have |K1| ≤ dL/F e. We may
assume that L > F (otherwise we have only one epoch and
one machine so it is easy) and hence |K1| ≤ 2L/F . Applying
that, we get:

S ≤
∑
k∈K1

Ts +
∑
k∈K2

ε

2
Wk ≤

2L

F
Ts +

ε

2
W.

Assigning the value of F , the assumptions of (1), and the
fact that GOpt ≥W :

S ≤ 2L

F
Ts +

ε

2
W ≤ ε

2
GOpt +

ε

2
GOpt = εGOpt.

We conclude that the cost ratio is at most

G

GOpt
=
W + S

GOpt
=

W

GOpt
+

S

GOpt
≤ W

W
+
εGOpt
GOpt

= 1 + ε

as needed.
Next we consider the delay. By volume consideration

the number of machines in epoch k is at most dnkP/F e =
dnkpµ/F e, i.e., roughly µ times the initial number of ma-
chines for this epoch. Hence the doubling can happen at
most log(µ) + 1 times. Hence the delay is at most F + (F +
Ts)(logµ+ 2) = O

(
Ts log µ

ε

)
.

Lemma 5.2. If an online non-clairvoyant algorithm is lim-
ited to a cost of (1 + ε)W , then its delay ratio is Ω

(
log µ
ε

)
.

Proof. Let p = Ts
ε(2µ−1)

, and hence P = pµ. We con-

struct an instance of n0(logµ+ 1) tasks for which the max-
imum delay of an online algorithm is Ω

(
Ts log µ

ε

)
and the

delay of an offline algorithm is Ts. We divide the tasks to
(logµ + 1) groups (each of size n0). Tasks of group i (for
0 ≤ i ≤ logµ) will be of length pi = p2i and will arrive at

ai =
∑i−1
k=0 pk (a0 = 0).

A machine is alive at time t if it was activated before t
and shut down after t. We denote by m(t) the number of the
live machines at time t. Clearly, the total cost of the online
algorithm is at least m(t)Ts +W , for any t. Moreover, it is
limited, by assumption, to (1 + ε)W , and therefore

m(t) ≤ ε

Ts
W. (2)

For any given time t∗, the online algorithm processed volume

which is at most
∫ t∗
0
m(t) dt. At time t∗ the online algorithm

only knows the duration of the completed tasks. It may be
possible that the duration of each of the remaining tasks is
p. Therefore it may be possible that W is at most

pn0(logµ+ 1) +

∫ t∗

0

m(t) dt. (3)

Assigning (3) in (2), we get that the maximum number of
live machines is

m(t∗) ≤ ε

Ts

(
n0p(logµ+ 1) +

∫ t∗

0

m(t) dt

)
. (4)

Hence,

m(t∗)(
n0p(logµ+ 1) +

∫ t∗
0
m(t) dt

) ≤ ε

Ts
.

By integrating both sides over t∗

ln

(
n0p(logµ+ 1) +

∫ t∗
0
m(t) dt

n0p(logµ+ 1)

)
≤ εt∗

Ts
,

which yields

n0p(logµ+ 1) +
∫ t∗
0
m(t) dt

n0p(logµ+ 1)
≤ e

εt∗
Ts ,

and,

ε

Ts

(
n0p(logµ+ 1) +

∫ t∗

0

m(t) dt

)
≤ ε

Ts
n0p(logµ+ 1)e

εt∗
Ts .

(5)

By transitivity of (4) and (5),

m(t) ≤ ε

Ts
n0p(logµ+ 1)e

εt
Ts .

By definition, W =
∑log µ
i=0 n0p2

i = n0p(2µ − 1). Let C
denote the completion time of the online algorithm. Hence
we have the following:

n0p(2µ− 1) = W ≤
∫ C

0

m(t) dt

≤
∫ C

0

ε

Ts
n0p(logµ+ 1)e

εt
Ts dt

= n0p(logµ+ 1)
(
e
εC
Ts − 1

)
.

Hence,

2µ− 1

logµ+ 1
≤ e

εC
Ts − 1

and therefore

Ts
ε

ln

(
2µ− 1

logµ+ 1
+ 1

)
≤ C.

The maximum delay of the online algorithm is at least the
delay of the last completed task. Recall that ei = ai + pi
is the earliest possible completion time of tasks of group i,
and that di = ci − ei is the delay that the task encounter.
For each i

ei ≤
log µ−1∑
k=0

pk + plog µ = p(2log µ+1 − 1) ≤ p(2µ− 1) =
Ts
ε
.

Therefore, the maximum delay D is at least

D ≥ Ts
ε

ln

(
2µ− 1

logµ+ 1
+ 1

)
− Ts

ε
= Ω

(
Ts logµ

ε

)
.

The offline algorithm uses n0 machines. Its total cost is

n0Ts+W = n0Ts
ε(2µ− 1)

ε(2µ− 1)
+W = n0pε(2µ−1)+W = (ε+1)W.

Hence, the cost is bounded as needed. Since the offline al-
gorithm knows the real value of W , it uses all n0 machines
from the beginning of the scheduling. Each machine sched-
ules exactly one task of each group. At time Ts each ma-
chine starts to process a task from group 0, at time Ts+ai it
completes task from group i− 1, and starts to process task
from group i. For each task in group i: ei = ai + pi, and
ci = Ts + ai + pi. Therefore, each tasks is delayed by Ts,
and the delay ratio is Ω

(
log µ
ε

)
for all online algorithms with

cost limited by (1 + ε)W .

6. REFERENCES
[1] Nir Avrahami and Yossi Azar. Minimizing total flow

time and total completion time with immediate
dispatching. In Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and
architectures, pages 11–18, 2003.

[2] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and
Oded Regev. Minimizing the flow time without
migration. In Proceedings of the thirty-first annual
ACM symposium on Theory of computing, pages
198–205, 1999.

[3] Cynthia Bailey Lee, Yael Schwartzman, Jennifer
Hardy, and Allan Snavely. Are user runtime estimates
inherently inaccurate? In Job Scheduling Strategies for
Parallel Processing, volume 3277, pages 253–263. 2005.

[4] Michael A. Bender, Soumen Chakrabarti, and
S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. In Proceedings of
the ninth annual ACM-SIAM symposium on Discrete
algorithms, pages 270–279, 1998.

[5] Anja Feldmann, Bruce Maggs, Jiri Sgall, Daniel D.
Sleator, and Andrew Tomkins. Competitive analysis of
call admission algorithms that allow delay, 1995.

[6] M. R. Garey and R. L. Graham. Bounds for
multiprocessor scheduling with resource constraints.
SIAM Journal on Computing, 4(2):187–200, 1975.

[7] Brian Hayes. Cloud computing. Communications of
the ACM, 51(7):9–11, July 2008.

[8] Han Hoogeveen. Multicriteria scheduling. European
Journal of Operational Research, 167(3):592 – 623,
2005.

[9] David Karger, Cliff Stein, and Joel Wein. Scheduling
algorithms. Algorithms and Theory of Computation
Handbook, 1997.

[10] Stefano Leonardi and Danny Raz. Approximating
total flow time on parallel machines. In Proceedings of
the twenty-ninth annual ACM symposium on Theory
of computing, pages 110–119. ACM, 1997.

[11] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online
scheduling. pages 115–124, 2003.

[12] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour.
Online scheduling in grids. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1 –10, april 2008.

[13] Uwe Schwiegelshohn. An owner-centric metric for the
evaluation of online job schedules. Proceedings of the
2009 multidisciplinary international conference on
scheduling: theory and applications, pages 557–569,
2009.

[14] Uwe Schwiegelshohn. A system-centric metric for the
evaluation of online job schedules. Journal of
Scheduling, 14:571–581, 2011.

[15] Jiri Sgall. On-line scheduling. In Developments from a
June 1996 seminar on Online algorithms: the state of
the art, pages 196–231, 1998.

[16] David B. Shmoys, Joel Wein, and David P.
Williamson. Scheduling parallel machines on-line. In
Proceedings of the 32nd annual symposium on
Foundations of computer science, pages 131–140, 1991.

[17] Andrei Tchernykh, Juan Ram?rez, Arutyun
Avetisyan, Nikolai Kuzjurin, Dmitri Grushin, and
Sergey Zhuk. Two level job-scheduling strategies for a
computational grid. In Parallel Processing and Applied
Mathematics, volume 3911, pages 774–781. 2006.

[18] Andrei Tchernykh, Uwe Schwiegelshohn, Ramin
Yahyapour, and Nikolai Kuzjurin. On-line hierarchical
job scheduling on grids with admissible allocation.
Journal of Scheduling, 13:545–552, 2010.

