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We introduce a new methodology to estimate the treatment effect in two-sided advertising markets, where
a group of advertisers compete in online ad auctions. We consider the case of an advertiser facing treatment,
such as changing or introducing a recommendation to optimize the performance of an ad campaign. In this
case, advertiser randomized experiments are unable to provide accurate estimates of the treatment effect due
to spillovers caused by competition between advertisers. In this paper, we tackle this challenge of estimating
the treatment effect by introducing a simulated-counterfactual (𝑆𝐶) market where treatment and control
advertisers have similar performance, thus yielding negligible spillover effect. The 𝑆𝐶 market is then used
to transform the problem into an auction randomized experiment that does not suffer from spillovers and
allows us to accurately estimate the treatment effect.
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1 INTRODUCTION
In online advertising, advertisers set up ad campaigns that specify where their ads can appear, and
how much they are willing to pay. When there is an ad opportunity, all eligible ads participate in
an ad auction to determine a winning ad that gets shown. In the most basic version, advertisers
specify bids for different types of ad opportunities, and a first-price auction determines the winner
for each opportunity. To help set up performant ad campaigns, an aggregator provides campaign
recommendations, e.g., the aggregator recommends a bid for each pair of ad opportunity-type.
In this paper, we address the problem of estimating the global treatment effect (GTE), where the
treatment is a new set of campaign recommendations.

Ad opportunities are everywhere on the internet, alongside search results, social media, videos,
apps, games, and almost every type of content. Advertisers range from large companies with multi-
billion dollar annual ad budgets1 to individuals who spend a few dollars a day. Aggregators could be
ad agencies that help advertisers run their ad campaigns, demand side platforms (DSP), which are
automated services providing access to a wide range of ad opportunities, or owned and operated
(OnO) ad platforms that own a huge supply of ad opportunities such as those by Google and Meta.
In 2022, the worldwide spend on online ads was estimated at $566 billion 2.

Suppose that the metric we care about is ad revenue. The GTE is the difference in ad revenue
between two worlds: one where all advertisers are given the new recommendations (the Treatment
𝑇 ), and one where all advertisers are given the old recommendations (the Control 𝐶). The gold
standard for experiments to estimate GTEs is the randomized control trial (RCT), more commonly
called A/B testing. The main difficulty in using RCTs in this setting is the spillover effect, resulting
from advertisers in Control and Treatment competing with each other in the same ad auctions;
we call such auctions mixed auctions. This violates the Stable Unit Treatment Values Assumption
(SUTVA) [?] that underpins RCTs. In general, there is no simple relationship between the revenue
of a mixed auction, and the revenues in the two worlds of all Control, and all Treatment. The
example below illustrates this.

Example of mixed auctions. There are only two ads, and one type of ad opportunity. The auction
ranks the ads by their bid, and the highest bidder wins and pays bid. The Treatment results in
advertisers changing their bids: Ad 1 changes it from $1 to $1.10, while Ad 2 changes it from $0.75
to $1.20. There are two possible outcomes for a mixed auction, depending on which ad is in𝐶 and
which is in 𝑇 . Table 1 shows all possible outcomes.

Ad 1 Ad 2 Bid 1 Bid 2 Winner Ad revenue
All Control 𝐶 𝐶 $1.00 $0.75 Ad 1 $1.00
All Treatment 𝑇 𝑇 $1.10 $1.20 Ad 2 $1.20
Mixed auction 𝐶 𝑇 $1.00 $1.20 Ad 2 $1.20
Mixed auction 𝑇 𝐶 $1.10 $0.75 Ad 1 $1.10

Table 1. Example illustrating how the revenue of a mixed auction is in general unrelated to the revenue in
Control and in Treatment.

Suppose that we have many copies of this example, and we conduct an RCT where each ad-
vertiser is in 𝐶 and 𝑇 independently with equal probability. The average revenue per ad in 𝑇
= (1.2+ 1.2+ 1.1)/4 = $0.875, since advertisers in𝑇 win in 3 of the 4 possibilities listed above. The
average revenue per ad in𝐶 = 1/4 = $0.25. Estimating the GTE using 2× the difference in average

1https://www.statista.com/statistics/191998/ad-spending-of-procter-and-gamble-in-the-us/.
2https://www.statista.com/topics/1176/online-advertising/
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revenue per ad in 𝑇 vs. 𝐶 gives an estimate of $1.25, while the actual GTE is just the difference
between row 2 and row 1 = (1.2 − 1) = $0.2, resulting in a 6.25x overestimation.

While this is a hypothetical example, this phenomenon is general, and the problem is prevalent.
? give empirical evidence from an experiment sending marketing emails to eBay sellers that the
treatment effect on the auctionwin rate was almost 0, while an RCT showed statistically significant
positive effect. Companies need to continuously innovate to improve their advertisers’ and users’
experiences, as well as grow their revenue. They release tens of new advertiser features every
year, while many more improvements happen behind the scenes. The many types of campaign
recommendations include setting performance targets such as a target cost per click (CPC), cost
per action (CPA), or cost per conversion value, setting budgets, and setting targeting criteria such
as search keywords or audience segments. In addition to recommendations, there are also user
interface (UI) changes such as surfacing forecasts or trending terms. They also introduce new
features such as an option to pay per action instead of paying per click.The challenge of estimating
GTEs is common to all such advertiser facing changes.

In addition to ad revenue, we care about metrics that capture the value to advertisers such as
their return on investment. OnO platforms also care about the impact on their users, such as the
impact on daily average users, time spent, or the number of clicks and “like”s. It is well under-
stood that the complex nature of these marketplaces require data driven decisions [?], therefore
designing reliable advertiser facing experiments is an important problem for the online advertising
industry.

2 CONTRIBUTIONS
We introduce a new experiment design framework based on the concept of a simulated counter-
factual, which simulates the auction outcome under a different input to an ad campaign, for a
random fraction of the auctions. This essentially results in an RCT on the auction side, where for
a control group of auctions, we use the original inputs to the ad campaign, and for a treatment
group of auctions, we simulate counterfactual inputs. Advertisers only see the total outcome of
all the auctions, and not the counterfactual inputs used. How we simulate a counterfactual input
depends on the type of input, as shown in the examples below.

Bids: Ad platforms offer auto-bidding strategies that let the platforms automatically raise or
lower the bids based on real-time signals such as the probability of an action3. Suppose that
an ad campaign has auto-bidding enabled, and has set a bid of $1. For a random fraction of
the auctions, we can simulate a counterfactual bid of $0.8 by letting auto-bidding place bids
in these auction as if the advertiser set bid was $0.8.

Performance targets: Auto-bidding campaigns may require as input a performance target
such as a target CPA. Suppose that the actual target CPA is $2 and we want to simulate a
target CPA of $2.5. We run two independent instances of the auto-bidding algorithm, one
with target CPA of $2 on a control group of auctions, and another with a target CPA of $2.5
on a treatment group of auctions.

Budgets: Suppose that an ad has a budget of $100, and we need to simulate a budget of $150,
on a random 10% of the auctions. We enforce a budget of $15 on one treatment group (𝑇 1)
of 10% of auctions, a budget of $10 on another treatment group (𝑇 2) of 10% of auctions, and
a budget of $75 on the remaining 80% of auctions. While 𝑇 1 simulates the counterfactual
budget of $150, 𝑇 2 simulates the original budget of $100.

Targeting: We can simulate counterfactual targeting criteria in cases where the counterfactual
targets a subset of the auctions, by stopping the ad from appearing in those auctions that

3E.g., Google offers enhanced CPC: https://support.google.com/google-ads/answer/6239141



Submission 133 3

are not targeted by the counterfactual. Since most changes introduced influence targeting
inputs to expand rather than restrict the criteria (e.g., add more keywords), we can use such
counterfactuals to simulate 𝐶 when advertisers are in 𝑇 .

2.1 Proposed Approach
We propose an experiment design framework, the Simulated Counterfactual based Treatment Ef-
fect (SCOTE), whose basic unit of measurement is an auction side RCT that measures the impact
of replacing the campaign inputs with a counterfactual. If we could do this when campaign inputs
are a response to Treatment, and the counterfactual is a response to Control, then this would give
us the GTE. E.g., in the example in Table 1, if we knew the bids under both 𝐶 and 𝑇 , we would
run half the auction with bids under 𝐶 (row 1), and other half of them with bids under 𝑇 (row 2),
and the difference would give us the correct GTE. Since we could only ever observe one of these
responses at any time, the main idea is to use a simulated counterfactual (𝑆𝐶) to bridge the gap.
We run two auction side RCTs, one measuring the impact of 𝑇 vs. 𝑆𝐶 (the measurement phase),
and another measuring the impact of 𝑆𝐶 vs. 𝐶 (the calibration phase), which together give us the
𝑇 vs. 𝐶 GTE.

The key to the success of this approach is to get a 𝑆𝐶 that mimics𝐶 sufficiently well. We propose
two generic approaches to defining a 𝑆𝐶 . While the measurement phase is identical for both, the
calibration phase is different.

Transformation based 𝑆𝐶 . This approach is useful for inputs such as targeting criteria where
we need to make sure that the 𝑆𝐶 inputs err on one side of the real inputs. In this approach, the
counterfactual input is obtained by applying a transformation to the campaign input in response
to𝑇 (See Figure 1). As a result, we change the campaign inputs only for advertisers in𝑇 . E.g., in 𝑆𝐶 ,
for advertisers in𝑇 , we drop those keywords that are recommended in𝑇 but not in𝐶 . The changes
are made in the back-end at the auction level and are not noticeable by the advertisers. The exact
transformation is learnt during the calibration phase, which is run concurrently to an advertiser
side RCT. In this case, we cannot exactly measure 𝑆𝐶 vs. 𝐶 , but we try to make it as close to 0 as
possible.

More formally, suppose that we have split the advertisers into two groups, 𝐴 and 𝐵, chosen at
random with 50% probability each. We consider three situations, 1) all advertisers are in 𝐶 , 2) all
advertisers are in 𝑇 , and 3) advertisers in 𝐴 are in 𝐶 and advertisers in 𝐵 are in 𝑇 . On the auction
side, we have two possibilities, where either we change the campaign inputs for the simulated
counterfactual (𝑆𝐶), or we do not change the campaign inputs, which we denote by 𝑍 . Denote by
𝑅𝑖 (𝑥,𝑦, 𝑧) the revenue generated by advertiser 𝑖 when advertisers in 𝐴 are in 𝑥 , advertisers in 𝐵
are in 𝑦, where 𝑥,𝑦 ∈ {𝐶,𝑇 }, and the campaign inputs are in 𝑧 ∈ {𝑆𝐶, 𝑍 }. We wish to measure
the global treatment effect GTE =

∑
𝑖∈𝐴∪𝐵 𝑅𝑖 (𝑇,𝑇 , 𝑍 ) − 𝑅𝑖 (𝐶,𝐶, 𝑍 ), which can be decomposed as

follows:∑
𝑖∈𝐴∪𝐵

𝑅𝑖 (𝑇,𝑇 , 𝑍 ) − 𝑅𝑖 (𝑇,𝑇 , 𝑆𝐶)︸                                   ︷︷                                   ︸
𝜒1

+
∑

𝑖∈𝐴∪𝐵
𝑅𝑖 (𝑇,𝑇 , 𝑆𝐶) − 𝑅𝑖 (𝐶,𝐶, 𝑆𝐶)︸                                    ︷︷                                    ︸

𝜒2

+
∑

𝑖∈𝐴∪𝐵
𝑅𝑖 (𝐶,𝐶, 𝑆𝐶) − 𝑅𝑖 (𝐶,𝐶, 𝑍 )︸                                   ︷︷                                   ︸

𝜒3

.

(1)

In the measurement phase, we measure 𝜒1 using an auction side RCT with two treatments 𝑍 and
𝑆𝐶 . During this phase, all advertisers are in 𝑇 . By definition of SC, 𝜒3 = 0 because the changes in
the campaign inputs in the 𝑆𝐶 auctions are applied only to advertisers in 𝑇 . E.g., we only change
the keywords of treated advertisers. We use the calibration phase to define 𝑆𝐶 so that 𝜒2 ≈ 0,



Submission 133 4

Advertiser 
Response to C

C RevenueCampaign
Settings Auctions

Campaign
Settings Auctions

Campaign
Settings Auctions

Campaign
Settings Auctions

Transformation of 
Campaign settings 

Advertiser 
Response to T

T Revenue

Advertiser 
Response to T

SC Revenue
≈ C Revenue

Advertiser 
Response to T

T Revenue

GTE SCOTE

Fig. 1. GTE is the difference in revenue of two hypothetical worlds: (1) all advertisers in 𝑇 vs. (2) all adver-
tisers in 𝐶 . SCOTE is the difference in revenue of two hypothetical worlds: (1) all advertisers in 𝑇 vs. (2) all
advertisers in 𝑇 with their campaign inputs transformed to make 𝑆𝐶 revenue close to 𝐶 revenue.

which gives us GTE ≈ 𝜒1. In other words, we can measure GTE using an auction side RCT, with
all the advertisers in 𝑇 .

The question is, ”how to define 𝑆𝐶?” Intuitively, we want to reverse the effect that𝑇 has on the
inputs, e.g., if 𝑇 caused advertisers to choose 10% more keywords, we want 𝑆𝐶 to drop those 10%
keywords. We run an advertiser side RCT to measure the impact that 𝑇 has on campaign inputs.
Using this, we determine qualitatively which inputs need to be changed. For the exact definition
of 𝑆𝐶 , we use tunable parameters, such as the % of keywords to be dropped or the factor by which
bids are decreased. We calibrate these parameters so that advertisers in 𝐶 and 𝑇 have roughly the
same ad revenue in the 𝑆𝐶 auctions, i.e.,

∑
𝑖∈𝐵 𝑅𝑖 (𝐶,𝑇 , 𝑆𝐶) −

∑
𝑖∈𝐴 𝑅𝑖 (𝐶,𝑇 , 𝑆𝐶) ≈ 0. As we will

show, making 𝑇 advertisers similar to 𝐶 advertisers in terms of revenue weakens drastically the
spillover effects and ensures that

𝜒2 ≈ 2

(∑
𝑖∈𝐵

𝑅𝑖 (𝐶,𝑇 , 𝑆𝐶) −
∑
𝑖∈𝐴

𝑅𝑖 (𝐶,𝑇 , 𝑆𝐶)
)
≈ 0. (2)

We have implicitly assumed that the marketplace does not change between the calibration and
measurement phases. Marketplace variation over time is one of the biggest challenges in estimat-
ingGTE. If notwe could simple do a pre-post analysis to get theGTE, i.e, measure

∑
𝑖∈𝐴∪𝐵 𝑅𝑖 (𝑇,𝑇 , 𝑍 )

and
∑

𝑖∈𝐴∪𝐵 𝑅𝑖 (𝐶,𝐶, 𝑍 ) during different time periods and take the difference.
We use simulations as well as simple stochastic models to show the following for the transfor-

mation based approach to 𝑆𝐶 :
• We show that as long as there exists a multiplier that transforms the bid distribution of 𝑇

advertisers to that of𝐶 advertisers (Matching Assumption), our 𝑆𝐶 based estimator of GTE is
strongly consistent. Moreover, the rate of convergence of the estimator to GTE is𝑂 (𝑁 − 1

2+𝛿 ),
where 𝑁 is the number of auctions.

• We show via a numerical example that our 𝑆𝐶 based estimator outperforms by a largemargin
advertiser side RCT, cluster RCT, and pre-post experiment in terms of bias and precision.The
key feature of this high performance is the ability of the simulated counterfactual market to
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suppress the spillover effects. Our simulations show that this feature makes our estimator
robust w.r.t. the violation of the Matching Assumption. Moreover, the results show that the
𝑆𝐶 based estimator is robust to marketplace variations over time, which pose a real challenge
to pre-post experiments.

Model based 𝑆𝐶 . This approach is suitable for campaign inputs for which we can simulate both
an increase as well as a decrease in the input value, such as budgets. In this approach, the coun-
terfactual input is obtained from a machine learned (ML) model that uses historic data on what
campaign inputs advertisers have set under𝐶 , to predict what campaign inputs advertisers would
set in the future if they were still in 𝐶 . Unlike the transformation based approach, we can replace
the campaign inputs with model inputs even for advertisers in 𝐶 . Indeed, we first run the calibra-
tion phase when all advertisers are still in 𝐶: half the auctions use the actual advertiser inputs in
response to𝐶 , while the other half use inputs predicted by the ML model. Ideally we would like to
observe a 0 GTE in the calibration phase, which would happen if the MLmodel perfectly predicted
the advertiser inputs. The errors in the model prediction result in a non zero 𝑆𝐶 vs. 𝐶 impact, but
since we can measure it, we can correct for this. We may repeat this phase multiple times to tune
the ML model to get 𝑆𝐶 vs.𝐶 as close to 0 as possible. We then expose all advertisers to𝑇 and run
the measurement phase, which measures 𝑇 vs. 𝑆𝐶 . E.g., for the example in Table 1, suppose that
the model predicts that the bids of the two advertisers are 1 + 𝜖1 and 0.75 + 𝜖2 resp. As long as the
𝜖s are small enough, under 𝑆𝐶 , Ad 1 still wins and the ad revenue is 1 + 𝜖1. An auction side RCT
to measure 𝑆𝐶 vs. 𝐶 shows a difference of 1 + 𝜖1 − 1 = 𝜖1 ad revenue per auction, and the 𝑇 vs. 𝑆𝐶
auction side RCT shows an increase in ad revenue per auction of 1.2 − (1 + 𝜖1) = 0.2 − 𝜖1, adding
which we get the true GTE of $0.20 ad revenue per auction.

Going back to the GTE decomposition given in (1), as before in the measurement phase, we
estimate 𝜒1 using an auction side RCT. Unlike previously, in the calibration phase we measure 𝜒3
using an auction side RCT because we can use model inputs as 𝑆𝐶 even when the advertiser is in𝐶 .
In this case, 𝜒2 = 0 because once you replace the advertiser inputs with the model inputs, it does
not matter whether the advertiser is in𝐶 or𝑇 . Thus 𝜒1 + 𝜒3 is an unbiased estimator of GTE. This
is a surprising conclusion, in that it does not depend on the model accuracy! Nonetheless, model
accuracy still matters because it affects the variance of this estimator. In addition, model accuracy
is also important to make the estimator robust against marketplace changes. We use simulations
to show the following for the model based approach to 𝑆𝐶 , for changes in campaign daily budgets:

• As the number of days increases, the estimated ATE converges to the true ATE, while being
much more accurate than other methods even with few days of data.

• However, model accuracy is still a desirable property, as the rate of convergence of the esti-
mated ATE to true ATE is determined by the mean squared error (MSE) of the ML model.

• The error in the estimate is monotone with the magnitude of marketplace changes between
the calibration phase and the measurement phase, but the estimates are still much more
accurate than other methods.

2.2 Pros and cons of the proposed approach
Pros. All other methods to estimate GTE suffer from high bias or high variance or both. Our

approach gets the best of both worlds.
• We avoid the spillover effects by design, and give estimates that are unbiased or have low

bias. Our simulations show that our estimates are robust even when there are large spillover
effects.

• Furthermore, the number of auctions is typically much larger than the number of advertisers,
yielding high statistical power compared to advertiser randomized experiments.
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Cons.

• Additional effort is required to implement our proposed design.We need to developMLmod-
els to predict advertiser inputs, or run calibrations to identify good input transformations.
Implementing a simulated counterfactual requires effort, e.g., to simulate different budgets
we need the capability of tracking spend and enforcing budget by auction treatment groups.
In addition to an advertiser side RCT, we need to run two auction side RCTs.

Potential Cons that are mitigated.

• Simulating counterfactual inputs may affect advertiser performance, such as resulting in
fewer impressions, clicks, etc. We mitigate this by having 𝑆𝐶 run on a small percentage
of traffic. Since the number of auctions is typically very large (in many millions and often
in billions), even a small percentage of auctions is sufficient to get statistically significant
results. (We use 50% in the paper just for the ease of presentation.)

• We make certain assumptions, such as the Matching assumption that a bid multiplier trans-
forms the 𝑇 bid distribution to the 𝐶 distribution, to show our theoretical guarantees. Even
if there exists such a multiplier, we may not be able to find it exactly. However, our sim-
ulations show that the estimation accuracy degrades gracefully with the calibration error,
either in finding the right transformation or in the ML model.

• Since we run the calibration and measurement phases at different times, the marketplace
might change in between. Indeed, if there were no such changes, we could get an accurate
estimate of GTE using a simple pre-post analysis: expose all advertisers to 𝑇 starting some
time period 𝑡 , and use the difference between the ad revenue in time 𝑡 and that in time
𝑡 −1. However, our simulations indicate that our experiment design is robust to marketplace
changes. We do not currently have any theoretical analysis of this robustness, and this is an
interesting avenue for future research.

3 RELATEDWORK
Network spillover effects. The spillover effect in the online advertising setting that we consider

is a special case of network spillover effects, where there is a graph that captures interactions
among treatment units. This includes other two sided marketplaces such as ride sharing, as well as
social networks. Significant academic literature exists in measuring spillover effects in the context
of social networks. Typical suggestions include assigning weights based on an ML model that
estimates the impact of the influence of the admixture from historical data, similar to synthetic
control methods [?]. However, this cannot be done for two-sided markets as the effects of mixed
auction are not estimable easily, in particular, we cannot even conclude that mixed auction effects
are monotone in the proportion of Treatment vs Control in the experiment, which is typically the
minimal assumption required [⁇].

Cluster randomized experiments. Themost common approach to address network spillover effect
is cluster randomization, where the graph is clustered so that most of the interaction occurs within
a cluster, and each cluster is entirely assigned to either 𝐶 or 𝑇 [⁇]. The main drawback of this is
that it reduces statistical power: ? demonstrate a method to increase statistical power in cluster-
randomized experiments via a method called independent block randomization (IBR). Nonetheless,
this cannot address the main reason for the drop in statistical power, which is that we reduce typ-
ically millions of advertisers to maybe tens of thousands of clusters. Another drawback of this de-
sign is that cross-cluster leakage leads to biased estimators. Recently, ? show that in the context of
two-sided marketplaces, standard clustering objectives are not aligned with minimizing bias, and
derive a bias minimizing objective. This cannot address the underlying issue where in the online
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advertising setting, the graph is so well connected that there simply are no good clusters, espe-
cially when you need thousands of them. Another extension of cluster randomized experiments
is geo-randomization [⁇], which uses geographic regions as natural clusters. However, this does
not mitigate the issue of statistical power.

Double randomization. Double randomization is another experiment design technique used to
mitigate spillover effects in two sided markets [⁇]. The main difference is that these are meant
for treatments that could be applied to a pair of advertiser and auction. E.g., the treatment could
be to show extra information when an ad is viewed, which could be shown for all the ads for a
given auction, for some ads for all the auctions, or for any combination of ad, auction pairs. In this
setting, ? provide guidance on bias-variance trade offs in choosing advertiser side vs. auction side
randomization, as well as choosing the proportion of treated units. Our treatments are inherently
only applicable to ads therefore these are not applicable.

Switch-back based design. Switch-back is another popular method used to avoid spillover, where
we switch back and forth between control and treatment (for all advertisers) at fixed or random
times [⁇]. However, switch-back experiments have the issue that past interventions are likely to
impact future outcomes (referred to as a carryover effect). To mitigate this the experiment may
need to be run for a really long time. That is to say, when we estimate the impact in Treatment
triggered the week after Control, the temporal effect of Control recommendations will continue
to impact the decisions that customers make when Treatment is launched. As a consequence, the
experiment may need to be run for a really long time. Moreover, switch-back is not possible for
UI changes that are apparent to the advertiser, since it would lead to a bad advertiser experience.
In addition, inference from switch-back experiments often require strong assumptions, which are
often not realistic [⁇]. Mitigating these issues require extensive and continuous offline testing and
modeling.

Non randomized methods. One can also use methods that rely on observational data alone to
make inference of causal impact. E.g., we can just switch over from 𝐶 to 𝑇 for all advertisers at a
particular point of time, and use the difference in the metrics pre and post switching to estimate
the impact. Advanced techniques such as difference in differences, synthetic controls, and debiased
ML ? could be potentially applied here, although these do not directly address the spillover effect.
Observational methods are typically inferior to RCTs, and ? show using experiments on Facebook
that observational methods often diverge from the results of RCTs. Ourmethod has some similarity
to synthetic controls, but unlike those we make extensive use of RCTs.

4 CHANGING CAMPAIGN BIDS
4.1 Model and Problem Statement
Weconsider a two-sidedmarketwhere a group of𝑛 ads are competing in𝑁 ad auctions. Advertisers
decide their bids before the start of any auction. We denote by 𝑏𝐶𝑖 the bid of ad 𝑖 , and assume that
𝑏𝐶𝑖 are drawn independently from a probability distribution with cumulative distribution function
(CDF) 𝐹𝐶 and support in [0,∞). At each time step 𝑡 ∈ {1, . . . , 𝑁 }, we conduct an ad auction, which
has a participation rate 𝜌𝑡 drawn from a uniform distribution 𝑈 (𝑎,𝑏), where 0 < 𝑎 ≤ 𝑏 ≤ 1. The
participation rate 𝜌𝑡 represents the percentage of ads whose targeting criteria includes this auction.
Each ad participates in the auction w.p. 𝜌𝑡 , independently. To simplify the analysis, we consider
first-price auctions: the ad with the highest bid wins the auction and pays her bid. All the results
can be easily extended to second price auctions.

We intervene on a random fraction 𝜌𝐼 of the ads and increase their bids, for example, by recom-
mending competitive bids. The intervened ads will have their bids 𝑏𝑇𝑖 drawn independently from
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a distribution with CDF 𝐹𝑇 and support in [0,∞). We assume that the mean of 𝐹𝑇 is greater than
that of 𝐹𝐶 . Our goal is to estimate the GTE of bid increase, i.e.

GTE = (spend of intervened + spend of non-intervened, when all intervened are in 𝑇 )
- (spend of intervened + spend of non-intervened, when all intervened are in 𝐶). (3)

4.2 SCOTE Estimation of GTE
Following Section 2.1, our simulated counterfactual based experiment has two phases. In the first
phase we calibrate the auction treatment 𝑆𝐶 , which is defined as follows. In 𝑆𝐶 auctions, we multi-
ply by𝑚 > 0 all the bids of treated advertisers that participate in the auction. The treated advertis-
ers will not notice the changes in their bids as the changes are made in the back-end at the auction
level. The parameter𝑚 is calibrated by running an advertiser side RCT, where 50% of intervened
advertisers are in 𝑇 . On the auction level, we apply and calibrate𝑚 so that�C(𝑚) := average spend of an intervened advertiser in 𝑇

− average spend of an intervened advertiser in 𝐶 = 0.
(4)

We use binary search to the find the multiplier𝑚 that satisfies equation (4). Once we find𝑚, we
launch the advertiser Treatment (i.e. bids ∼ 𝐹𝑇 ) to all intervened advertisers and run an auction
side RCT where in 50% of auctions (𝑆𝐶 group) we apply the multiplier found in the first phase,
while in the rest (𝑍 group), we do not change the bids set by advertisers (i.e. multiplier = 1). The
experiment is summarized in Algorithm 1.

ALGORITHM 1: Simulated-Counterfactual Based Experiment Design
Input: Binary search error 𝜖𝐷
Output: Estimate Ê of GTE
𝑚𝑙 = 0;𝑚ℎ = 1;
First Phase: Calibration: 50% of intervened advertisers are in 𝑇 ;
repeat

𝑚𝑐 = (𝑚𝑙 +𝑚ℎ)/2;
Bids of 𝑇 advertisers are multiplied by𝑚𝑐 ;�C(𝑚𝑐 ) = average spend of intervened advertisers in 𝑇 - average spend of intervened advertisers in
𝐶;

if �C(𝑚𝑐 ) > 0 then
𝑚ℎ =𝑚𝑐 ;

else
𝑚𝑙 =𝑚𝑐 ;

end
𝑒𝑟𝑟𝑜𝑟 =𝑚ℎ −𝑚𝑙

until 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖𝐷 ;
𝑚̂ =𝑚𝑐 ;
Second Phase: Estimation: all intervened advertisers are in 𝑇 ;
Auction side RCT: 50% of auctions have multipliers 𝑚̂ and the rest𝑚 = 1;
Ê = 2(revenue generated by auctions with𝑚 = 1) - 2( revenue generated by auctions with multiplier 𝑚̂)

In the following, we derive a theoretical bound on the accuracy |Ê − GTE| of the estimator Ê
described in Algorithm 1. Moreover, we show that the estimator is strongly consistent. The proofs
of the results are given in the Appendix. We distinguish between the bid 𝑏𝑖 set by an advertiser,
and her actual bid 𝑦𝑖 that enters the auction. The actual bid 𝑦𝑖 depends on whether the advertiser
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participates in the auction or not (it is equal to 0 if 𝑖 does not participate), and on the bid multiplier
𝑚 of the auction. Formally, 𝑦𝑖 can be written as follows:

𝑦𝑖 = 𝑝𝑖 ((1 − 𝐼𝑖 )𝑏𝐶𝑖 + 𝐼𝑖 (𝑇𝑖𝑚𝑏𝑇𝑖 + (1 −𝑇𝑖 )𝑏𝐶𝑖 )), (5)

where 𝑝𝑖 = 1 if 𝑖 participates in the auction and 0 otherwise, 𝐼𝑖 = 1 if 𝑖 is intervened and 0 otherwise,
𝑇𝑖 = 1 if 𝑖 is treated and 0 otherwise. We denote by 𝜌𝑇 the fraction of intervened advertisers in
𝑇 (exposed to the new bids 𝐹𝑇 ). We introduce the following quantities, which will be used later.
Given that the fraction of intervened advertisers in𝑇 is 𝜌𝑇 , and that the auctions are treated with
multiplier𝑚, the mean revenue generated by an auction is 𝑟 (𝑚, 𝜌𝑇 ) = Emax𝑖 𝑦𝑖 , the mean spend
of a 𝑇 advertiser is 𝑠𝑇 (𝑚, 𝜌𝑇 ) = 𝑁E(𝑦𝑖1(𝑦𝑖 ≥ max𝑗 𝑦 𝑗 ) |𝑇𝑖 = 1, 𝐼𝑖 = 1), and the mean spend of a
control advertiser is 𝑠𝐶 (𝑚, 𝜌𝑇 ) = 𝑁E(𝑦𝑖1(𝑦𝑖 ≥ max𝑗 𝑦 𝑗 ) |𝑇𝑖 = 0, 𝐼𝑖 = 1).

Assumption 4.1 (Matching Assumption). There exists a multiplier𝑚∗ such that the distributions
of𝑚∗𝑏𝑇𝑖 and 𝑏𝐶𝑖 are equal, i.e. 𝐹𝑚∗ = 𝐹𝐶 .

Assumption 4.1 is satisfied, for example, by exponential and uniform distributions. We can relax
Assumption 4.1 by requiring that ∥𝐹𝑚∗ − 𝐹𝐶 ∥𝑇𝑉 ≤ 𝜖 for some small 𝜖 > 0, without changing
drastically the results of this section. We will show later in the simulations that when Assumption
4.1 is violated, we can still get good estimates of GTE. In our future work, we will analyze the more
general case where Assumption 4.1 is satisfied by general bid transformations 𝐵 : 𝑏𝑇𝑖 → 𝐵(𝑏𝑇𝑖 ).

We define the calibration function as the mean of Ĉ defined in (4), i.e. difference between the
mean spend of a treated advertiser and mean spend of a control advertiser in an advertiser side
RCT with auctions treated with multiplier𝑚:

C(𝑚) = 𝑠𝑇 (𝑚, 0.5) − 𝑠𝐶 (𝑚, 0.5). (6)

The following Lemma states if we find a multiplier𝑚∗ that satisfies the calibration condition (4)
in expectation, then the estimator Ê of GTE is unbiased, meaning that E = EÊ = GTE. The mean
estimate E is the difference between the mean of the total spend of advertisers when all intervened
advertisers are in 𝑇 and auctions have multipliers 1 and the total spend of advertisers when all
intervened advertisers are in 𝑇 and auctions have multipliers the solution of the first phase:

E = 𝑁 × (𝑟 (1, 1) − 𝑟 (𝑚∗, 1)) . (7)

Lemma 4.2. The following statements hold:

(1) The calibration function (6) is increasing and has a unique zero at𝑚∗.
(2) The mean of the estimate E is equal to GTE.

GTE decomposition described in Section 2.1 is:

GTE = 𝑁 × (𝑟 (1, 1) − 𝑟 (1, 0)) = E + 𝑁 × (𝑟 (𝑚∗, 1) − 𝑟 (𝑚∗, 0))︸                           ︷︷                           ︸
𝜒2

+𝑁 × (𝑟 (𝑚∗, 0) − 𝑟 (1, 0))︸                         ︷︷                         ︸
𝜒3

. (8)

Following Section 2.1, the last term 𝜒3 is zero for any multiplier𝑚. The term 𝜒2 is the difference
between the spend of all advertisers when all intervened advertisers are in 𝑇 and the spend of all
advertisers when all intervened advertisers are in 𝐶 , given that all the auctions have multipliers
𝑚∗. This is a bit surprising! We are saying that in a market with𝑚∗ auctions only, the treatment
effect 𝜒2, can be perfectly measured by an advertiser side RCT (both the impact 𝜒2 and the mean of�C(𝑚∗) are equal to 0), despite the competition between the advertisers. To see what is happening,
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let us decompose the term 𝜒2 for a general multiplier𝑚. We have

𝑁 × (𝑟 (𝑚, 1) − 𝑟 (𝑚, 0)) = 𝑛𝜌𝐼

[
(𝑠𝑇 (𝑚, 1) − 𝑠𝑇 (𝑚, 0.5))︸                       ︷︷                       ︸

𝛾𝑇 (𝑚)

+ (𝑠𝑇 (𝑚, 0.5) − 𝑠𝐶 (𝑚, 0.5))︸                          ︷︷                          ︸
C(𝑚)

− (𝑠𝐶 (𝑚, 1) − 𝑠𝐶 (𝑚, 0.5))︸                       ︷︷                       ︸
𝛾𝐶 (𝑚)

]
+ 𝑛(1 − 𝜌𝐼 ) (𝑠𝐶 (𝑚, 1) − 𝑠𝐶 (𝑚, 0))︸                     ︷︷                     ︸

𝛾𝑜 (𝑚)

.

(9)

𝛾𝑇 is the difference between the spend of a 𝑇 advertiser when all intervened advertisers are in 𝑇
and her spend when 50% of intervened advertisers are in𝑇 . Thus, this term measures the spillover
effects from a treated advertiser perspective. Similarly, 𝛾𝐶 measures the spillover effects from a
𝐶 advertiser perspective, and 𝛾𝑜 measures the spillover effect from a non-intervened advertiser
perspective. When Assumption 4.1 is satisfied, the spillover terms vanish at 𝑚∗. In other words,
by making the treated advertisers similar to control advertisers, we create an 𝑆𝐶 market without
spillover effects. This allows us to accurately estimate GTE by running an auction side RCT. In the
simulations, we will provide an example where Assumption 4.1 is violated but the spillover terms
remain small at𝑚∗, yielding accurate estimate of GTE.

Lemma 4.2 states that if we find𝑚∗ in the first phase, then the estimation is unbiased. However,
we don’t have access to the calibration function (6), but samples Ĉ with mean C that we obtain
from the advertiser side RCT in the first phase. Moreover, binary search runs for a finite number
of steps. The following theorem accounts for these facts by giving a bound on the accuracy of the
estimation.

TheoRem 4.3. There exist constants 𝐶1 and 𝐶2 that do not depend on the number of auctions 𝑁 ,
such that, for all 𝜖𝐷 > 0 and 𝜖 > 0 with 𝜖 > 𝐶2𝜖𝐷 ,

P( |GTE − Ê| ≤ 𝑁𝜖) ≥
(
1 − 2 exp

(
−𝑁 (𝜖 −𝐶2𝜖𝐷 )2

2𝐵2
𝑚

))2 (
1 − exp

(
−
𝑁𝐶2

1𝜖
2
𝐷

16𝐵2
𝑚

))2
×

⌈log2 (1/𝜖𝐷 ) ⌉−2∏
𝑠=1

(
1 − exp

(
−
𝑁𝐶2

1 (1 + 2𝑠 )2𝜖2𝐷
16𝐵2

𝑚

))
,

(10)

where Ê is the estimate of GTE computed by our method described in Algorithm 1. 𝜖𝐷 is the maximum
error at the output of the binary search in Algorithm 1.

CoRollaRy 4.4. 1
𝑁 Ê is a strongly consistent estimator of 1

𝑁 GTE. In particular, for any 0 < 𝛿 < 1/2,
1
𝑁 |GTE − Ê| = 𝑂 (𝑁 − 1

2+𝛿 ) w.p. 1.

We discuss in Section A.2 the implications of the lower bound in (10).

4.3 Simulations
We consider 𝑛 = 150000 advertisers with bids drawn from an exponential distribution 𝐹𝐶 with
mean 1. We wish to increase the bids of intervened advertisers by 10%, i.e. the bids of intervened
advertisers would be drawn from an exponential distribution 𝐹𝑇 with mean 1.1. The fraction of
intervened advertisers is 𝜌𝐼 = 0.4. We assume that the market is changing on a weekly basis.
In particular, during week 𝑡1 the participation rate 𝜌𝑡 is drawn from 𝑈 (0, 0.4), while during the
following week 𝑡2 it follows𝑈 (0.1, 0.5) (this assumption does not affect our theoretical results). We
run the calibration phase during week 𝑡1 and use binary search to compute the optimal multiplier,
i.e. the multiplier of 𝑆𝐶 auctions𝑚 = 0.90909. We run the measurement phase during week 𝑡2.
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GTE Adv RCT Pre-post
SCOTE

MEE = 0%
SCOTE

MEE = 5%
SCOTE

MEE = -5%
Mean estimate 5763.922 57703.824 9818.573 5763.921 4409.04 6694.42
Relative bias 0 901.12% 70.34% −1.06 × 10−5% -23.50% 16.14 %

Table 2. Estimation of GTE for changing campaign bids, where 𝐹𝐶 and 𝐹𝑇 are exponential. MEE = Multiplier
Estimation Error

Fig. 2. GTE estimation error as a function of the error of estimating the optimal multiplier

We compare our method SCOTE to advertiser side RCT, and pre-post method. In the pre-post
experiment, we launch the new bid recommendations to all intervened advertiser during week
𝑡2. In this case, the impact is estimated as the difference between the revenue during 𝑡2 and 𝑡1. It
should be noted that the advertiser interaction network (graphmodellingwho competewithwhom
in the auctions) is sampled from the set of complete subgraphs of the complete graph including
all advertisers, where the probability of a subgraph with 𝑘 advertisers is equal to [0.5(𝑎 + 𝑏)]𝑘 >
0. Thus, it is impossible to define clusters of competing advertisers and run cluster randomized
experiments. Moreover, since the changes introduced are observable by the advertisers (new bid
suggestions, for example), running switch-back based experiment would lead to a bad advertiser
experience.

Table 2 summarizes the mean of SCOTE, advertiser side RCT, and pre-post estimators (mean
estimate). For each method, we report the relative bias, which is equal to (mean estimate)/GTE-1.
We see that the SCOTE estimator outperforms the two other estimators, even when there is an
error in the estimation of the multiplier in the first phase. Figure 2 shows how the estimation error
of the optimal multiplier𝑚∗ during the first phase translates into estimation error of GTE during
the second phase. In particular, overestimation of the multiplier leads to underestimation of GTE
and vice versa.

Figure 3 gives the profile of the spillover effects terms𝛾𝑇 ,𝛾𝐶 , and𝛾𝑜 as functions of the multiplier
𝑚.We see that all the terms vanish at the optimalmultiplier𝑚∗, which is the key property of 𝑆𝐶 that
makes SCOTE estimate of GTE accurate. Interestingly, 𝛾𝑇 has a non-monotonic behavior, which
can be explained as follows. When 𝑚 is very small, the winning probability of a 𝑇 advertiser is
almost zero. As𝑚 increases, this probability increases at higher rate when 𝜌𝑇 = 1 than when 𝜌𝑇 =
0.5, because 𝑇 advertisers don’t have very competitive bids when 𝑚 is small. Thus, 𝛾𝑇 increases.
When𝑚 becomes large enough, 𝑇 advertisers’ bids become very competitive causing the rate of
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Fig. 3. Spillover effects vanish at the optimal multiplier

GTE Adv RCT Pre-post
SCOTE

MEE = 0%
SCOTE

MEE = 5%
SCOTE

MEE = -5%
Mean estimate 16035.85 172054.17 24155.62 16466.12 13797.68 18244.62
Relative bias 0 972.93% 50.63% 2.68% -13.95% 13.77 %

Table 3. SCOTE is robustness w.r.t. violation of Assumption 4.1. Estimation of GTE for changing campaign
bids, where 𝐹𝐶 and 𝐹𝑇 are 𝜒2

increase of the winning probability of a𝑇 advertiser to increase at higher rate when 𝜌𝑇 = 0.5 than
when 𝜌𝑇 = 1. Thus, 𝛾𝑇 starts decreasing.

Finally, we illustrate through an example the effects of violating Assumption 4.1. In particular,
we assume that 𝑏𝐶𝑖 ∼ 𝜒2 (2) and 𝑏𝑇𝑖 ∼ 𝜒2 (3). Table 3 shows that SCOTE estimation is robust to
violation of Assumption 4.1 (Relative bias equal to 2.68%) and it outperforms by a large margin
the two other methods. The robustness of the method comes from the fact that the calibration
phase is weakening the spillover effect terms despite the violation of the Matching Assumption. In
fact, the spillover effect terms are close to zero at the optimal𝑚∗ computed during the first phase:
𝛾𝑇 = −0.0028, 𝛾𝐶 = 0.0019, and 𝛾𝑜 = −0.0032.

4.3.1 Comparisonwith Cluster Randomized Experiments. To compare SCOTEwith cluster random-
ized experiments, we consider the same example at the beginning of this section, but we assume
15000 advertisers partitioned into 100 cliques (each clique is a complete graph), each containing
approximately 150 advertisers. We assume that each clique has 𝑥% of its advertisers shared with
some other cliques. 𝑥 is called the percentage of spillovers (we give in the appendix (Figure 11) an
example of a graph with 200 advertisers, 5 social cliques and 10% spillovers). We consider 50000
ad auctions. Each ad auction involves only one clique, i.e. before the start of the auction, a clique
is chosen randomly, and each advertiser belonging to that clique will participate w.p. 0.4 in the
auction. For the cluster randomized experiment, the clusters are defined to be equal to the social
cliques, while making sure that the advertisers that belong to more than one clique are assigned
to only one of the corresponding clusters. We repeat 50 times the cluster randomized experiment,
advertiser RCT, and SCOTE. Tables 4 and 5 report the average estimates, as well as the average
confidence intervals (CI) for different percentages of spillovers 𝑥 . Although cluster RCT performs
better than advertiser RCT, SCOTE outperforms cluster RCT in terms of bias and variance. For
more details about the distribution of the results for the 50 performed experiments, refer to Sec-
tion A.3.
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GTE Adv RCT Cluster RCT
SCOTE

MEE = 0%
SCOTE

MEE = 5%
SCOTE

MEE = -5%
Avg Estimate
(5% Spillover) 9707.06 265798.25 14125.92 10117.37 5323.86 14697.04
Relative Bias 0% 2638.2% 45.5% 4.23% -45.15% 51.41%
Avg Estimate
(10% Spillover) 10073.52 263938.77 20140.67 10453.88 5442.88 14985.85
Relative Bias 0% 2520.12% 99.94% 3.78% -45.97% 48.76%
Avg Estimate
(20% Spillover) 10494.08 329906.34 22988.86 10811.83 5599.46 15654.41
Relative Bias 0% 3043.73% 119.06% 3.03% -46.64% 49.17%
Table 4. Comparison of SCOTE and cluster randomized experiments - Changing bids - Average estimates

Spillover Adv RCT CI Cluster RCT CI SCOTE CI (MEE = 0%)
5% [83387.22 , 448209.3] [-13547.86 , 41799.71] [8948.3 , 11286.45]
10% [59779.86 , 468097.69] [-15907.45 , 56188.8] [9254.46 , 11653.31]
20% [83771.47 , 576041.22] [-25445.25 , 71422.98] [9616.29 , 12007.37]

Table 5. Comparison of SCOTE and cluster randomized experiments - Changing bids - Average CIs

GTE Adv RCT Pre-post
SCOTE

TREE=0%
SCOTE

TREE=5%
SCOTE

TREE=-5%
Mean estimate 3701.194 40584.47 14587.36 3701.194 3483.36 3923.42
Relative bias 0 996.52% 294.12% −1.13 × 10−5% -5.88% 6.004 %
Table 6. Estimation of GTE for changing campaign targeting. TREE = Throttling Rate Estimation Error

5 CHANGING CAMPAIGN TARGETING
We consider the model described in Section 4. Instead of changing the bids of intervened advertis-
ers, we wish to increase their participation rate. Each auction has two participation rates 𝜌𝐶𝑡 and
𝜌𝑇𝑡 drawn from two different distributions. Accordingly, a non-intervened advertiser will partic-
ipate in the auction w.p. 𝜌𝐶𝑡 , while an intervened one w.p. 𝜌𝑇𝑡 . One can think of this change as
suggesting to the intervened advertisers new keywords or broader audience segments. In order to
simulate a counterfactual market, we throttle in auctions the bids of treated advertisers with some
throttling rate 𝑚, i.e. if a treated advertiser is participating in an auction, we set her bid to zero
w.p. 1−𝑚, and w.p.𝑚 we don’t change her bid. During the first phase, we calibrate𝑚 to satisfy (4).
All the results of Section 4 can be extended to the targeting case. Table 6 gives the results of the
simulations, where we consider the same example of Section 4.3, but instead of changing the bids,
we change the participation rate distribution of intervened advertiser to𝑈 (0.2, 0.6). Moreover, we
assume that the market is evolving over time, where the bids increase by 10% fromweek 𝑡1 to week
𝑡2. According to the table, SCOTE is much more accurate than the two other methods.

5.0.1 Comparison with Cluster Randomized Experiments. To compare the performance of SCOTE
with cluster RCT in case of changing targeting, we add to the model the same graph structure,
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GTE Adv RCT Cluster RCT
SCOTE

TREE=0%
SCOTE

TREE=5%
SCOTE

TREE=-5%
Avg Estimate
(5% Spillover) 9074.53 473681.91 13797.50 9100.12 8035.61 10109.19
Relative Bias 0% 5119.9% 52.05% 0.28% -11.45% 11.4%
Avg Estimate
(10% Spillover) 9041.86 474731.37 18950.04 9021.99 8034.26 10055.30
Relative Bias 0% 5150.38% 109.58% -0.22% -11.14% 11.21%
Avg Estimate
(20% Spillover) 9466.72 587526.29 19746.69 9523.15 8430.15 10545.38
Relative Bias 0% 6106.23% 108.59% 0.6% -10.95% 11.39%

Table 7. Comparison of SCOTE and cluster randomized experiments - Changing targeting - Average esti-
mates

Spillover Adv RCT CI Cluster RCT CI SCOTE CI (TREE = 0%)
5% [259685.85 , 687677.98] [-13927.53 , 41522.53] [7963.49 , 10236.74]
10% [236605.02 , 712857.73] [-18423.33 , 56323.41] [7886.53 , 10157.44]
20% [294021.56 , 881031.02] [-33390.99 , 72884.37] [8334.93 , 10711.37]

Table 8. Comparison of SCOTE and cluster randomized experiments - Changing targeting - Average CIs

number of advertisers and ad auctions described in Section 4.3.1, and we assume that the partici-
pation rate changes from 0.4 for C to 0.6 for T. Tables 7 and 8 show that outperforms advertiser
RCT and cluster RCT in terms of bias and precision (CI).

6 CHANGING CAMPAIGN BUDGETS
6.1 Model and Problem Statement
Advertisers have a number of constraints, budgets being one of them. Budgets refer to the maxi-
mum amount an advertiser can spend in a day. As advertisers continue to spend throughout the
day (via auction wins), they may fully expend their budget before the day is over, which makes
them ineligible to bid in relevant auctions once they run out of budget. In this section, we discuss
a method to use SCOTE to measure the impact of budget recommendations in two-sided markets.

As before, we consider a two-sided market where a group of 𝑛 ads compete in 𝑁 ad auctions in a
day. Advertisers have fixed bids and budgets prior to an auction. Assume the budgets of the adver-
tisers are currently generated from a distribution 𝐹𝐶 = 𝐹 (𝜇𝐶 , 𝜎2

𝐶 ), where (𝜇𝐶 , 𝜎2
𝐶 ) is determined by

the platform’s current recommendations. Now, via a model change, assume the recommendations
are changed to (𝜇𝑇 , 𝜎2

𝑇 ), which leads to budgets now being generated from 𝐹𝑇 = 𝐹 (𝜇𝑇 , 𝜎2
𝑇 ). Assume

advertisers generate a bid from the distribution𝐺𝑏 (.), and the bid generation distribution remains
invariant over time, and is the same for all advertisers. Assume that both the budgets and the bid
distribution have their supports contained in R+. Our goal, as before is to estimate the GTE of the
change in the budgets distribution.

As in section 4, assume at each time point, we run an ad auction with a participation rate 𝜌𝑡 ,
where each eligible advertiser (i.e., an advertiser whose spend upto time 𝑡 has not exceeded their
budget) participates with probability 𝜌𝑡 . The advertiser with the highest bid wins, and pays their
bid if their current spend plus the winning bid does not exceed their budget, else they pay the
difference of their budget and current spend. If no advertiser is eligible, no auction is conducted
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and therefore no ad is served to the audience.The participant rate distribution can vary from week
to week, reflecting changes in the marketplace level. After 𝑁 requests have arrived, the day ends.
The same process is repeated for 𝑇 days.

6.2 SCOTE Estimation of GTE for Budgets
For an advertiser randomized experiment, if treated advertisers do increase their budgets, they are
able to remain in budget longer compared to their non-treated counterparts, and hence face less
competition in latter hours of the day. Advertiser side RCT estimate are therefore inaccurate, and
overestimate the GTE.

As we can simulate both an increase and a decrease in budgets via ML models, the model-based
SC design is ideal. Assume that we have built anMLmodel using historical data based on campaign
inputs in𝐶 , such that the Budget in 𝑆𝐶 for the corresponding advertiser is given by 𝐵𝑀𝐿

𝑖 = 𝐵𝐶𝑖 +𝜖𝑖 ,
where 𝜖𝑖 is generated from a distribution 𝐺𝑀𝐿 (𝜇𝑀𝐿, 𝜎

2
𝑀𝐿). Here 𝜇𝑀𝐿 denotes the bias of the ML

model, and 𝜎2
𝑀𝐿 the error. We aim to train the model such that the bias and the variance are low,

so that the true budget in Control is very close to the ML predicted budget.
Algorithm 2 is the algorithm for obtaining SCOTE Based estimate for Budgets. The SCOTE

ALGORITHM 2: Simulated-Counterfactual Based Experiment Design
Input: Model Bias and Error (𝜇𝑀𝐿, 𝜎

2
𝑀𝐿)

Output: SCOTE estimate Ê
First Phase: Calibration: 100% of intervened advertisers are in 𝐶;
Auction side RCT: Two treatments 𝑇𝑀𝐿 : 50 % of auctions are assigned to budgets 𝐵𝑀𝐿

𝑖
𝑇𝐶 : the rest 50% are assigned to budgets 𝐵𝐶𝑖 .
Advertisers are allowed to bid in 𝑇𝑀𝐿 as long as spend of campaigns in 𝑇𝑀𝐿 , 𝑆𝑖,𝑀𝐿 ≤ 0.5 × 𝐵𝑀𝐿

𝑖 .
Similarly, advertisers are allowed to bid in 𝑇𝐶 as long as 𝑆𝑖,𝑇 ≤ 0.5 × 𝐵𝐶𝑖 .

Repeat for 𝑇 times.;
Calibration Estimate Ê𝐶 = 2(Revenue generated by auctions assigned to 𝑇𝑀𝐿) - 2(Revenue generated by
auctions assigned to 𝑇𝐶 )

Second Phase: Estimation: all intervened advertisers are in 𝑇 ;
𝑇𝑀𝐿 : 50% of auctions are assigned to budgets 𝐵𝑀𝐿

𝑖 , 𝑇𝑇 : the rest 50% are assigned to budgets 𝐵𝑇𝑖 .
Advertisers are allowed to bid in 𝑇𝑀𝐿 as long as spend of campaigns in 𝑇𝑀𝐿 , 𝑆𝑖,𝑀𝐿 ≤ 0.5 × 𝐵𝑀𝐿

𝑖 .
Similarly, advertisers are allowed to bid in 𝑇𝐶 as long as 𝑆𝑖,𝑇 ≤ 0.5 × 𝐵𝑇𝑖 .

Repeat for 𝑇 times;
ML SCOTE Estimate Ê𝑀𝐿 = 2(Revenue generated by auctions assigned to 𝑇𝑇 ) - 2(Revenue generated by
auctions assigned to 𝑇𝑀𝐿);

estimate for the GTE is given by
Ê = Ê𝑀𝐿 + Ê𝐶 .

Essentially, while all advertisers are in 𝐶 , the experiment is run to obtain the calibration estimate
for 𝜒3 defined in (1). After the calibration estimate is obtained, then all advertisers are promoted
to𝑇 , after which the Measurement is conducted to obtain an estimate for 𝜒1. 𝜒2 is 0 by the experi-
ment structure. The whole procedure is repeated 𝑇 times. In the following section we prove some
desirable properties of this estimate.

Notice here, at time 𝑡 , the bid 𝑏𝑖𝑡 = 𝑏𝑖 for advertiser 𝑖 at time 𝑡 is replaced by𝑦𝑖𝑡 , which is the true
bid entered. There are two factors which can impact the bid at time 𝑡 , the first being whether the
advertiser partakes in the auction or not (bid is 0 if it they do not participate), and 𝑏𝑖 if they do. For
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the 𝑟 𝑡ℎ auction, the maximum bid is both a function of the bid distribution as well as the (random)
count of advertisers (𝑛𝑟 ) who still have enough funds remaining to partake in the auction. Then,
the following statement holds:

Lemma 6.1. When the underlying marketplace remains static:

(1) the ML based SCOTE estimate is an unbiased estimator of the GTE,
(2) If the underlying budgets distribution is light-tailed and stable, the SCOTE estimate is strongly

consistent in 𝑇 .

Notice that light-tailed and stable are sufficient conditions for strong consistency, not necessary.
In practice we notice that with heavy tailed budgets distributions such as log-normal, convergence
is quite rapid. While SCOTE estimate being an unbiased estimator of the GTE is a strong benefit,
there needs to be some guarantees on the convergence. This is followed up in Theorem 6.2, under
the conditions of the second point of Lemma 6.1.

TheoRem 6.2. Assume the bids are generated from i.i.d. 𝐸𝑥𝑝 (𝜆), with the error distribution𝑁 (𝜇𝑀𝐿, 𝜎
2
𝑀𝐿).

𝑁 auctions are conducted in a day, repeated over𝑇 days.Themarketplace participation rate is assumed
to be generated from𝑈 (0, 2𝜌𝐼 ). Then,

P(|GTE − Ê| > 𝑇𝛿) ≤
1 − (𝑇𝜆−𝑇𝑛𝜌𝐼 exp{𝜎2

𝑀𝐿𝜆
2 − 𝜇𝑀𝐿𝜆})

𝑇𝛿 exp𝑇𝛿
.

Note that the above bound is quite loose. We can use concentration inequalities to obtain tighter
bounds, but that would require more assumptions in the distribution (specifically the existence of
moments > 1 of budgets distribution, which may not be realistic).

While simply by virtue of Strong Law of Large Numbers (SLLN), the estimate is 𝑜 (𝑇 ) (where
𝑇 is the number of days the experiment is run), faster convergence is ensured by having a well-
calibrated ML model. This is all the more crucial for estimation, as while the marketplace may
remain static over a short duration of time, in the long run the marketplace evolves, and hence any
long-running estimate would be affected by the non-stationarity of the marketplace. Indeed, the
above bound relies on significant assumption that the marketplace remains invariant over time.
This assumption is often violated. The next section is devoted to simulations that compare and
contrast the performance of SCOTE against that of GTE, along with other standard marketplace
estimates, in case such violations occur.

6.3 Simulations
We consider𝑛 = 1500 advertisers with bids simulated from an Exponential distribution 𝐸𝑥𝑝 (1).The
control budgets are generated from an lognormal distributionwith parameter (1, 1).The budgets of
the intervened campaigns are raised by roughly 10%, to be generated from lognormal distribution
with parameter (2.1, 1). Initially, we assume that the marketplace remains invariant over time, and
the participation rate is 𝜌𝐼 = 0.4. The calibration and the measurement phase is run for 𝑇 days
each, where 𝑇 is varied. We consider 10000 requests, and the bid distribution is 𝐸𝑥𝑝 (1). Table 9
demonstrates, while all SCOTE estimates converge over time, the lower model error leads to a
faster convergence. In particular, Table 9 is a best case scenario where the marketplace remains
invariant over time. However, in reality, the marketplace evolves over time, e.g., via an increase in
participation rates. To model this, consider the following scenario: the entire process takes place
over two weeks. In week 1, the participation rate is 0.4, and in the second week it is 0.5. In week 1,
the pre-measurement is taken, and the Calibration phase of the SCOTE is conducted. In the second
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Days GTE
SCOTE
(𝜖 = 0.5)

SCOTE
(𝜖 = 0.25)

SCOTE
(𝜖 = 0.125) Adv RCT Pre-post

1 1051.003 4040.212 1391.767 1227.912 28087.882 1077.921
2 1051.003 1415.432 1341.863 1201.129 29989.123 1087.983
3 1051.003 1359.098 1295.423 1198.082 21167.099 1024.448
4 1051.003 1105.775 1098.972 1091.093 21098.453 1030.321
5 1051.003 1077.822 1067.099 1058.991 22347.076 1041.092
6 1051.003 1062.096 1060.091 1049.234 25327.653 1047.912
7 1051.003 1059.219 1053.547 1050.982 24035.242 1058.992

Table 9. SCOTE Estimate as a function of the number of days with different model errors, when the market-
place is static

Days GTE
SCOTE
(𝜖 = 0.5)

SCOTE
(𝜖 = 0.25)

SCOTE
(𝜖 = 0.125) Adv RCT Pre-post

1 1051.003 6215.433 4436.31 3192.122 35365.245 4331.871
2 1051.003 3952.04 2309.879 2010.228 30135.764 4309.548
3 1051.003 3112.338 1521.201 1239.291 32008.548 4301.829
4 1051.003 2908.921 1160.401 1104.131 32789.341 4302.021
5 1051.003 2894.321 1154.098 1090.125 30865.977 4301.998
6 1051.003 2771.092 1159.213 1082.871 31675.887 4302.128
7 1051.003 2770.213 1151.765 1081.982 29299.566 4301.997

Table 10. SCOTE Estimate as a function of the number of days with different model errors, when the mar-
ketplace is non-stationary

week, the post-measurement is taken, the advertiser randomized experiment is conducted and the
second SCOTE measurement is taken.

In Table 10, we notice that the Pre-post estimate converges quickly, but it significantly overes-
timates the real impact (as does the advertiser side RCT). On the other hand, while the SCOTE
estimates perform poorly as well in the beginning, it converges much faster and the extent of
overestimation is much lower.

Participation Rate GTE
SCOTE
(𝜖 = 0.5)

SCOTE
(𝜖 = 0.25)

SCOTE
(𝜖 = 0.125) Adv RCT Pre-post

0.8 → 1.0 1731.122 2212.232 2191.474 2092.144 45912.231 8321.232
0.5 → 0.6 1097.199 2594.123 2108.176 1198.918 29299.566 3922.8
0.1 → 0.3 209.019 401.03 311.982 290.124 9082.546 500.434

Table 11. SCOTE Estimate on 7 days as a function of Marketplace change for different model errors

Table 11 demonstrates the relative performance of the SCOTE estimator with variations in the
participation rate after 𝑇 = 7 days of run. While all estimates inaccurately estimate the GTE,
SCOTE has a lower extent of overestimation.

6.3.1 Comparison with Cluster Randomized Experiments. To compare the performance of SCOTE
with cluster RCT in case of changing budgets, we add to the model the same graph structure
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Avg Estimate GTE Adv RCT Cluster RCT
SCOTE
𝜖 = 0.5

SCOTE
𝜖 = 0.25

SCOTE
𝜖 = 0.125

(20% Spillover: LN) 2079.91 12091.91 3011.128 2224.98 2199.78 2131.92
(20% Spillover: EXP) 1993.82 10081.18 2518.19 2191.93 2050.67 2001.29
(10% Spillover: LN) 2018.192 10241.082 2391.988 2291.28 2109.764 2078.291
(10% Spillover: EXP) 1901.121 9726.102 2010.92 2010.92 1988.12 1951.198
(5% Spillover: LN) 2015.29 11029.192 2348.01 2189.63 2120.45 2081.24
(5% Spillover: EXP) 1923.63 9681.28 1999.92 2001.18 1993.83 1951.22

Table 12. Comparison of SCOTE and cluster randomized experiments - Average estimates

described in Section 4.3.1. We assume that the advertisers are partitioned into 10 cliques, each
containing approximately 150 advertisers. We assume that 𝑥% is the percentage of spillovers. We
repeat 150 times the cluster randomized experiment, advertiser RCT, and SCOTE. Tables 12 report
the average estimates for different percentages of spillovers 𝑥 , when the budget distributions are
generated from Log-Normal and Exponential Distributions. Although cluster RCT performs better
than advertiser RCT, SCOTE outperforms cluster RCT in terms of bias and variance for low model
errors.

7 CONCLUSIONS AND FUTURE DIRECTIONS
Accurately estimating the effect of advertiser facing treatments in the presence of spillover ef-
fects is an important problem in advertising markets. We propose a new methodology to do this,
with the key feature being the introduction of a simulated-counterfactual market that allows us
to transform the problem into an auction side RCT, thus bypassing the spillover effects challenge.
In addition, due to higher number of auctions, we get low variance, thus achieving the best of
both worlds with low bias and low variance. We further give evidence that the approach is ro-
bust to various sources of errors, using simplifying distributional assumptions as well as a variety
of simulations. The most important contribution is the fundamental design of SCOTE, while we
acknowledge that there is plenty of room for additional analysis, theoretical as well as empirical.

There are two main sources of errors in the SCOTE approach, due to calibration and due to
marketplace changes. Our theoretical and simulation results give preliminary evidence that the
approach is robust to both error sources. However, there is a lot to explore in both directions.

• For calibration in the transformation based approach, we considered simple multipliers in
this paper. Potentially, we could use arbitrary transformers that are learned using the adver-
tiser side RCT. We could match the entire input distribution in 𝐶 , or only certain statistics
like we do here. Our calibration strategy equalizes ad spend for advertisers under𝐶 and 𝑆𝐶 ,
but there could be other calibration strategies that are more robust to errors. We can draw an
analogy with the de-biased ML approach of ?, where errors in ML models that are nuisance
estimators are orthogonal to errors in the treatment effect estimators. Is there an equivalent
notion here, where the first stage estimators (either ML models or transformations) are in a
sense orthogonal?

• We do not have any theoretical guarantees about robustness to marketplace changes. For-
malizing this and proving such robustness is an important next step. We currently do not
explicitly account for such changes in the estimator. Potentially, one could employ a vari-
ety of causal ML techniques such as diff-in-diff in combination with SCOTE to make the
estimates even more robust to marketplace changes.



Submission 133 19

An important moral of our paper is that while the problem of spillover effects may be hard to solve
in general, the special case of online advertising has additional properties that allows us to design
innovative solutions. This special setting of online advertising has immense practical applications,
and is worthy of more attention from the economics and computation community. We expect that
our paper inspires additional future work in this direction.

A BIDS
A.1 Proofs and Technical Assumptions
We give explicit formulas for the terms introduced in Section 4, to be used in the proofs of the
main results:

𝑟 (𝑚, 𝜌𝑇 ) = Emax
𝑖

𝑦𝑖 =
∫ ∞

0
𝑥𝑑

(
𝑎 + 𝑏
2

(𝜌𝐼𝜌𝑇 𝐹𝑚 (𝑥) + ((1 − 𝜌𝑇 )𝜌𝐼 + 1 − 𝜌𝐼 )𝐹𝐶 (𝑥)) + 1 − 𝑎 + 𝑏
2

)𝑛
,

(11)
𝑠𝑇 (𝑚, 𝜌𝑇 ) = 𝑁E(𝑦𝑖1(𝑦𝑖 ≥ max

𝑗
𝑦 𝑗 ) |𝑇𝑖 = 1, 𝐼𝑖 = 1)

=
∫ ∞

0
𝑁
𝑎 + 𝑏
2

𝑥

(
𝑎 + 𝑏
2

(𝜌𝐼𝜌𝑇 𝐹𝑚 (𝑥) + ((1 − 𝜌𝑇 )𝜌𝐼 + 1 − 𝜌𝐼 )𝐹𝐶 (𝑥)) + 1 − 𝑎 + 𝑏
2

)𝑛−1
𝑑𝐹𝑚 (𝑥),

(12)

𝑠𝐶 (𝑚, 𝜌𝑇 ) = 𝑁E(𝑦𝑖1(𝑦𝑖 ≥ max
𝑗

𝑦 𝑗 ) |𝑇𝑖 = 0, 𝐼𝑖 = 1)

=
∫ ∞

0
𝑁
𝑎 + 𝑏
2

𝑥

(
𝑎 + 𝑏
2

(𝜌𝐼𝜌𝑇 𝐹𝑚 (𝑥) + ((1 − 𝜌𝑇 )𝜌𝐼 + 1 − 𝜌𝐼 )𝐹𝐶 (𝑥)) + 1 − 𝑎 + 𝑏
2

)𝑛−1
𝑑𝐹𝐶 (𝑥),

(13)

where 𝐹𝑚 is the CDF of𝑚𝑏𝑇𝑖 .
To prove the following Lemma and Theorem, we assume the following assumptions:
Assumption A.1. The distributions 𝐹𝑇 and 𝐹𝐶 have continuously differentiable density functions

𝑓𝑇 and 𝑓𝐶 , respectively.
Assumption A.2. The bids 𝑏𝑇𝑖 and 𝑏𝐶𝑖 belong to the interval [0, 𝐵𝑚].
Assumption A.2 can be relaxed by requiring the distributions 𝐹𝑇 and 𝐹𝑐 to be Sub-Gaussian.

A.1.1 Proof of Lemma 4.2. We start by proving the first point. It is easy to see that under Assump-
tion 4.1, 𝑚∗ is a solution of C(𝑚) = 0. Next, we show that C is increasing. Let 𝑚1 < 𝑚2. For
advertiser 𝑖 and 𝐽 ⊂ {1, . . . , 𝑛}, we define the event

𝐴𝑖 (𝐽 ) = {advertisers in 𝐽 are in Treatment} ∪ {𝑇𝑖 = 1, 𝐼𝑖 = 1}.
The index𝑚𝑎 in the expectation indicates that all the requests have multiplier𝑚𝑎 . We have

E𝑚2 (𝑦𝑖1(𝑦𝑖 ≥ max
𝑗

𝑦 𝑗 ) |𝐴𝑖 (𝐽 )) = E
(
𝑝𝑖𝑚2𝑏

𝑇
𝑖 1

(
𝑝𝑖𝑚2𝑏

𝑇
𝑖 ≥ max({𝑝 𝑗𝑚2𝑏

𝑇
𝑗 } 𝑗∈ 𝐽 , {𝑝𝑘𝑏𝐶𝑘 }𝑘∉𝐽 )

)
|𝐴𝑖 (𝐽 )

)
=
𝑚2

𝑚1
E

(
𝑝𝑖𝑚1𝑏

𝑇
𝑖 1

(
𝑝𝑖𝑚2𝑏

𝑇
𝑖 ≥ max({𝑝 𝑗𝑚2𝑏

𝑇
𝑗 } 𝑗∈ 𝐽 , {𝑝𝑘𝑏𝐶𝑘 }𝑘∉𝐽 )

)
|𝐴𝑖 (𝐽 )

)
≥ 𝑚2

𝑚1
E

(
𝑝𝑖𝑚1𝑏

𝑇
𝑖 1

(
𝑝𝑖𝑚1𝑏

𝑇
𝑖 ≥ max({𝑝 𝑗𝑚1𝑏

𝑇
𝑗 } 𝑗∈ 𝐽 , {𝑝𝑘𝑏𝐶𝑘 }𝑘∉𝐽 )

)
|𝐴𝑖 (𝐽 )

)
=
𝑚2

𝑚1
E𝑚1 (𝑦𝑖1(𝑦𝑖 ≥ max

𝑗
𝑦 𝑗 ) |𝐴𝑖 (𝐽 )) .

Noticing that ∪𝐽 ⊂{1,...,𝑛}𝐴𝑖 (𝐽 ) = {𝑇𝑖 = 1, 𝐼𝑖 = 1}, we obtain
𝑠𝑇 (𝑚2, 0.5) = 𝑁E𝑚2 (𝑦𝑖1(𝑦𝑖 ≥ max

𝑗
𝑦 𝑗 ) |𝑇𝑖 = 1, 𝐼𝑖 = 1) ≥

𝑁
𝑚2

𝑚1
E𝑚1 (𝑦𝑖1(𝑦𝑖 ≥ max

𝑗
𝑦 𝑗 )𝑇𝑖 = 1, 𝐼𝑖 = 1) = 𝑚2

𝑚1
𝑠𝑇 (𝑚1, 0.5).
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Similarly, we can show that 𝑠𝐶 (𝑚2, 0.5) ≤ 𝑠𝐶 (𝑚1, 0.5). This show that C is increasing. It remains
to show that𝑚∗ is a unique zero of C. Suppose that𝑚1 < 𝑚2 are zeros of C. Thus,

0 = 𝑠𝑇 (𝑚2, 0.5) − 𝑠𝐶 (𝑚2, 0.5) ≥
𝑚2

𝑚1
𝑠𝑇 (𝑚1, 0.5) − 𝑠𝐶 (𝑚1, 0.5) =

(
𝑚2

𝑚1
− 1

)
𝑠𝐶 (𝑚1, 0.5).

Thus, 𝑠𝐶 (𝑚1, 0.5) = 𝑠𝑇 (𝑚1, 0.5) = 0. Using 𝑠𝑇 (𝑚1, 0.5) = 0, we obtain,

0 = E𝑚1

(
E𝑚1

(
𝑚1𝑏

𝑇
𝑖 1

(
𝑚1𝑏

𝑇
𝑖 ≥ max

𝑗≠𝑖
(𝑦𝑖 )

)
|𝑇𝑖 = 1, 𝐼𝑖 = 1, 𝑝𝑖 = 1

))
= E𝑚1

(
𝑚1𝑏

𝑇
𝑖 1

(
𝑚1𝑏

𝑇
𝑖 ≥ max

𝑗≠𝑖
(𝑦𝑖 )

))
0.5𝜌𝐼

𝑎 + 𝑏
2

.

Thus, E𝑚1

(
𝑚1𝑏

𝑇
𝑖 1

(
𝑚1𝑏

𝑇
𝑖 ≥ max𝑗≠𝑖 (𝑦𝑖 )

) )
= 0 (There is nothing special about the index 𝑖 , it can be

any advertiser 𝑖). By conditioning on events like {𝑇𝑗 = 1, 𝐼 𝑗 = 1, 𝑝 𝑗 = 1} and {𝐼 𝑗 = 0, 𝑝 𝑗 = 0}, one
can show that either (i) the event {𝑏𝑇𝑗 > 𝑏𝑇𝑖 } has probability 1, or (ii) the event {𝑚1𝑏

𝑇
𝑖 < 𝑏𝐶𝑗 }, for

all 𝑖 and 𝑗 . The first one implies that w.p. 1, 𝑏𝑇𝑗 > 𝑏𝑇𝑖 and 𝑏𝑇𝑗 < 𝑏𝑇𝑖 , which is impossible. Thus, w.p.
1,𝑚1𝑏

𝑇
𝑖 < 𝑏𝐶𝑗 for all i and j. Similarly, using 𝑠𝐶 (𝑚1, 0.5) = 0, we obtain that w.p. 1,𝑚1𝑏

𝑇
𝑖 > 𝑏𝐶𝑗 for

all i and j. This leads to a contradiction, and proves the first point.
To prove the second point, observe that the impact can be written as in (8). Following (11), the

last two terms of the rhs of the second equality in (8) are zero. This proves the second point.

A.1.2 Proof of Theorem 4.3. We prove this result in two steps. First, we derive a bound on the
estimation error of 𝑚∗ during the calibration phase. This error is caused by (i) the fact we are
running Binary Search method a finite number of steps only, and (ii) we are using a finite number
of samples to evaluate the calibration function. In the second step, we derive (10).

We start by the first step. We assume wlog that𝑚 ∈ [0, 1]. We divide the unit interval [0, 1] into
2𝑘 intervals, each of length 2−𝑘 .𝑘 is chosen such that 2−𝑘 < 𝜖𝐷 . We denote by𝑈𝑖 = (𝑖/2𝑘 , (𝑖+1)/2𝑘 ).
We assume wlog that𝑚∗ is the midpoint of some interval 𝑈𝑖∗ . Let us describe the Binary Search
method when we know C perfectly. One can look at Binary Search as the process of removing
iteratively the half interval that does not contain 𝑈𝑖∗ until we are left with 𝑈𝑖∗ . For example, if
𝑘 = 3 and 𝑖∗ = 5, we start by removing the left half of [0, 1], i.e. 𝑈0 ∪𝑈1 ∪𝑈2 ∪𝑈3, then the right
half of (1/2, 1), and finally the left half of (1/4, 3/4). Of course, we don’t know𝑚∗ and what we
are actually doing is, at each step 𝑠 , we evaluate C at the mid-point 𝑐𝑠 of the remaining interval, if
C(𝑐𝑠 ) > 0we remove the right half, and if C(𝑐𝑠 ) < 0we remove the left half. Using this description
of Binary Search, one can show that it always takes 𝑘 steps to find the interval containing𝑚∗.

The problem is that we don’t know C(𝑐𝑠 ), but rather an estimate �C(𝑐𝑠 ) from the advertiser
randomized experiment. In this case, for Binary Search to succeed in finding the 𝑈𝑖∗ , at each step,�C(𝑐𝑠 ) must have the same sign as C(𝑐𝑠 ). Thus, if C(𝑐𝑠 ) < 0, then the probability of success at step
is

𝑃𝑠 = P
( �C(𝑐𝑠 ) − C(𝑐𝑠 ) < −C(𝑐𝑠 )

)
= P

( �C(𝑐𝑠 ) − C(𝑐𝑠 ) < |C(𝑐𝑠 ) |
)
.

Using similar arguments than those used in Lemma 4.2, one can show that for 𝑚2 > 𝑚1, if
𝑠𝑇 (𝑚1, 0.5) = 𝑠𝑇 (𝑚2, 0.5), then 𝑠𝑇 (𝑚1, 0.5) = 𝑠𝑇 (𝑚2, 0.5) = 0. But, from the expression of 𝑠𝑇 (𝑚1, 0.5)
(12), one can see that 𝑠𝑇 (𝑚, 0.5) > 0 for 𝑚 > 0. As a result, C is strictly increasing. Under As-
sumption A.1, C has a continuously smooth derivative which is lower bounded by 𝑁𝐶1 on [0, 1],
where 𝐶1 > 0 is a constant that does not depend on 𝑁 . It depends on the problem’s parameters
{𝐹𝑇 , 𝐹𝐶 , 𝑛, 𝑎, 𝑏, 𝜌𝐼 , 𝜌𝑇 }. Thus, |C(𝑚) | ≥ 𝑁𝐶1 |𝑚 −𝑚∗ |, which implies,

𝑃𝑠 ≥ P
( �C(𝑐𝑠 ) − C(𝑐𝑠 ) ≤ 𝑁𝐶1 |𝑐𝑠 −𝑚∗ |

)
.
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We get similar result when C(𝑐𝑠 ) > 0. We have

�C(𝑐𝑠 ) = 𝑁∑
𝑟=1

(average spend in r of advertisers in 𝑇 − average spend in r of advertisers in 𝐶)

:=
𝑁∑
𝑟=1

(̂
𝑠𝑟𝑇 − 𝑠̂𝑟𝐶

)
.

where 𝑟 is he index of the auction. Under Assumption A.2, {̂𝑠𝑟𝑇 − 𝑠̂𝑟𝐶 }𝑟 are between 0 inequality, we
get

𝑃𝑠 ≥ 1 − exp

(
−
2𝑁𝐶2

1 |𝑐𝑠 −𝑚∗ |2

𝐵2
𝑚

)
.

Recalling that 𝑚̂ is the estimate of𝑚∗ computed using Binary Search. We obtain

P(|𝑚̂ −𝑚∗ | ≤ 𝜖𝐷 ) ≥
⌈log2 (1/𝜖𝐷 ) ⌉∏

𝑠=1

(
1 − exp

(
−
2𝑁𝐶2

1 |𝑐𝑠 −𝑚∗ |2

𝐵2
𝑚

))
.

It remains to come up with a worst case scenario for the mid-points 𝑐𝑠 . The probabilities of success
𝑃𝑠 areworsewhen 𝑐𝑠 are close to𝑚∗. Sowewish to find an examplewhere at each step of the Binary
Search the distance |𝑐𝑠 −𝑚∗ | is minimal. We will reason backwards to come up with the worse case
scenario. After the final step𝑘 , we are leftwith𝑈𝑖∗ . At the beginning of step𝑘 , there 2 options, either
we are left with𝑈𝑖∗−1 and𝑈𝑖∗ or𝑈𝑖∗+1 and𝑈𝑖∗ . Both give the same distance |𝑐𝑘 −𝑚∗ | = 2−(𝑘+1) . Thus
lets assume we are left with 𝑈𝑖∗−1 ∪ 𝑈𝑖∗ = 𝑉𝑘 . At step k-1, we are left with one of the following
options: (i) 𝑉𝑘 plus two 𝑈 intervals to the left of 𝑉𝑘 , or (ii) 𝑉𝑘 plus two 𝑈 intervals to the right
of 𝑉𝑘 . The optimal choice is (ii), which gives |𝑐𝑘−1 − 𝑚∗ | = 2−(𝑘+1) . One can show iteratively,
that switching between left and right at each step is the worse case scenario. In this case, we get
{|𝑐𝑠 −𝑚∗ |, 𝑠 = 1, . . . , 𝑘} = { 1

2𝑘+1
, 1
2𝑘+1

, 1+2
2𝑘+1

, 1+2
2

2𝑘+1
, . . . , 1+2

𝑘−2

2𝑘+1
}. Thus,

P( |𝑚̂ −𝑚∗ | ≤ 𝜖𝐷 ) ≥
(
1 − exp

(
−
𝑁𝐶2

1𝜖
2
𝐷

16𝐵2
𝑚

))2 ⌈log2 (1/𝜖𝐷 ) ⌉−2∏
𝑠=1

(
1 − exp

(
−
𝑁𝐶2

1 (1 + 2𝑠 )2𝜖2𝐷
16𝐵2

𝑚

))
.

Now, we can derive (10). Following Assumption A.1, 𝑟 (𝑚, 1) is continuously differentiable on
[0, 1]. Thus, there exists a constant 𝐶2 independent of 𝑁 (it depends only on {𝐹𝑇 , 𝐹𝐶 , 𝑛, 𝑎, 𝑏, 𝜌𝐼 })
such that |𝑟 (𝑚, 1) − 𝑟 (𝑚′, 1) | ≤ 𝐶2 |𝑚 −𝑚′ |, for all𝑚,𝑚′ in the unit interval.

We have that

P(| �𝑁𝑟 (1, 1) − �𝑁𝑟 (𝑚̂, 1) − GTE| ≤ 𝑁𝜖) = P(| �𝑁𝑟 (1, 1) − �𝑁𝑟 (𝑚̂, 1) − (𝑁𝑟 (1, 1) − 𝑁𝑟 (𝑚∗, 1)) | ≤ 𝜖) ≥

P
(
| �𝑁𝑟 (1, 1) − 𝑁𝑟 (1, 1) | ≤ 𝑁 ((𝜖 −𝐶2𝜖𝐷 )/2

)
P

(
| �𝑁𝑟 (𝑚̂, 1) − 𝑁𝑟 (𝑚̂, 1) | ≤ 𝑁 ((𝜖 −𝐶2𝜖𝐷 )/2

)
× P(|𝑁𝑟 (𝑚∗, 1) − 𝑁𝑟 (𝑚̂, 1) | ≤ 𝑁𝐶2𝜖𝐷 )
where the first equality follows from the second point of Lemma 4.2. Using Hoeffding’s inequality
[?] and Assumption A.2, one can show that the product of the first two terms is greater than(

1 − 2 exp

(
−𝑁 (𝜖 −𝐶2𝜖𝐷 )2

2𝐵2
𝑚

))2
.

Morover,

P(|𝑁𝑟 (𝑚∗, 1) − 𝑁𝑟 (𝑚̂, 1) | ≤ 𝑁𝐶2𝜖𝐷 ) ≥ P( |𝑚∗ − 𝑚̂ | ≤ 𝜖𝐷 ) .
This proves the result.
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A.1.3 Proof of Corollary 4.4. Using (10), one can show that

P(|GTE − Ê| ≤ 𝑁𝜖) ≥
(
1 − 2 exp

(
−𝑁 (𝜖 −𝐶2𝜖𝐷 )2

2𝐵2
𝑚

))2 (
1 − exp

(
−
𝑁𝐶2

1𝜖
2
𝐷

16𝐵2
𝑚

)) ⌈log2 (1/𝜖𝐷 ) ⌉

.

One can show by iteratively that, for 0 < 𝑎𝑖 < 1, 1 − ∏𝑘
𝑖=1 (1 − 𝑎𝑖 ) ≤

∑𝑘
𝑖=1 𝑎𝑖 . Thus,

P( |GTE − Ê| ≥ 𝑁𝜖) ≤4 exp
(
−𝑁 (𝜖 −𝐶2𝜖𝐷 )2

2𝐵2
𝑚

)
+ ⌈log2 (1/𝜖𝐷 )⌉ exp

(
−
𝑁𝐶2

1𝜖
2
𝐷

16𝐵2
𝑚

)
.

Setting 𝜖 = 𝑁 − 1
2+𝛿 and 𝜖𝐷 = (1/2𝐶2)𝑁 − 1

2+𝛿 , we get

P

(
1
𝑁
|GTE − Ê| ≥ 𝑁 − 1

2+𝛿
)
≤4 exp

(
− 𝑁 𝛿

8𝐵2
𝑚

)
+

(
log2 (2𝐶2)

1 − 2𝛿
2 log 2

log2 𝑁 + 1

)
exp

(
−

𝑁 𝛿𝐶2
1

64𝐶2
2𝐵

2
𝑚

)
.

Finally, using Borel-Cantelli’s Lemma [?, Lemma 2.3.1], we get the result.

A.2 Minimum Number of Auctions to Achieve High Estimate Accuracy
To understand the implications of (10), we analyze the following functions: (i) 𝑁𝑚𝑖𝑛 (𝜖𝐷 ) = the
minimumnumber of auctions such that the estimator Ê is 0.5−accurate, i.e |Ê−GTE| ≤ 𝑁𝜖 = 0.5𝑁 ,
(ii) 𝑁 2

𝑚𝑖𝑛 (𝜖𝐷 ) = the minimum number of auctions such that Ê is 0.5−accurate, given that the
estimate of 𝑚 in the first phase is 𝜖𝐷−accurate, and (iii) 𝑁 1

𝑚𝑖𝑛 (𝜖𝐷 ) = the minimum number of
auctions such that the estimator of𝑚 in the first phase is 𝜖𝐷−accurate. 𝑁𝑚𝑖𝑛, 𝑁

2
𝑚𝑖𝑛 , and 𝑁 1

𝑚𝑖𝑛 are
computed so that the corresponding probabilities are greater than 0.95. Their graphs are given in
Figure 4. 𝑁𝑚𝑖𝑛 is decreasing when 𝜖𝐷 < 0.35, but surprisingly increasing when 𝜖𝐷 > 0.35. The
decreasing part follows from the following fact. Given a small 𝜖𝐷 and 𝜖𝐷−accurate𝑚, very little
noise carries over from the estimation of 𝑚 in the first phase to the estimation of GTE in the
second phase. Thus, most of the noise in the estimation of GTE in the second phase comes from
the estimation itself, which is small because of the independence of the auctions. As a result, given
an 𝜖𝐷−accurate𝑚, the minimum number of auctions to insure 0.5−accuracy in the second phase
is low (𝑁 2

𝑚𝑖𝑛 ≤ 14𝑘). This means that when 𝜖𝐷 is small, 𝑁𝑚𝑖𝑛 is dictated by the first phase, i.e. it is
computed to satisfy a small 𝜖𝐷 . One can argue that imposing a very small 𝜖𝐷 and asking for a large
number of auctions (∼ 100𝑘 when 𝜖𝐷 = 0.05) is unnecessary to reach an 𝜖−accuracy in the second
phase. All what we need is 𝜖𝐷 = 0.35 and 14k auctions? This is true, but we cannot compute the
optimal 𝜖𝐷 value (0.35 in our example), since it depends on the problem’s parameters which we
don’t know. When 𝜖𝐷 is large (𝐶2𝜖𝐷 is close 𝜖), a low number of auctions (𝑁 1

𝑚𝑖𝑛 ∼ 2𝑘) is sufficient
to guaranty an 𝜖𝐷 -accuracy in the first phase. However, the large amount of noise in estimating
𝑚 carries over to the second phase. It increases with 𝜖𝐷 , thus requiring an increasing number of
auctions to wash out the noise and satisfy an 𝜖−accuracy of the GTE estimate. In this case, the
minimum number of auctions is dictated by the second phase (𝑁𝑚𝑖𝑛 ≈ 𝑁 2

𝑚𝑖𝑛).

A.3 Comparison of cluster RCT and SCOTE
In this section, we give the distribution of the results for the 50 performed experiments to compare
the performance of cluster randomized experiments and SCOTE. In particular, we report the dis-
tribution of real GTE and its estimates using advertiser RCT, cluster RCT, and SCOTE (Figures 5, 7,
and 9). Moreover, we report the distribution of the width of CIs for the different methods (Figures
6, 8, and 10).
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Fig. 4. Minimum number of auctions to achieve high estimate accuracy

Fig. 5. Distribution of GTE and GTE estimates with spillovers equal to 5%

B PROOFS AND TECHNICAL ASSUMPTIONS FOR BUDGETS
In this section we provide proofs of the results stated in Section 6.

Assumption B.1. The budgets distribution on 𝑇 and 𝐶 have finite mean and variance.

B.0.1 Proof of lemma 6.1.

PRoof. Notice that for all auction treatments, the spend is monotone non-decreasing over time
(spend in a treatment wins if the advertiser wins the auction, by the winning bid. Otherwise it
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Fig. 6. Distribution of CI width with spillovers equal to 5%

Fig. 7. Distribution of GTE and GTE estimates with spillovers equal to 10%

remains the same). For treatment 𝑘 , let 𝑆𝑖,𝑟,𝑘 denote the spend of advertiser 𝑖 until auction 𝑟 . Let
𝐵𝑖,𝑘 be the corresponding budget.

0 ≤ 𝑆𝑖,0,𝑘 ≤ 𝑆𝑖,1,𝑘 ≤ 𝑆𝑖,2,𝑘 ≤ · · · ∀𝑘

and

E(𝑆𝑖,𝑟,𝑘 ) ≤ E(𝐵𝑖,𝑟,𝑘 )∀{𝑖, 𝑟 , 𝑘}𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒.
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Fig. 8. Distribution of CI width with spillovers equal to 10%

Fig. 9. Distribution of GTE and GTE estimates with spillovers equal to 20%

As per assumption B, 𝑆𝑖,𝑟,𝑘 is a nonnegative random variable which is point wise bounded. Note
that the total spend after 𝑛 ad auctions is given by

𝑆𝑘 =
𝑁∑
𝑖=1

𝑛∑
𝑟=1

𝑆𝑖,𝑟,𝑘

, which is still point wise bounded (by
∑𝑁

𝑖=1 𝐵𝑖,𝑟,𝑘 ). Now, if the experiment is repeated over 𝑇 days
independently, then the mean spend over𝑇 days for treatment 𝑘 is given by 𝑆𝑘 =

∑𝑇
𝑡=1 𝑆

𝑡
𝑘

𝑇 , which is
a mean of i.i.d. random variables which are non-negative. Writing out SCOTE estimate, we notice
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Fig. 10. Distribution of CI width with spillovers equal to 20%

Fig. 11. An example of graph with 5 social cliques, 200 advertisers, and 10% spillovers

that the estimate is given by Ê = 2 × [(𝑆𝑇 − 𝑆𝑀𝐿) + ( ¯𝑆𝑀𝐿 − 𝑆𝐶 )]. Taking expectation, we notice
that the estimate is unbiased.

For proof of the second part, notice if the budgets distribution is light tailed and stable, so is
the spend distribution. Hence, the Strong Law of Large numbers applies, which provides strong
consistency. □
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B.1 Proof of 6.2
PRoof. Notice that the maximum bid of an auction is decreasing over time for any bid distri-

bution, as the number of eligible advertisers decrease. To see this, assume 𝑁 (𝑡) is the number of
advertisers that have remained eligible to bid at period 𝑡 . Consider first the simple case that par-
ticipation rate is 1 (i.e., all advertisers are eligible). The winning bid at 𝑡 , assigned𝑊𝐵(𝑡), has the
distribution 𝐺𝑊𝐵𝑡 (𝑥) = [𝐺𝐵 (𝑥))]𝑁𝑡 . As 0 ≤ 𝐺𝐵 (𝑥) ≤ 1 and 𝑁𝑡 ≥ 𝑁𝑡+1, we have

E(𝑊𝐵(𝑡)) =
∫ ∞

0
(1 −𝐺𝐵 (𝑥)𝑁𝑡 ) ≥ E(𝑊𝐵(𝑡)) .

Indeed, if the participation rates are drawn i.i.d from the same distribution, the result also follows.
That is to say, E(𝐵𝑚𝑎𝑥 (𝑛 + 1))) ≥ E(𝐵𝑚𝑎𝑥 (𝑛))). Next, notice, in the spend difference, we can

separate out two sets of advertisers: first, advertiserswho are out-of-budget in both, and advertisers
who are out-of-budget in only 1.

As the spend difference in the estimates is only the spend difference for advertisers who have
gone out of budget in one treatment, but not the other.

P( |GTE − Ê| > 𝑡𝛿) ≤ E|GTE − Ê|
𝑡𝛿

≤ E|Ê𝑀𝐿 | + E|Ê𝐶 − GTE|
𝑡𝛿

.

The decomposition is by virtue of Markov inequality and triangle inequality. For the first term,
note that

𝐸𝑀𝐿 =
∑

𝑖∈{1,2,· · · ,𝑁 }
(𝑆𝑖,𝑀𝐿 − 𝑆𝑖,𝐶 ) =∑

𝑖∈{1,2,· · · ,𝑁 }
(𝑆𝑖,𝑀𝐿 − 𝑆𝑖,𝐶 )1{i goes out of budget (OOB) in one treatment and not the other}

+
∑

𝑖∈{1,2,· · · ,𝑁 }
(𝑆𝑖,𝑀𝐿 − 𝑆𝑖,𝐶 )1{Does not go OOB in either}.

That is to say (with a slight notational abuse), for a particular day ∃𝑡𝐶 ≤ 𝑛 such that 𝑆𝑖,𝐶,𝑡𝐶 = 𝐵𝑖,𝐶 ,
but 𝑆𝑖,𝑀𝐿,𝑛 ≤ 𝐵𝑖,𝑀𝐿 (or vice versa). Further assume that 𝐵𝑖,𝑀𝐿 = 𝐵𝑖,𝐶 + 𝜖𝑖 . Consider the following
event:

{∀𝑡 > 𝑡𝐶 s.t. 𝑆𝑖,𝑡,𝑀𝐿 < 𝐵𝑖,𝑀𝐿, 𝑆𝑖,𝑡𝐶 ,𝐶 = 𝐵𝑖,𝐶 }
= {∀𝑡 > 𝑡𝐶 , 𝑆𝑖,𝑡,𝑀𝐿 − 𝑆𝑖,𝑡𝐶 ,𝐶 < 𝐵𝑖,𝑀𝐿 − 𝐵𝑖,𝐶 }
≥ {∀𝑡 > 𝑡𝐶 , 𝑆𝑖,𝑡,𝑀𝐿 − 𝑆𝑖,𝑡𝐶 ,𝑀𝐿 + 𝑆𝑡,𝑡𝐶 ,𝑀𝐿 − 𝑆𝑖,𝑡𝐶 ,𝐶 < 𝜖}

≥ {∀𝑡 > 𝑡𝐶 , (𝑡 − 𝑡𝐶 )
𝑡𝐶∑
𝑘=𝑡

𝑊𝐵𝑘 + 𝑆𝑡,𝑡𝐶 ,𝑀𝐿 − 𝑆𝑖,𝑡𝐶 ,𝐶 < 𝜖}

≥ {∀𝑡 > 𝑡𝐶 , 𝑛
𝑡𝐶∑
𝑘=𝑡

𝑊𝐵𝑘 + 𝑆𝑡,𝑡𝐶 ,𝑀𝐿 < 𝜖}.

Noting that the maximum bid distribution is stochastically decreasing,

P( |GTE − Ê| > 𝑇𝛿) ≤ P(
∑
𝑡

𝑊𝐵(𝑛) ≤
∑
𝑡

𝜖 +𝑇𝛿 −
∑
𝑡

𝐵𝑡,𝐶 )

≤ E(𝜆
−𝑛𝜌𝑇𝑇 exp−(𝑇𝜖 +𝑇𝛿 −𝑇𝐵𝐶 ))

𝑇𝛿
≤ (1 − 𝜆𝑇𝑛𝜌𝑇 exp−𝜆𝜇+𝜆

2𝜎2/2)
𝑇 exp−𝛿 𝑇𝛿

The second inequality follows from Markov inequality and noting that total is bounded by the
maximum bid in that round, which is in turn bounded by the maximum bid in round 1 (when
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all advertisers are present, discounted by the participation rate). The final inequality follows by
iteratively calculating the expectation, noting that the bid, budgets and error distributions are
independent, and exploiting the (known) normal and exponential structures of the bid. □

B.1.1 More Simulations for Budgets. In the main section, we have only computed simulation re-
sults when the calibration model has 0 bias. In this section we will follow up first with cases where
the mean is nonzero.The scenario is as before.Themarketplace participation rate is 0.4.The follow-
ing table demonstrates the performance of SCOTE when there is a large mean difference between
Model and Calibration.

Mean GTE
SCOTE
(𝜖 = 0.5)

SCOTE
(𝜖 = 0.25)

SCOTE
(𝜖 = 0.125) Adv RCT Pre-post

𝜇 = 1 1051.003 4040.212 1391.767 1227.912 28087.882 1077.921
𝜇 = 5 1051.003 1415.432 1341.863 1201.129 29989.123 1087.983
𝜇 = 10 1051.003 1359.098 1295.423 594.312 27167.099 1024.448

Table 13. SCOTE Estimate as a function of the number of days with different model bias, when the Market-
place is Static

Note that the consistency results in the paper for budgets is demonstrated for light tailed dis-
tributions, but the simulations in the main section was only for log-normal distribution, which
are heavy tailed. Table 14 replicates the same results, but when the budgets are generated from
exponential distribution with means 10 and 20. The bids distribution are assumed to be the same.

Days GTE
SCOTE
(𝜖 = 0.5)

SCOTE
(𝜖 = 0.25)

SCOTE
(𝜖 = 0.125) Adv RCT Pre-post

1 6746.553 9282.275 8012.823 3192.122 30239.239 8012.232
2 6746.553 7822.181 7633.128 2010.228 34092.783 8220.176
3 6746.553 7019.223 6901.235 1239.291 29928.164 8194.877
4 6746.553 6903.092 6910.238 1104.131 31092.128 8203.484
5 6746.553 6847.647 6772.921 1090.125 33991.129 8109.283
6 6746.553 6790.934 6769.498 1082.871 32532.698 8129.349
7 6746.553 6762.145 6759.391 1081.982 30923.085 4301.997

Table 14. SCOTE Estimate as a function of the number of days with different model errors, when the mar-
ketplace is stationary

Table 15 exhibits the simulation results when the marketplace is non-stationary, as in the previ-
ous setting.
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Days GTE
SCOTE
(𝜖 = 0.5)

SCOTE
(𝜖 = 0.25)

SCOTE
(𝜖 = 0.125) Adv RCT Pre-post

1 6746.553 12034.181 10023.991 9810.283 38254.312 10029.124
2 6746.553 11023.124 9901.234 8018.471 39235.443 9919.127
3 6746.553 8712.182 7819.998 7714.099 40034.126 9878.342
4 6746.553 8810.029 7192.281 7084.283 39982.288 9901.187
5 6746.553 7890.231 7099.712 6981.185 38301.127 9857.096
6 6746.553 7991.231 7081.892 6990.341 39918.778 9885.482
7 6746.553 7823.238 6992.124 6982.192 38034.348 9876.389

Table 15. SCOTE Estimate as a function of the number of days with different model errors, when the Mar-
ketplace is non-stationary
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