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ABSTRACT
Designing distributed algorithms that converge quickly to an equi-
librium is one of the foremost research goals in algorithmic game
theory, and convex programs have played a crucial role in the de-
sign of algorithms for Fisher markets. In this paper we shed new
light on both aspects for Fisher markets with linear and spending
constraint utilities. We show fast convergence of the Proportional
Response dynamics recently introduced by Wu and Zhang [WZ07].
The convergence is obtained from a new perspective: we show that
the Proportional Response dynamics is equivalent to a gradient de-
scent algorithm (with respect to a Bregman divergence instead of
euclidean distance) on a convex program that captures the equilib-
ria for linear utilities. We further show that the convex program
program easily extends to the case of spending constraint utilities,
thus resolving an open question raised by [Vaz10]. This also gives
a way to extend the Proportional Response dynamics to spending
constraint utilties. We also prove a technical result that is interest-
ing in its own right: that the gradient descent algorithm based on a
Bregman divergence converges with rate O(1/t) under a condition
that is weaker than having Lipschitz continuous gradient (which is
the usual assumption in the optimization literature for obtaining the
same rate).
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1. INTRODUCTION
The computational complexity of equilibria has been the focus of

much research in Algorithmic Game Theory over the last decade,
not to mention considerable amount of work in the economics lit-
erature. Although most papers consider algorithms in the cen-
tralized model of computation, what are more relevant are dis-
tributed algorithms that converge to an equilibrium. Such algo-
rithms are especially important in the context of automated markets
that have emerged due to the Internet, such as the market for online
advertising. In such markets trading is often done by automated
agents. Distributed algorithms can be thought of as protocols that
these agents are programmed to follow. The design and analysis
of distributed algorithms converging to equilibria in the context of
games has also recieved considerable attention, most commonly
convergence of best response dynamics [AGM+08, CS07, Ros73,
AAE+08].

For markets, essentially the only distributed algorithms that have
been studied are variants of the tatonnement process. Wu and Zhang
[WZ07] proposed a new distributed algorithm, called the Propor-
tional Response (PR) dynamics, as a protocol for trading bandwidth
on a peer-to-peer network.1 The PR dynamics involves a sequence
of bids by the buyers and prices by the sellers that respond to each
other. The seller prices are simply set to be the sum of all the
bids they receive. The buyers set their bids proportional to the util-
ity they would obtain with the bids and the prices in the previous
round.

PR seems to converge really fast to equilibrium in practice, and
yet the reason for this remained a mystery. Zhang [Zha09] analyzed
PR dynamics for Fisher markets and showed the following: “if τ
is large enough, then there exists a t < τ such that the bids and
prices in round t are close to the equilibrium.” This does not quite
show convergence of the dynamics to an equilibrium. Moreover the
proof uses a potential function that gives little insight into why this
happens.

In this paper we demystify the PR dynamics: we show that the
PR dynamics are equivalent to a generalized gradient descent algo-
rithm with Bregman divergences (instead of Euclidean distance) on
a convex program introduced by Shmyrev [Shm09] that captures
the equilibria of Fisher markets with linear utilities. This insight
gives an intuitive understanding of why such dynamics work. PR
dynamics fit so well with this perspective that we can confidently
say this is the “right” way of thinking about them. Moreover, we
get true convergence, of the form, “if t is large enough, then the
bids and prices in round t are close to an equilibrium.”

Further we show that the convex program and the PR dynam-

1It has since been shown to be an effective solution for BitTorrent
[LLSB08].



ics generalize to the spending constraint utilities, thus resolving an
open question of Vazirani [Vaz10].

1.1 Fisher’s Market Model with Linear and
Spending Constraint Utilities

In the Fisher market model with linear utilities, there are n buy-
ers andm perfectly divisible goods. There is a unit2 supply of each
good. Each buyer i has a budget Bi, and for each item j, a number
uij , which represents the utility of that buyer for one unit of item
j. Given an allocation vector x ∈ Rn×m+ , the utility of buyer i is∑
j uijxij .
An allocation x ∈ Rn×m+ and price vector p ∈ Rm+ are an equi-

librium if two conditions are satisfied. The first, buyer optimality,
is that given p, each player maximizes his utility subject to his bud-
get constraint. In other words, for all i, the allocation x optimizes
the following program ( where p is a constant):

maximize
∑
j uijxij

subject to
∑
j pjxij ≤ Bi.

xij ≥ 0, ∀j.

The second equilibrium condition, market clearance, is that
∑
i xij =

1 for all j.
In the spending constraints model, the utility of a buyer also de-

pends on the prices, as follows. The utility is still additive across
goods, that is, the total utility for a bundle of goods is the sum
of utilities for each good separately. For a given good, the utility
function is divided into segments; each segment l has a constant
rate of utility ulij , and a budgetBlij . The utility of the buyer for xlij
amount of good j under segment l is ulijx

l
ij , but is subject to the

constraint that pjxlij ≤ Blij . Hence the utility maximizing program
for a given buyer is now as follows.

maximize
∑
j,l u

l
ijx

l
ij

subject to
∑
j,l pjx

l
ij ≤ Bi.

0 ≤ xlij and pjxlij ≤ Blij ∀j, l.

1.2 Proportional Response Dynamics
The Proportional Response (PR) Dynamics is a distributed algo-

rithm for computing market equilibrium and was introduced by Wu
and Zhang [WZ07] in the context of a bandwidth trading market
model for peer-to-peer networks and by Zhang [Zha09] in the cur-
rent context of the Fisher markets. The algorithm proceeds in dis-
crete time steps, and for each time t = 0, 1, 2, . . ., buyer i submits
a bid bij(t) for each good j. Given the bids, a price vector p(t) is
computed by summing the bids for each item: pj(t) =

∑
i bij(t).

Each buyer i is allocated an amount xij(t) = bij(t)/pj(t) of item
j. The buyers then update their bids for the next time step so that
their new bid for a good is proportional to the utility obtained from
this good in the current round, that is bij(t) ∝ uijxij(t). In sum-
mary, the new bid vector is computed according to the following
recursion:

bij(t+ 1) = Bi
uijxij(t)∑
j′ uij′xij′(t)

. (1)

The PR dynamics has many desirable properties that are also unique.

• The PR dynamics are simple, distributed and require no global
communication.3 In every step, a buyer only has to know the

2This is without loss of generality, by the choice of unit, since the
goods are divisible.
3Except for the fact that they need to be synchronized, in the sense
that the dynamics happen in rounds and in every round, every bid-
der updates his bids.

prices of the goods he is interested in, and a good only has to
know the bids placed on it.

• PR dynamics is also stateless: the bids at any time step de-
pend only on the bids of the previous step, and there is no
special starting point.

• Unlike all other dynamics, which depend on choosing the
right step size, PR dynamics does not need a step size to
choose and adapt.

In this paper, we analyze the PR dynamics from the perspective of
general convex optimization algorithms. Along the way, we estab-
lish a new convergence condition for generalized gradient descent
methods based on Bregman divergences and extend both Shmyrev’s
convex program and the PR dynamics to markets with spending
constraint utilities.

2. MAIN RESULTS

2.1 The Convex Program
A well-known convex program called the Eisenberg-Gale [EG59]

convex program captures equilibrium allocations of a linear Fisher
market. Here we consider an alternate convex program discovered
recently by Shmyrev [Shm09] that also does the same. As we shall
see this convex program is closely related to the Proportional Re-
sponse (PR) dynamics. The convex program is as follows.

maximize
∑
i,j bij log uij −

∑
j pj log pj

subject to ∀ j,
∑
i bij = pj ,

∀ i,
∑
j bij = Bi,

∀ i, j, 0 ≤ bij .

(2)

The variable pj corresponds to the price of good j. The variable
bij represents the amount of money spent on good j by buyer i.
Hence given a solution to the above program, the allocation xij is
given by bij/pj . It is easy to see that for any feasible solution to the
program, the corresponding prices and allocations are such that the
market always clears, and the buyers always exhaust their budgets.
The only other condition required for equilibrium is that each buyer
be allocated his optimal bundle of goods.

THEOREM 1 ([SHM09]). Let b? and p? be an optimum solu-
tion to Convex Program (2). Then p? and allocation x?ij = b?ij/p

?
j

is an equilibrium for the Fisher market with linear utilities given by
the uij’s and the Bi’s.

This convex program can be generalized to markets with spending
constraint utilities. This resolves an important open problem raised
by Vazirani [Vaz10].

maximize
∑
i,j,l b

l
ij log ulij −

∑
j pj log pj

subject to ∀ j,
∑
i,l b

l
ij = pj ,

∀ i,
∑
j,l b

l
ij = Bi,

∀ i, j, l, 0 ≤ blij ≤ Blij .

(3)

As before, the allocation is given by xlij = blij/pj , and the only
condition that needs verifying is buyer optimality.

THEOREM 2. An optimum solution to Convex Program (3) cor-
responds to an equilibrium for the Fisher market with spending
constraint utilities given by the ulij’s, Blij’s and the Bi’s.



2.2 Generalized Gradient Descent with Breg-
man Divergence

Both of the convex programs (2) and (3) are special cases of the
constrained optimization problem

minimize f(x)
subject to x ∈ C (4)

where C is a compact convex set, and f(x) is a differentiable con-
vex function with dom f ⊇ C (i.e., f is finite on C). The conven-
tional projected gradient descent method (e.g., [Ber99]) for solv-
ing (4) is

x(t+1) = πC
(
x(t)− µt∇f(x(t))

)
(5)

where µt is an appropriate stepsize, and πC(·) denotes Euclidean
projection on the set C. Let

`f (x; y) := f(y) + 〈∇f(y), x− y〉

be the linear approximation of f using the gradient at y. The
method (5) is equivalent to

x(t+1) = arg min
x∈C

{
`f (x;x(t)) +

1

2µt
‖x− x(t)‖22

}
, (6)

where the proximal term (1/2)‖x−x(t)‖22 is the squared Euclidean
distance between two points. In the generalized gradient descent
method the squared Euclidean distance in (6) is replaced by a gen-
eralized distance function d(x, x(t)), i.e.,

x(t+1) = arg min
x∈C
{`f (x;x(t)) + γt d(x, x(t))} , (7)

where the parameter γt > 0, and its reciprocal 1/γt play the role
of stepsize µt in the Euclidean case. In particular, we let d(x, y) be
the Bregman divergence [Bre67] of a differentiable convex function
h(x) (assuming domh ⊇ C), defined as

dh(x, y) = h(x)− `h(x; y), ∀x ∈ C, y ∈ rintC,

where rintC denotes the relative interior of C [Roc70, Section 6].
As an example, dh(x, y) = (1/2)‖x− y‖22 if h(x) = (1/2)‖x‖22.
We often drop the subscript h whenever there is no confusion from
context. We say h is the kernel of d, and d is generated by h. We
assume that both f and h are differentiable and they satisfy

f(x) ≤ `f (x; y) + γdh(x, y), ∀x ∈ C, y ∈ rintC, (8)

for some constant γ > 0. We show convergence of the general-
ized gradient descent method under the assumption of (8), which
is weaker than the typical assumption of Lipshitz continuity of the
gradient of f .

THEOREM 3. Suppose that the sequence x(t) is defined by Equa-
tion (7), that f and h are convex and differentiable functions, and
that f and h satisfy Condition (8). Then for all t,

f(x(t))− f(x?) ≤ γd(x?, x(0))

t
.

In particular we show the following two lemmas from which the
above theorem follows immediately.

LEMMA 4. The total deviation of f from the optimum through-
out the run of the algorithm is bounded by a value that is indepen-
dent of how long the algorithm is run.∑

t

(
f(x(t))− f(x?)

)
≤ γd(x?, x(0)).

LEMMA 5. For all t, f(x(t+1)) ≤ f(x(t)).

2.3 PR as Gradient Descent
One can easily see the similarities between the PR dynamics (1)

and Convex Program (2) in the way the prices and allocations are
defined. In particular, the market clears automatically in the PR
dynamics and the only condition we need to worry about is buyer
optimality. In fact as detailed below, we show that the PR dynamics
is exactly the gradient descent algorithm given by (7) on Convex
Program (2).

First of all, we can eliminate the pj variables from the program (2);
in fact, pj can be thought of as a function of the bij’s, defined as
pj(b) =

∑
i bij . We stick to the notation pj without the argu-

ment when there is no confusion4 from the context. Let the ob-
jective function5 of the convex program be denoted by ϕ(b) =
−
∑
i,j bij log uij +

∑
j pj(b) log(pj(b)), and the feasible region

by

S =

{
b ∈ Rn×m :

∑
j

bij = Bi ∀ i, bij ≥ 0 ∀ i, j
}
.

Without loss of generality assume that
∑
iBi = 1. Also define

the Bregman divergence d with the kernel function being the un-
normalized negative entropy, h(b) =

∑
i,j(bij log bij − bij) =∑

i,j bij log bij −
∑
iBi for b ∈ S. A straightforward calculation

shows that

d(a, b) =
∑
i,j

aij log
aij
bij

= D (a || b) ,

where D (· || ·) is the KL-divergence between two probability dis-
tributions.

THEOREM 6. The proportional response dynamics (1) is equiv-
alent to the gradient descent algorithm (7) with d(a, b) = D (a || b)
as above, f = ϕ, C = S and γ = 1.

In order to use our results about convergence of the above algorithm
(Theorem 3), we need to show that Condition (8) is satisfied, which
we do in the following lemma.

LEMMA 7. For all a, b ∈ S,

ϕ(b) ≤ `ϕ(b; a) +D (b || a) .

Thus, PR dynamics satisfies the convergence properties as specified
in Theorem 3 with f = ϕ and γ = 1. If the initial bids are bij(0) =
Bi/m for all i and j, then D (b? || b(0)) ≤ log(mn) (see Lemma
13). A more detailed analysis of the convergence is given in Section
5.

For markets with spending constraints, the algorithm (7) leads to
an iterative PR and capping algorithm, which has the same conver-
gence properties as the PR dynamics (see Section 4.1).

2.4 Related Work and Motivation
The algorithmic study of equilibrium concepts in general, and

of market equilibria in particular, are motivated by the question
of whether markets can feasibly operate at equilibrium. After al-
most a decade since this line of research started, the computational
complexity of equilibrium concepts is fairly well understood. The
hardness results [CT09, CDDT09, CD06, DGP06, CSVY06] point

4Similarly, we use pj(t) to denote pj(b(t)) and p?j to denote
pj(b

?).
5To maintain consistency with our notation in the previous sub-
section, we rephrase the convex program as minimizing a convex
function instead of maximizing a concave function.



towards the unlikeliness that markets in general operate at equi-
libria, with recent results [CT09, CDDT09, VY10] showing that
even for the simple class of separable piecewise linear functions, it
is PPAD-hard to compute an equilibrium. The algorithmic results
[DPS02, DPSV08, Jai07, DV04, CPV05, CMV05, JV10, DK08,
Ye08] provide hope for certain special classes of markets. A good
survey of algorithms for market equilibria can be found in [Vaz07]
and [CV07], with the summary being that we can find equilibria for
markets with weak gross substitutes property, for certain resource
allocation markets [JV10], and when there are a bounded number
of goods [DK08].

Algorithmic results in a centralized model of computation do
not directly address the question of market dynamics: how might
agents interacting in a market arrive at an equilibrium? Here, the
quest is for simple and distributed algorithms that are guaranteed
to converge fast. Such distributed algorithms are especially appli-
cable when the agents involved are automated, and one has to pre-
scribe a particular protocol for them to follow. This is true in many
networking applications, and also in markets such as search adver-
tising where often the bids are updated automatically. There is also
a huge amount of work in the networking community on design-
ing such distributed algorithms that achieve proportional fairness
(e.g., [Kel97, KMT98]). It is known that proportional fairness is
equivalent to market equilibrium in many settings (including linear
utilities), via an Eisenberg-Gale type convex program [KV]. Our
results could potentially be useful for these applications as well,
and is a direction for future work.

Almost all dynamics considered in the literature are variants of
the tatonnement process first defined by Leon Walras [Wal74]. The
most general version of tatonnement just says that prices are in-
creased when demand exceeds supply and are decreased when sup-
ply exceeds demand. Many versions of this [ABH59, Uza60, CMV05,
FGK+08, GK06] have been analyzed over the years, but none of
these until recently gave simple, fast and distributed algorithms.
Some of the early work in economics [ABH59, Uza60] ignored the
convergence rate entirely. [CMV05] showed polynomial time con-
vergence of a version of tatonnement for markets with weak gross
substitutes, but had to transform the market a priori which then
translates to passing around global information in every round. The
auction algorithm of Garg and Kapoor [GK06] requires that it be
started from a particular state. The algorithm of [FGK+08] suffers
from disadvantages such as having to take the average of all the
prices and the average of all the allocations to get an equilibrium.
The exception is the algorithm given by [CF08] which is distributed
and asynchronous and converges fast for markets with weak gross
substitutes property. The convergence time however depends on
certain market parameters which tend to infinity for linear Fisher
markets. One reason for the difficulty in designing tatonnement
style processes for linear Fisher markets is that the demand of a
buyer is not always uniquely determined. Thus at equilibrium one
needs to specify the allocation in addition to the prices. The PR
dynamics elegantly takes care of the problem of non-uniqueness
of demand, since the bids uniquely determine the prices and the
allocations.

PR was first proposed as a protocol for trading bandwidth on
a peer-to-peer network by Wu and Zhang [WZ07] and has been
shown to be an effective solution for BitTorrent [LLSB08]. Zhang
[Zha09] shows the following about PR dynamics in Fisher mar-
kets: “if τ is large enough, then there exists a t < τ such that b(t)
is close to optimal.” We get true convergence, of the form, “if t is
large enough, then b(t) is close to optimal.” In fact, we rephrase
Zhang’s proof and give a detailed comparison with ours in Sec-
tion 5.2. We extend the results to spending constraint utilities as

well. Clearly the extension was only possible because of our in-
sights into the connection between PR dynamics and the Convex
Program (2). Moreover, Zhang [Zha09] also considers Constant
Elasticity of Substitution (CES) utilities, Ui =

∑
j(uijxij)

ρi with
0 < ρi ≤ 1. He gets a better bound on the convergence rate for
these utilities: PR converges to an ε-approximate equilibrium in

O

(
L+ log(1/ε)

1− (maxi ρi)2

)
rounds, where L is the bit-complexity of the input. Our techniques
extend to CES utilities as well, and we strengthen Zhang’s results as
before, by obtaining the stronger form of convergence. The details
of this will be presented in the full version.

The convex program (2) was recently discovered by Shmyrev
[Shm09], and was actually rediscovered by us. The convex pro-
gram (2) is in fact related to the EG convex program as follows:
take the dual of the EG program, perform a change of variables,
and if you take the dual of this program again, you get the convex
program (2). See [Dev09] for details on this connection.

The spending constraint model is an interesting special class of
markets that is amenable to efficient algorithms. The spending con-
straint utilities for the Fisher was introduced by Vazirani [Vaz10]
and extended to the more general Arrow-Debreu model by Deva-
nur and Vazirani [DV04]. Vazirani [Vaz10] extended the primal-
dual algorithm for linear utilities of Devanur et. al. [DPSV08]
to the spending constraint utilities. The primal-dual interpretation
of the algorithm of Devanur et. al. was based on the Eisenberg-
Gale convex program, but no such program is known for spending
constraints. Based on this, Vazirani [Vaz10] conjectured that there
must exist a convex program that captures the spending constraint
model as well. We finally resolve this conjecture positively in this
paper.

The generalized gradient descent method, also known as mirror-
descent has been well studied in the optimization community, see,
e.g., [NY83, BT03]. In the optimization literature however, the
kernel function h is usually assumed to be strongly convex. Then
with a diminishing stepsize 1/γt = O(1/

√
t), the generalized

gradient method (7) converges with rate O(1/
√
t), even if f is

non-differentiable (e.g, [BT03, Nem05]). If f is further differen-
tiable and∇f is Lipschitz-continuous, then (7) converges with rate
O(1/t) using a constant γ that is no smaller than the Lipschitz
constant. (e.g., [Ber99, Nes04]). In this case, more sophisticated
variations of (7) can achieve a convergence rate O(1/t2); see, e.g.,
[Nes83, Nes04, Nes05, Tse08]. In this paper, we show that the
method (7) can have convergence rate O(1/t) with Condition (8).
Condition (8) is implied by the assumptions that ∇f is Lipschitz
continuous and h is strongly convex (e.g., [Nes04]) and is hence
a weaker assumption. Without these stronger assumptions, Condi-
tion (8) often requires a close connection between the functions f
and h, which is the case for our analysis of the PR dynamics in
Section 4.
Organization: In Section 3 we prove Theorem 3. Theorem 6 is
proved in Section 4. In Section 5, we define various measures of
distance to equilibrium and show convergence of PR dynamics with
respect to these measures. We also compare these in detail with
Zhang’s results in Section 5.2. We conclude with directions for
future research in Section 6.

3. GRADIENT DESCENT
In this section, we prove convergence properties of the general-

ized gradient method (7) based on the assumption (8) as stated in
Theorem 3. We start by noting some key properties of Bregman
divergences:



• d(x, y) ≥ 0 for all x, y ∈ domh. If h is strictly convex,
then d(x, y) = 0 if and only if x = y.

• In general d(x, y) 6= d(y, x), and it does not satisfy the tri-
angle inequality.

• The following three-point identity follows directly from def-
inition:

d(x, z) = d(x, y)+d(y, z)+〈∇h(y)−∇h(z), x−y〉. (9)

If h is not strictly convex, then the solution to the minimization
problem in (7) may not be unique. However, a solution always
exists because we assume C is compact.

Recall that in order to prove Theorem 3, it is sufficient to prove
Lemmas 5 and 4. We first prove Lemma 5.

PROOF OF LEMMA 5. We have

f(x(t+1)) ≤ `f (x(t+1);x(t)) + γd(x(t+1), x(t))

≤ `f (x(t);x(t)) + γd(x(t), x(t))

= f(x(t)).

The first inequality follows from (8). The second inequality is by
definition of x(t+1). The last equality is also by definition, since
d(x, x) = 0.

The key step in the proof of Lemma 4 is the following lemma. Let
x? := arg minx∈C{f(x)} be an optimum solution to (4).

LEMMA 8. For all t,

f(x(t+1))− f(x?) ≤ γd(x?, x(t))− γd(x?, x(t+1)).

Before we prove Lemma 8, we show how Lemma 4 follows from
it.

PROOF OF LEMMA 4. The lemma follows by simply summing
over all t the conclusion of Lemma 8 and using the fact that d(x, y)
is always greater than 0.

In order to prove Lemma 8, we need a result on optimization with
Bregman divergence. Consider the following optimization prob-
lem:

minimize g(x) + d(x, y)
subject to x ∈ C (10)

where g(x) is a convex function and C is a compact convex set.
The following lemma can be found in, e.g., [CT93].

LEMMA 9. If x+ is the optimal solution to the optimization
problem (10), then

g(x) + d(x, y) ≥ g(x+) + d(x+, y) + d(x, x+). (11)

We apply Lemma 9 with g(x) = (1/γ)`f (x;x(t)) to obtain the
following corollary.

COROLLARY 10. For all z ∈ C,

`f (x(t+1);x(t)) + γd(x(t+1), x(t))

≤ `f (z;x(t)) + γd(z, x(t))− γd(z, x(t+1)).

Lemma 8 follows as a consequence of this corollary.
PROOF OF LEMMA 8. We have

f(x(t+1)) ≤ `f (x(t+1);x(t)) + γd(x(t+1), x(t))

≤ `f (x?;x(t)) + γd(x?, x(t))

− γd(x?, x(t+1))

≤ f(x?) + γd(x?, x(t))− γd(x?, x(t+1)).

The first and third inequalities follow from (8), and the second in-
equality follows from Corollary 10.

4. PR AS GRADIENT DESCENT
In this section, we show the equivalence of the PR dynamics and

the gradient descent algorithm on the new convex program, that is,
we prove Theorem 6 and Lemma 7.

Recall the function ϕ(b) = −
∑
i,j bij log(uij/pj) and feasi-

ble region S defined in the introduction. The components of the
gradient of ϕ are given as

(∇ϕ(b))ij = 1− log

(
uij
pj

)
.

It is clear that ∇ϕ is not Lipschitz continuous on S. Therefore we
need the weaker assumption (8) to show O(1/t) convergence.

The gradient descent algorithm (7) when applied to ϕ, S, with d
being the KL-divergence and with γ = 1 is

b(t+1) := arg min
a∈S

{
`ϕ(b(t); a) +D (a || b(t))

}
. (12)

It is well known6 that this update rule takes the following form:

bij(t) =
1

Z′i(t)
bij(t) exp

((
∇ϕ(b(t))

)
ij

)
=

1

Zi(t)
bij(t)

(
uij
pj(t)

)
,

where Zi(t) is chosen such that
∑n
j=1 bij(t) = Bi. This shows

Theorem 6.
We now prove Lemma 7. The proof mainly relies on the follow-

ing characterization of ϕ.

LEMMA 11. For all a, b ∈ S,

ϕ(b) = `ϕ(b; a) +D (p(b) || p(a)) .

PROOF. We have

ϕ(b)− `ϕ(b; a) = ϕ(b)− ϕ(a)− 〈∇ϕ(a), b− a〉

= −
∑
i,j

bij log
uij
pj(b)

+
∑
i,j

aij log
uij
pj(a)

−
∑
i,j

(
1− log

uij
pj(a)

)
(bij − aij)

=
∑
i,j

bij log
pj(b)

pj(a)
= D (p(b) || p(a)) ,

where in the third equality we used
∑
i,j bij =

∑
i,j aij = 1.

PROOF OF LEMMA 7. The lemma follows from Lemma 11 and
the fact that D (p(b) || p(a)) ≤ D (b || a), which we can prove us-
ing the convexity of the function q(x, y) = x log(x/y):

D(p(b) || p(a)) = n
∑
j

(
1

n
q(pj(b), pj(a))

)

= n
∑
j

q

(
1

n

∑
i

bij ,
1

n

∑
i

aij

)
≤ n

∑
j

1

n

∑
i

q(bij , aij) = D(b || a).

This finishes the proof.

6Theorem 12 shows a more general statement.



4.1 Extension to Spending Constraint Utilities
For Fisher markets with spending constraint utilities, let ϕ be the

negative objective function of the convex program (3):

ϕ(b) = −
∑
i,j,l

blij log
(
ulij
)

+
∑
j

pj log(pj).

The components of its gradient is(
∇ϕ(b)

)
i,j,l

= 1− log

(
ulij
pj

)
.

We use the same gradient descent method (12), but with the con-
straint set

S =

{
a :

∑
j,l

alij ≤ Bi, ∀ i, and 0 ≤ alij ≤ Blij , ∀ i, j, l
}
.

THEOREM 12. Each bidding vector bi(t+ 1) can be computed
separately by using the following iterative PR and capping algo-
rithm.

Algorithm: Iterative PR and Capping
input: Bi and Blij , u

l
ij , and blij(t) for all j and l.

initialize: let Ai be set of all pairs (j, l), and Ci = ∅.
repeat:

1. Let Ai = Ai \ Ci, B̄i = Bi −
∑

(j,l)∈Ci
Blij , and Qi =∑

(j,l)∈Ai

(
ulij/pj(t)

)
blij(t).

2. Let

blij(t+ 1) =


(
ulij/pj(t)

)
blij(t)

Qi
B̄i if (j, l) ∈ Ai,

Blij otherwise.

3. Let Ci =
{

(j, l) ∈ Ai : blij(t+1) > Blij
}

. If Ci = ∅, stop
and return bi(t+ 1); otherwise continue.

PROOF. The minimization problem (12) can be solved sepa-
rately for each agent i,

bi(t+ 1) = arg min∑
j,l a

l
ij≤Bi,

0≤alij≤B
l
ij , ∀j,l

{∑
j,l

alij
(
∇ϕ(b(t))

)
i,j,l

+
∑
j,l

alij log

(
alij
blij(t)

)}
.

To solve this problem, we introduce Lagrange multipliers λi and
µlij . The Lagrangian is

Li(ai, λi, µi)

=
∑
j,l

alij
(
∇ϕ(b(t))

)
i,j,l

+
∑
j,l

alij log

(
alij
blij(t)

)

+ λi

∑
j,l

alij −Bi

+
∑
j,l

µlij

(
alij −Blij

)
=
∑
j,l

alij

((
∇ϕ(b(t))

)
i,j,l

+ λi + µlij

)

+
∑
j,l

alij log

(
alij
blij(t)

)
− λiBi −

∑
j,l

µlijB
l
ij .

Taking derivatives with respect to alij and setting them to be zero,
i.e., let

(
∇Li(ai, λi, µi)

)
jl

= 0, we have

(
∇ϕ(b(t))

)
i,j,l

+ λi + µlij + log

(
alij
blij(t)

)
+ 1 = 0.

The solution is

alij =
1

exp
(
2 + λi + µlij

) ulijblij(t)
pj(t)

.

Using the optimality conditions (KKT conditions),

µlij

(
alij −Blij

)
= 0, ∀ i, j, l,

we can find the optimal solution bi(t+1) using an iterative PR and
capping algorithm.

5. CONVERGENCE PROPERTIES
The PR dynamics may never get to an exact equilibrium. There-

fore we consider approximate equilibria, based on a measure of
how close a given solution is to equilibrium. There are different
ways to measure the “distance” from equilibria. We show that all
of these can be related to ϕ(b(t))−ϕ(b?), the difference in the ob-
jective function between the current point and the optimum. (The
additive difference is a reasonable measure since we normalized the
sum of all budgets to 1.) Thus, any convergence bound we show
with respect to the objective function can easily be translated to one
for the particular measure of approximation.

The PR dynamics is defined for any initial bid vector b0, and
the convergence time is proportional toD (b? || b(0)) (Theorem 3).
For the sake of concreteness, we state our bounds assuming that
bij(0) = Bi/m, that is each buyer initially divides his budget
equally between all the items. With this, we have the following
bound on D (b? || b(0)).

LEMMA 13. If bij(0) = Bi/m for all i and j, then

D (b? || b(0)) ≤ log(mn) .

PROOF. We have

D (b? || b(0)) =
∑
i,j

b?ij log
b?ij
b(0)ij

=
∑
i,j

b?ij log
mb?ij
Bi

= logm+
∑
i,j

b?ij log b?ij −
∑
i,j

b?ij logBi

= logm−
∑
i

Bi logBi +
∑
i,j

b∗ij log b∗ij

≤ logm−
∑
i

Bi logBi

≤ logm+ logn.

We now have the following convergence results.

ϕ(b(t))− ϕ(b?) ≤ log(mn)

t
. (13)∑

t

(
ϕ(b(t))− ϕ(b?)

)
≤ log(mn). (14)

ϕ(b(t+1)) ≤ ϕ(b(t)). (15)

In other words, if t ≥ log(mn)
ε

then ϕ(b(t))− ϕ(b?) ≤ ε.



5.1 Measures of Approximation
As mentioned before, we now show how to translate the con-

vergence results mentioned above to other ways of measuring the
distance from an equilibrium. Recall that we assumed without loss
of generality, that the input has been scaled so that there is ex-
actly one unit of each item and

∑
iBi = 1. We may further as-

sume that
∑
j uij = 1 for all i. Let umin = mini,j:uij>0 uij and

Bmin = miniBi.

• The KL-divergence is a well known (asymmetric) measure
of dissimilarity between probability distributions, defined as
D (x || y) :=

∑
i xi log(xi/yi). Since we normalized the

total budget to be 1, the sum of the prices is also 1. In other
words, one can think of the price vectors as probability dis-
tributions and use KL-divergence to measure the distance
between them. Also it is well known that 1

2
‖x− y‖21 ≤

D (x || y). We show that

D (p(t) || p?) ≤ ϕ(b(t))− ϕ(b?) . (16)

• Let ψ be the objective function of the Eisenberg-Gale con-
vex program for xij = bij/pj . We can measure ψ(b(t)) −
ψ(b?) =

∑
iBi log(u?i /u(t)i), where u?i is the utility of

buyer i at equilibrium. We show that

ψ(b(t))− ψ(b?) ≤ ϕ(b(t))− ϕ(b?) . (17)

• We can measure a relative notion of distance from the equi-

librium price vector: η := maxj

∣∣∣ pj(t)−p?jp?j

∣∣∣ . We show that

η2 ≤ O
(

n

umin

)
(ϕ(b(t))− ϕ(b?)) . (18)

• We can measure the maximum sub-optimality of the alloca-
tions. Let ui(t) be the utility of buyer i given his current
allocation and ũti be the maximum utility buyer i could have
obtained if the prices were set to p(t). We show that there
exists a ζ such that ui(t) ≥ (1− ζ)ũi(t) for all i, and

ζ2 ≤ O
(

n

uminB2
min

)
(ϕ(b(t))− ϕ(b?)) . (19)

• We can also measure an aggregate notion of suboptimality.
To this end, let the vector δ be such that ui(t) = (1−δi)ũi(t)
for all i. Then we measure ξ :=

∑
i δiBi. We show that

ξ2 ≤ O
(

n

umin

)
(ϕ(b(t))− ϕ(b?)). (20)

5.2 Comparison with Zhang’s results
We now rephrase the main result in [Zha09] for ease of com-

parison. They follow the same framework as outlined earlier, first
show convergence of a potential function and then relate that po-
tential function to other measures of approximation. Whereas we
show convergence of ϕ(b(t)) − ϕ(b?), Zhang does the same for
the quantity ψ(b(t+1)) − ψ(b?) + D (p? || p(t)), where ψ(b) is
the value of the objective function of the Eisenberg-Gale convex
program with xij = bij/pj :

ψ(b) = −
∑
i

Bi log

(∑
j

uijbij
pj

)
.

Zhang’s main result can be summarized by the following lemmas.
Let p?min = minj p

?
j .

LEMMA 14 ([ZHA09]).∑
t

(
ψ(b(t+1))− ψ(b?) +D (p? || p(t))

)
≤ D (b? || b(0)) .

PROOF IN OUR FRAMEWORK. First by using Corollary 10, we
have

ϕ(b(t+1)) ≤ `ϕ(b(t+1); b(t)) +D (b(t+1) || b(t))
≤ `ϕ(b?; b(t)) +D (b? || b(t))−D (b? || b(t+1)) .

Next using Lemma 11, i.e., ϕ(b?) = `ϕ(b?; b(t)) +D (p? || p(t)),
we get

ϕ(b(t+1))− ϕ(b?) +D (p? || p(t))
≤ D (b? || b(t))−D (b? || b(t+1)) .

Summing the above inequality over all t and noticing D(b?||b(t+
1)) ≥ 0 lead to∑

t

(
ϕ(b(t+1))− ϕ(b?) +D (p? || p(t))

)
≤ D (b? || b(0)) .

Further using Lemma 19 finishes the proof.

LEMMA 15 ([ZHA09]). Let η := maxj

∣∣∣ pj(t)−p?jp?j

∣∣∣ and as-

sume η ≤ 1. Then η2 ≤ 16
D(p(t) || p?)

p?min
.

LEMMA 16 ([ZHA09]). For all i, let ui(t) be buyer i’s utility
at time t, and let ũi(t) be the maximum utility he can achieve given
the prices p(t). Then there exists a ζ such that ui(t) ≥ (1−ζ)ũi(t)
for all i and

ζ2 ≤ 256

p?minB
2
min

(
ψ(b(t))− ψ(b?) +D (p(t) || p?)

)
.

LEMMA 17 ([ZHA09]). p?min ≥ uminBmin/m.

However, it is not known if ψ(b(t+1))−ψ(b?) +D (p? || p(t))
is monotonically decreasing. So you simply obtain that for all τ ,
there exists a t ≤ τ such that

ψ(b(t))− ψ(b?) +D (p? || p(t)) ≤ D (b? || b(0))

τ
. (21)

instead of obtaining that for all t

ψ(b(t))− ψ(b?) +D (p? || p(t)) ≤ D (b? || b(0))

t
.

In fact, we can derive all of Zhang’s results in the stronger form by
bounding each of ψ(b(t))−ψ(b?) and D (p(t) || p?) separately by
ϕ(b(t))− ϕ(b?) (and the fact that ϕ is monotonically decreasing).

LEMMA 18. For all t, D (p(t) || p?) ≤ ϕ(b(t))− ϕ(b?).

PROOF. By Lemma 11,

ϕ(b(t)) = `ϕ(b(t); b?) +D (p(t) || p?)
= ϕ(b?) + 〈∇ϕ(b?), b(t)− b?〉+D (p(t) || p?)

By optimality, 〈∇ϕ(b?), b(t)− b?〉 ≥ 0, so the lemma follows.

LEMMA 19. For all b ∈ S, ψ(b)− ψ(b?) ≤ ϕ(b)− ϕ(b?).

PROOF. It suffices to show

ψ(b) ≤ ϕ(b)−
∑
i

Bi logBi

and

ψ(b?) = ϕ(b?)−
∑
i

Bi logBi.



For the inequality above, we use convexity of − log:

ψ(b) = −
∑
i

Bi log

(∑
j

uij
bij
pj

)

= −
∑
i

Bi log

(∑
j

uij
pj

bij
Bi

)
−
∑
i

Bi logBi

≤ −
∑
i

Bi
∑
j

bij
Bi

log
uij
pj
−
∑
i

Bi logBi

= −
∑
i,j

bij log
uij
pj
−
∑
i

Bi logBi.

For the equality at b?, we use the optimality conditions:

ψ(b?) = −
∑
i

Bi log

(∑
j

uij
p?j

b?ij
Bi

)
−
∑
i

Bi logBi

= −
∑
i

Bi log

(
max
j

uij
p?j

)
−
∑
i

Bi logBi

= −
∑
i,j

b?ij log
uij
p?ij
−
∑
i

Bi logBi.

We also have the following bound on the total deviation of the sym-
metric KL-divergence between p? and p(t).

LEMMA 20.∑
t

(
D (p? || p(t)) +D (p(t) || p?)

)
≤ D (b? || b(0)) +

(
ϕ(b(0))− ϕ(b?)

)
.

PROOF. First using Corollary 10, we have

ϕ(b(t+1)) ≤ `ϕ(b(t+1); b(t)) +D (b(t+1) || b(t))
≤ `ϕ(b?; b(t)) +D (b? || b(t))−D (b? || b(t+1)) .

Plugging in `ϕ(b?; b(t)) = ϕ(b(t)) + 〈∇ϕ(b(t)), b? − b(t)〉 gives

〈∇ϕ(b(t)), b(t)− b?〉 ≤ D (b? || b(t))−D (b? || b(t+1))

+ ϕ(b(t))− ϕ(b(t+1)).

The optimality of b? implies 〈∇ϕ(b?), b(t)− b?〉 ≥ 0. Subtracting
〈∇ϕ(b?), b(t)− b?〉 from the left hand gives

〈∇ϕ(b(t))−∇ϕ(b?), b(t)− b?〉
≤D (b? || b(t))−D (b? || b(t+1)) + ϕ(b(t))− ϕ(b(t+1)).

Using∇ϕ(b) = 1− log(uij/pj), we have

〈∇ϕ(b(t))−∇ϕ(b?), b(t)− b?〉

=
∑
i,j

(bij(t)− b?ij) log
pj(t)

p?j

=
∑
j

(pj(t)− p?j ) log
pj(t)

p?j

=D (p(t) || p?) +D (p? || p(t)) .

Therefore,

D (p(t) || p?) +D (p? || p(t))
≤D (b? || b(t))−D (b? || b(t+1)) + ϕ(b(t))− ϕ(b(t+1)).

Summing over all t gives the desired result.

5.3 Improved bounds
The bounds mentioned in Section 5.1 (in particular, (18) and

(19)) are stronger than the corresponding ones in [Zha09]. These
are obtained by using Lemmas 15 and 16 with a better bound for
p?min, which is as in the following lemma.

LEMMA 21. p?min ≥ umin/n.

PROOF. Let b? be an equilibrium bid vector, and let

β?i = max
j
uij/p

?
j .

Suppose for contradiction that there exists an item j̃ such that p?
j̃
<

umin/n. Then for all bidders i,

β?i ≥
uij̃
p?
j̃

≥ umin

p?
j̃

> n .

By the buyer optimality condition, b?ij > 0 implies uij/p?j = β?i .
Combining this with the above yields the condition

b?ij > 0 =⇒ p?j <
uij
n

.

We now obtain the contradiction

1 =
∑

i,j : b?ij>0

b?ij ≤
∑

i,j : b?ij>0

p?j

<
∑

i,j : b?ij>0

uij
n
≤ 1

n

∑
i,j

ui,j = 1.

Hence, we conclude that there can be no such item j̃, and therefore
p?min ≥ umin/n.

Finally, we also give a bound on the aggregate notion of subopti-
mality of allocations (20) that is new.

LEMMA 22. Suppose ϕ(b(t))− ϕ(b?) ≤ u2
min/(8n

2). Let the
vector δ be such that

ui(t) = (1− δi)ũi(t),

where ui(t) =
∑
j uijbij(t)/pj(t) is the utility of buyer i at time

t and ũi(t) = Bi maxj(uij/pj(t)) = Biβi(t) is the maximum
utility that buyer i could obtain given the prices p(t). Then(∑

i

Biδi

)2

= O

(
n

umin

)
(ϕ(b(t))− ϕ(b?)) .

PROOF. To ease notation, we drop the argument t. For all i, j,
let αi = log βi = maxj log(uij/pj), εij = αi − log(uij/pj),
and εi =

∑
j bijεij/Bi. Observe

ui =
∑
j

bij
uij
pj

=
∑
j

bijβi exp(−εij)

≥
∑
j

bijβi(1− εij)

= Biβi − βi
∑
j

bijεij

= Biβi −Biβiεi = (1− εi)ũ′i,

and hence δi ≤ εi for all i. Therefore,∑
i

Biδi ≤
∑
i

Biεi =
∑
i,j

bijεij ,

and it suffices to bound
∑
i,j bijεij . In particular, we show that∑

i,j bijεij ≤ O(η) + ε. The proof then follows immediately



from (18). To do this, we start by rewriting the objective function
ϕ(b) as

ϕ(b) = −
∑
i,j

bij

(
log

uij
pj
− αi + αi

)
=
∑
i,j

bijεij −
∑
i,j

bijαi

=
∑
i,j

bijεij −
∑
i

Biαi.

Let α?i = maxj log(uij/p
?
j ). The optimality condition states that

ϕ(b?) = −
∑
iBiα

?
i . Let ε = ϕ(b)− ϕ(b?). Then∑

i,j

bijεij =
∑
i

Bi(αi − α?i ) + ε .

Since
∑
iBi = 1, we have

∑
iBi(αi − α

?
i ) ≤ maxi(αi − α?i ).

Furthermore, for all i,

αi − α?i = max
j

log
uij
pj
−max

j
log

uij
p?j

= max
j

(
log

uij
p?j

+ log
p?j
pj

)
−max

j
log

uij
p?j

≤ max
j

log
uij
p?j

+ max
j

log
p?j
pj
−max

j
log

uij
p?j

= max
j

log
p?j
pj
≤ O(η).

6. CONCLUSION AND FUTURE WORK
Our work opens up many interesting directions for future re-

search.

• Eisenberg-Gale-type convex programs also capture equilib-
ria for other classes of markets, especially for many resource
allocation markets [JV10] and markets with Leontief utili-
ties. It is not clear if there are analogs of convex program (2)
for these markets. Convex program (2) seems to capture a
different class of markets since it generalizes to the spending
constraint utilities, for which the EG program does not gener-
alize to. Such programs might lead to interesting algorithms
and dynamics for these other markets as well. Also such
programs have been used to design distributed algorithms to
achieve proportional fairness. It is conceivable that our new
convex program and/or the PR dynamics could get better re-
sults for the same.

• Can we get a better convergence bound for PR dynamics?
While it seems difficult to get a convergence rate better than
O(1/ε) w.r.t ϕ, it is possible one could get faster rates w.r.t
other notions of approximate equilibria that we discuss.

• Can we design other similar dynamics that converge faster?
We note that under the stronger condition of Lipschitz con-
tinuity of gradients, there are gradient algorithms [Nes83,
Nes05, Tse08] that converge in time O(1/

√
ε) (as opposed

to the one we use which converges in time O(1/ε)). How-
ever, these algorithms do not seem to work with the weaker
assumption that we have. It would be very interesting (from
a more general convex programming point of view) to get an
O(1/

√
ε) time algorithm with our weaker assumption.

• There is a natural asynchronous version of the PR dynam-
ics: in each iteration, the bids of a single buyer and the
corresponding prices are updated, with some non-saturation
condition saying that every buyer updates his bids frequently
enough. There are also randomized versions where a buyer
wakes up with a Poisson clock and updates his bids and the
corresponding prices. We believe our techniques (perhaps
combined with some of the techniques from the book by
Bertsekas and Tsitsiklis [BT97]) could be extended to handle
these cases as well.
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