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ABSTRACT
We study auctions for selling a limited supply of a single
commodity in the case where the supply is known in advance
and the case it is unknown and must be instead allocated
in an online fashion. The latter variant was proposed by
Mahdian and Saberi [12] as a model of an important phe-
nomena in auctions for selling Internet advertising: adver-
tising impressions must be allocated as they arrive and the
total quantity available is unknown in advance. We describe
the Bayesian optimal mechanism for these variants and ex-
tend the random sampling auction of Goldberg et al. [8] to
address the prior-free case.

Categories and Subject Descriptors
F.2.m [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Miscellaneous

General Terms
Algorithms, Economics

Keywords
Online, Auctions, Prior-free, Mechanism design, Limited
supply

1. INTRODUCTION
Consider a prior-free mechanism designer looking for a

mechanism with good profit. Does limited supply pose an ad-
ditional challenge over unlimited supply? Does online supply
pose a challenge over offline supply? In attempt to answer
the first question Fiat et al. [6] gave a simple approximation-
preserving reduction from limited to unlimited supply auc-
tions. Their answer: no. In attempt to answer the second
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question Mahdian and Saberi [12] solved an online pricing
problem and with it adopted the auction from [8] to solve the
online case, though, at significant loss in performance. Their
answer: yes. We reconsider both of these questions through
a prior-free methodology that is rigorously grounded in the
Bayesian mechanism design theory. Our answers are the
opposite!

Consider the same problems but from the perspective of a
Bayesian designer. Suppose the agents’ valuations are drawn
i.i.d. from a known distribution. What is the optimal mech-
anism for the three cases: unlimited supply, (offline) limited
supply, and online limited supply? For unlimited supply, the
optimal mechanism is simply to post the price that maxi-
mizes the price times the probability that an agent would
buy (recall, all agents are identically distributed). Notice
that this price optimization (i.e., revenue curve) may not be
concave.

For limited supply and a concave revenue curve, Myerson
showed that the optimal mechanism is the Vickrey auction
with a reservation price set to the same price as in the unlim-
ited supply case [13]. In the non-concave case Myerson gives
a technique that obtains the same revenue as if the revenue
curve was the concave hull of the actual revenue curve. To
do this the auction applies a distribution dependent weakly
monotone transformation of agents’ valuations to get ironed
virtual valuations and the optimal auction allocates to the
agents with the highest virtual valuations (breaking ties ar-
bitrarily or randomly, but not by the agents’ valuations).
Notice that transformation is distribution dependent but
not supply dependent. Furthermore, the breaking of val-
uation space into equivalence classes (of equal virtual valua-
tion) makes the limited supply problem conceptually differ-
ent from the unlimited supply problem.

For online supply, the designer can make the same trans-
formation from valuations to virtual valuations and then as-
sign the units as they arrive to the agents with the highest
virtual valuations (again breaking ties in virtual valuations
arbitrarily or randomly, but not by the agents’ valuations).
Proceeding thusly, the online Bayesian designer will make
the exact same allocation as the offline Bayesian designer.
By revenue equivalence [13], the payment rule is implied
by the allocation rule and the two scenarios are equivalent.
Thus, our online designer faces no complication rising from
the online nature of the supply.

Our Bayesian designer must conclude: unlimited supply is
conceptually easier than (offline) limited supply, but there is



no conceptual difficulty in online supply over offline supply.
The primary focus of this paper is in deriving the same result
in the prior-free case (which is the opposite conclusion of
Fiat et al. [6] and Mahdian and Saberi [12]).

In prior-free mechanism design the performance of a mech-
anism is compared to a (distribution independent) perfor-
mance benchmark. The mechanism that performs best rela-
tive to, i.e., minimizes the maximum ratio to, this bench-
mark is the prior-free optimal mechanism (for the given
benchmark). Hartline and Roughgarden [11] propose as a
benchmark the performance of the optimal Bayesian optimal
mechanism. This benchmark has the strong consequence
that a mechanism that approximates it is guaranteed to si-
multaneously approximate, for all i.i.d. distributions, the
performance of the Bayesian optimal mechanism for that
distribution. For unlimited supply where the Bayesian opti-
mal mechanism is a posted price, this benchmark is simply
the optimal posted-price profit. Coincidentally this is ex-
actly the benchmark chosen for prior-free unlimited supply
auctions (modulo one small technical detail: the restriction
to prices for which there are at least two units sold) [6].
Fiat et al. generalized the unlimited supply benchmark to
limited supply settings in a natural way by considering the
optimal posted-price profit selling at least two units and at
most the full supply. Though natural, this definition does
not coincide with the benchmark of the optimal Bayesian
optimal profit; in fact, it can be up to but at most a factor
of two off (as we prove). Precisely for this reason the loss-
less reduction from the limited to unlimited supply proposed
in [6] fails. Thus, Fiat et al.’s results can be interpreted
as giving four and eight approximations for the unlimited
and limited supply problems, respectively (against the opti-
mal Bayesian optimal benchmark). Hartline and McGrew’s
3.25–approximation for the unlimited supply problem [10]
gives a 6.5–approximation to the limited supply problem.

These prior-free auctions cannot be easily adapted to the
case of online supply because the number of units they allo-
cate is a discontinuous function of the supply. Yet, as we al-
ready described, the Bayesian optimal auction can easily be
adapted to online supply. Thus it seems like these prior-free
mechanisms are doing something that is intuitively wrong.
To rectify this, we consider the limited supply generalization
of the random sampling optimal price (RSOP) auction [8]:
we randomly partition the agents, then for each partition we
sell half the units using the Bayesian optimal mechanism for
the distribution given by the agents in the opposite parti-
tion. Notice that because this mechanism is derived from a
Bayesian optimal auction for limited supply, it inherits the
property that it does not need to know the supply limit in
advance.

We extend the analysis approach of Alaei et al. [1] for
RSOP to this limited supply auction. Our analysis is nec-
essarily more complicated, and we lose slightly in the ap-
proximation factor we are able to prove. We prove a 25-
approximation which is the best known factor for the online
case. Furthermore, we have no reason to believe that the
approximation factor is not four as is conjectured for RSOP.
Notice that a bound of four would be better than the best
known (offline) limited-supply approximation factor of 6.5.

Related Work. Prior-free optimal mechanism design was
initiated by Goldberg et al.’s design of the random sampling
optimal price (RSOP) auction for selling a single commodity

in unlimited supply [8]. The analysis framework was refined
by Fiat et al. who showed that RSOP is a constant ap-
proximation in worst case relative to a natural benchmark,
the optimal posted price profit selling at least two units [6].
Feige et al. refine the analysis to improve the constant ap-
proximation factor to 15 [5], which was later improved to
4.68 by Alaei et al. [1].

Fiat et al. extend the analysis framework to the case of
limited supply in a natural way; though in hindsight this
generalization is not as well motivated as the original un-
limited supply framework. Hartline and Roughgarden give
a methodology for prior-free mechanism design that is based
on Bayesian mechanism design that suggests an alternative
and well motivated approach to limited supply [11]. We re-
examine limited supply profit maximization from this new
perspective. (Note that [11] does not consider the objective
of profit maximization and their mechanism is simpler to
analyze because they do not allow the possibility of online
supply.)

Mahdian and Saberi [12] adapt the limited supply auc-
tions from Goldberg et al. [8] to the case where the sup-
ply arrives online and must be allocated immediately while
payments may be determined offline. They consider a non-
game-theoretic online pricing problem where the seller is
constrained to sell at a single price to all winners, and gave
an algorithm for it with a constant competitive ratio [12].
Devanur and Chakraborty gave another algorithm for the
same online pricing problem that improved the competitive
ratio to a factor of two [4].

It is crucial in our problem of online supply that the mech-
anism is free to defer agent payments until all supply has
been realized. As shown by Babaioff et al. [2] when pay-
ments must be calculated online, incentive constraints must
incorporate the agent’s beliefs over the supply or significant
loss in performance is inevitable. Deferred payments are
reasonable for the motivating application of advertisement
auctions, since the advertisers are typically charged at the
end of the billing cycle.

2. PRELIMINARIES
We consider the problem of a monopolistic seller attempt-

ing to maximize their profit when selling k indivisible units
of a single item to n unit-demand agents. We consider ex
post incentive compatible and individually rational auctions
for solving this problem. In such a mechanism each agent
has a (weakly) dominant strategy of participating in the auc-
tion and reporting their true valuation as their bid. Such an
auction selects at most k winners and demands a payment
from each. From agent i’s perspective, vi is their valuation
upon winning, xi is an indicator for their winning a unit or
not, and pi is their payment. Feasibility for k units requires
that

P
i xi ≤ k.

We consider two variants of the limited supply problem.
In the standard variant the supply limitation k is known
in advance. We refer to this as the offline variant. In the
online variant the supply is not known in advance, instead
the mechanism is given units to allocate one at a time. Upon
receiving a unit the mechanism must either choose an agent
to whom to allocate it or to throw it away (the designer
has free disposal). Eventually, perhaps adversarially, the
designer is told that there are no more units. At this point
the designer calculates payments for agents who received
units. Notice that with both online and offline supply the



mechanism is single-round and sealed-bid with respect to the
agents: the agents bid, units are allocated online or offline,
payments are determined.

Formally, an auction maps the valuation profile v = (v1, . . . , vn)
into an allocation x(v) and payments p(v). It is often useful
to look at the probability of allocation and expected pay-
ment of an agent with a specific value (randomization taken
over agent valuations and coins flipped by a randomized auc-
tion protocol); define pi(vi) = Ev−i [pi(vi,v−i)] and xi(vi) =
Ev−i [xi(vi,v−i)] where v−i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).
The lemma below that characterizes incentive compatible
auctions allows us to ignore the payment rule (it is unique)
and focus on choosing a good allocation rule.

Lemma 1. [13] Any incentive compatible auction in which
losers pay nothing satisfies (for all agents i):

1. allocation monotonicity: xi(vi) is non-decreasing in vi.

2. payment identity: pi(vi) = vixi(vi)−
R vi
0
xi(z)dz.

Our results for the prior-free designer are best discussed in
the context of the following standard results for the Bayesian
designer [13] (for a survey see [9]). Assume the valuations of
the agents are drawn independently and identically from a
distribution with distribution function F and density func-
tion f . For this setting the Bayesian optimal auction spec-
ifies a distribution-dependent partitioning valuation space
into intervals of equal “priority” and allocates the units to
the (at most) k agent with the highest positive priority with
ties broken randomly. Clearly such an allocation rule satis-
fies the monotonicity condition of Lemma 1. The payments
can be calculated simply using the payment identity. No-
tice that it does not matter whether the supply is online or
offline.

Definition 2. The Bayesian optimal auction for distri-
bution F is MF .

Our Bayesian designer obtains an auction which is op-
timal in an absolute sense: for valuations from the given
distribution, the expected performance of his chosen (i.e.,
the Bayesian optimal) auction is at least that of any other
auction. Our prior-free designer is not endowed with prior
knowledge of the distribution. For any auction our prior-
free designer considers, there is always a distribution for
which some other auction strictly out performs the consid-
ered auction. Thus, the prior-free auction design literature
has turned to a relative notion of optimality that bears close
resemblance to the competitive analysis of online algorithms.
Here an auction is good if its maximum (worst case over in-
puts) ratio with a benchmark performance is small. The
prior-free optimal auction for a given benchmark is the one
with the smallest worst-case ratio. This framework for prior-
free design is given in [7] (for a survey see [9]).

Definition 3. A performance benchmark maps valua-
tion profile v and supply limit k to a target performance,
notated, e.g., G(k,v). Where k or v is implicit in the con-
text use short and notations G(k) and G(v) respectively. An
auction maps a valuation profile and supply limit to an ex-
pected revenue, notated, e.g., A(k,v).

Definition 4. The prior-free optimal auction for bench-
mark G is auction A that minimizes

min
A

max
v

G(v)
A(v)

Some care must be taken in choosing performance bench-
marks for the prior-free results to be economically mean-
ingful. Hartline and Roughgarden give a general theory for
meaningful benchmarks: choose as a benchmark the perfor-
mance of the optimal Bayesian optimal auction.

Definition 5. The optimal Bayesian optimal benchmark
is G(v) = supFMF (v).

An prior-free approximation to this benchmark is a very
strong result as stated by the following fact.

Fact 6. [11] A prior-free auction that β-approximates G
on any input v also β-approximates the Bayesian optimal
auction on any i.i.d. distribution F .

In unlimited supply settings, the optimal Bayesian opti-
mal benchmark can be characterized succinctly. Let v(i) de-
note the ith largest agent valuation. For unlimited supply
(i.e., k = n) the optimal-Bayesian-optimal benchmark co-
incides precisely with the optimal-posted-price benchmark,
F(n,v) = maxi iv(i), proposed by [6]. For limited supply
the optimal-Bayesian-optimal benchmark does not gener-
ally coincide with the limited supply benchmark F(k,v) =
maxi≤k iv(i) from [6].

For technical reasons described by [7] we must adjust the
benchmark to ignore the case where there is a single agent
with an extreme high valuation. This restriction gives the
unlimited supply benchmark of F (2)(v) = maxi≥2 iv(i) and

the general benchmark of G(2)(v) = supFM2
F (v). where

M(2)
F is the Bayesian optimal auction for distribution F con-

strained to offer prices that are at most v(2). Note that G(2)

and G coincide when it is optimal to sell at least two units.
We focus on the analysis of a generalization of Goldberg

et al.’s [8] Random Sampling Optimal Price (RSOP) auction
to limited supply. This generalization is based on Baliga and
Vohra [3] approach to prior-free mechanisms (referred to as
the Random Sampling Empirical Myerson (RSEM) auction
in Hartline and Karlin’s survey [9]). An important construct
in the definition of this auction is the empirical distribution
for a valuation profile. This is simply the distribution F
with F (z) equal to the faction of agents in v with vi < z.

Definition 7. The k-unit Random Sampling Empirical
Myerson (RSEM) auction works as follows:

1. Randomly partition the agents into two sets, vA and
vB.

2. Calculate the empirical distributions for each set, FA

and FB.

3. Run MFA(vB) and MFB (vA) with k/2 units each.

Our main theorem is that RSEM is a 25-approximation
to G(2). Notice that it does not matter whether the supply is
online or offline.

3. ANALYSIS OF THE RANDOM SAMPLING
AUCTION.

In this section we give our analysis of the random sam-
pling auction RSEM. We do so first with a more detailed
discussion of Bayesian optimal auctions for continuous dis-
tributions. This discussion will enable deeper understanding
of our benchmark G which is the supremum over such auc-
tions. With this understanding we will show how a lemma
from [1] proves the approximation bound.
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Figure 1: Revenue curves: R(·), Ri,j(·), and R̄(·).

3.1 Bayesian optimal auctions, revisited.
Recall our setting for Bayesian optimal auctions where

the agent valuations are distributed i.i.d. from distribution
F . Consider the case all k units are sold. In such a case,
any particular agent’s ex ante probability of winning is k

n
.

Bayesian optimal auctions can be intuitively understood
by considering the revenue obtainable as a function of the
probability that the agent wins. To allocate with probabil-
ity k

n
to an agent with value drawn from distribution F ,

we could simply use a posted price of F−1(1 − k
n

), which

the agent would accept with probability k
n

. Our expected
revenue is thus

R(k) = k
n
F−1(1− k

n
).

Notice that this revenue function may not be concave in k
(as depicted by Figure 1).1

Another way we could allocate with probability k
n

is to
pick any i and j such that i < k < j ≤ n, and allocate to
the agent always if their valuation is at least price F−1(1− i

n
)

and with probability (k − i)/(j − i) if their valuation is be-
tween prices F−1(1− j

n
) and F−1(1− i

n
). By the payment

identity of Lemma 1, the revenue of such an allocation strat-
egy is

Ri,j(k) =
(k − i)R(i) + (j − k)R(j)

j − i ,

i.e., Ri,j(k) is the function that is equal to R(k) for k <
i and k > j, and for k ∈ (i, j) it is the line connecting
R(i) to R(j) (See Figure 1). Notice that when R(k) is non-

1As pointed out by Baliga and Vohra [3], random sampling
based auctions cannot assume concave revenue functions as
these revenue functions are given the empirical distribution
of a sample of the bidders.

concave this random allocation can give more revenue than
the aforementioned posted price. It is clear that the optimal
revenue possible form this kind of approach is obtained from
considering the concave hull of R(k) which we denote by
R̄(k).

Intuitively in the above example the agent has the same
priority when their value is anywhere in the interval between
F−1(1− i

n
) and F−1(1− j

n
). To achieve the optimal revenue

possible, we break valuation space into intervals of equal pri-
ority that correspond with the line segments of R̄(·). For in-
stance, the standard approach in the literature is to consider
the derivative (a.k.a., slope) of R̄(·) as the priority. (Since
R̄(·) is concave, priority is a weakly monotone function of
valuation; this particular priority function is known in the
literature as the ironed virtual valuation of the agent [13].)

3.2 The optimal Bayesian optimal benchmark
Now consider repeating the above discussion but with the

empirical distribution F for valuation profile v. We could
sell k units at price v(k). Denote this revenue by

R(k) = kv(k).

Again, R̄(k) is the concave hull of R(k).
We could then pick an i and j with i < k < j ≤ n and

make the following offer to this particular set of agents with
profile v: high-valued agents with values in [v(i),∞) win
for sure and low-valued agents with values in [v(j), v(i)) win
with probability given by the ratio between the number of
units left and the number of agents on the interval (i.e., by
lottery). The payments for such an allocation rule are given
by Lemma 1: low-valued agents pay v(j) and high-valued

agents pay v(i) −
(v(i)−v(j))(k−i+1)

j−i+1
. Notice that to calculate

the high-valued agent payments one must note that a high-
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Figure 2: The allocation function xi(vi) for v−i fixed. The area of the shaded region is the payment pi(vi)
specified by Lemma 1.

valued agent might try to bid as if they were low-valued,
this would result in one fewer units being claimed by high-
valued agents which means there are k − i + 1 units to be
randomly allocated among the remaining j − i + 1 agents
(see Figure 2). Let R̂i,j(k) denote the total resulting revenue

from this approach. Notice that R̂i,j(k) 6= Ri,j(k).
As described in the preceding section the Bayesian opti-

mal auction divides valuation space into intervals of equal
priority. For the purpose of maximizing profit one would
only want to use intervals bounded by agent valuations, i.e.,
of the form [v(j), v(i)), as this would have all winners paying
the maximum possible. This and the above discussion gives
intuition for the following lemma.

Lemma 8. [11] G(k,v) = supi,j R̂i,j(k,v) and G(2)(k,v) =

supi,j≥2 R̂i,j(k,v).

G will be tough for us to work with so we use the following
definition which (as the theorem below shows) provides a
good upper bound.

Definition 9. F̄(k,v) = maxi≤k R̄(i,v) and F̄ (2)(k,v) =
max2≤i≤k R̄(i,v).

The following theorem relates G, F , and F̄ . This will be
used later in our proof to relate conceptually easier bounds
in terms of F̄ with our desired bound in terms of G. Also,
the argument v in the above benchmarks will be dropped
when it is clear from the context.

Theorem 10. For all valuations, v,

1. F(k,v) ≤ G(k,v) ≤ F̄(k,v). Similarly F (2)(k,v) ≤
G(2)(k,v) ≤ F̄ (2)(k,v).

2. F̄(k,v) ≤ 2F(k,v). There exists v such that G(k,v) =
(2− 1

k
)F(k,v).

3. F̄(k,v) ≤ min{ 4
3
, 1 + 1

k
}G(k,v).

Proof. We prove each part separately.

1. The first part of the theorem follows almost immedi-
ately from the definitions and Lemma 8.

2. For the second part, recall that R̄ is concave. If R̄
attains its maximum before the supply runs out, that
is F̄(k) = R(l) for some l ≤ k, then the lemma follows
trivially since F̄(k) = F(k). So suppose not. Then
R̄ is monotonically non-decreasing in the interval [1, k]
and hence F̄(k) = R̄(k). Suppose R̄(k) is on the line
joining R(i) and R(j), where i < k < j. Then

R̄(k) = 1
j−i ((k − i)R(j) + (j − k)R(i))

= R(i) + k−i
j−i (R(j)−R(i))

(The 2nd term is segment AB in Figure 3)

≤ R(i) + k
j
R(j) (segment CD in Figure 3)

≤ R(i) +R(k) ≤ 2F(k).

The first inequality on the last line follows since

k
j
R(j) = k

j
jv(j) = kv(j) ≤ kv(k) = R(k).

The above bound is almost tight. Let v1 = k, v2 =
v3 = · · · = vn = 1. Then F(k) = k, where as G(k) =

R̂1,k(k) = k+ (k− 1)(1− k
n

) which tends to 2k− 1 as
n tends to infinity.

3. For the third part, again, the interesting case is when
F̄(k) = R̄(k), and

R̄(k) = 1
j−i ((k − i)R(j) + (j − k)R(i)) .
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Figure 3: Illustration for proof of Theorem 10.

Let p = v(i) and q = v(j) and define

R̂(k) = R̂i,j(k) = (k − i)q + i
“
p− (p−q)(k−i+1)

j−i+1

”
.

In the interval [i, j], R̂ is a linear function of k with

R̂(i) = i
“
p− p−q

j−i+1

”
and slope q(j+1)−ip

j−i+1
. In com-

parison, in the same interval, R̄ is a linear function
of k with R̄(i) = ip and slope qj−ip

j−i . R̄(i) > R̂(i)

where as the slope of R̂ is higher than R̄. Hence the
minimum ratio of R̂(k) to R̄(k) occurs at k = i, and

R̄(i) − R̂(i) = i(p−q)
j−i+1

which is clearly less than ip
4

if

j − i ≥ 3. (In Figure 3, ratio of segment EF to EG is
1:j-i+1.) Also, j−i is at least 2, since i < k < j. So we
are only left with the case when j− i = 2. In this case
we use the fact that R(j) ≥ R(i), which follows from
the definition of R̄. This implies (i + 2)q ≥ ip, which

in turn implies that i(p−q)
j−i+1

is less than ip
4

by simple

algebra. In any case, we have that R̄(i) ≤ 4
3
R̂(i) and

in turn F̄(k) ≤ 4
3
G(k).

Again, using the fact that R(j) ≥ R(i), we get that
i(p−q)
j−i+1

is less than q(j−i)
j−i+1

≤ q. Further note that qk ≤
G(k) since qk is the revenue of the posted price auction

with price q. Thus R̄(i)−R̂(i), and in fact, R̄(k)−R̂(k)
is less than G(k)/k for all k ∈ [i, j]. Thus, F̄(k) ≤`
1 + 1

k

´
G(k).

Remark. It immediately follows from the above theorem
that any algorithm that is an α-approximation to F is a 2α-
approximation to F̄ . Currently the best known auction is
from Hartline and McGrew [10] and achieves an approxima-
tion factor of 3.25 to F . Thus, it is a 6.5 approximation to

F̄ . We do not manage to prove that RSEM is better than
this; however, there is no reason to believe that it is not.

3.3 The Myerson auction for empirical distri-
butions

The random sampling auction we wish to analyze runs the
Myerson auction on a partition of the agents with distribu-
tion given empirically by the opposite partition. We now
explicitly describe what MF does when F is the empirical
distribution for valuation profile v. Recall that Myerson’s
auction for a distribution simply allocates the k units to the
agents with highest priority breaking ties in priority ran-
domly. Of course, the key property of Myerson’s auction
is that it partitions valuation space into intervals of equal
priority in the optimal way. From our preceding discussion
this partitioning is given by looking at the revenue function
R(·) and its concave hull R̄(·). Intervals where theses func-
tions are not equal form a priority class. Specifically, let
i1 ≤ · · · ≤ iT index the T agents i satisfying R(i) = R̄(i)
on the rising slope of R̄(·) (i.e., iT = arg maxiR(i)). The
equal-priority intervals are

[v(iT ), v(iT−1)], (v(iT−1), v(iT−2)], . . . , (v(2), v(1)], (v(1),∞).

Agents with values below the smallest interval, i.e., strictly
less than v(iT ) are rejected.

The set of bidders is partitioned into sets A and B. Let
the bids in A be vA(1) ≥ vA(2) ≥ . . . and so on. Let FA be
the empirical distribution from bidders in A and consider
running the Myerson auction with this distribution on the
bidders in B, i.e., MFA(vB). Myerson allocates as follows.
Let iA1 < iA2 < · · · < iAT be the indices of agents on the
concave hull of the revenue curve for FA (as described in the
preceding paragraph). Let pAt = vA

(iAt )
. The equal priority

intervals are

[pAT , p
A
T−1], (pAT−1, p

A
T−2], . . . , (pA2 , p1], (pA1 ,∞).

The bidders in B are allocated odd-numbered items. Let



jBt = |{l ∈ B : vB(l) ≥ pAt }|. Now if k
2
∈ [jBt , j

B
t+1), then the

top jBt always get the item and pay pAt −
pAt −p

A
t+1

jBt+1−j
B
t +1

. Bidders

with values in the interval (pAt+1, p
A
t ] win remaining units at

price pAt+1 with ties broken randomly.

3.4 The performance of the random sampling
auction

Our analysis of the performance of the RSEM auction
uses a lemma from the recent paper of [1] that analyses the
RSOP auction for unlimited supply. They prove a lemma
about the expectation of a certain random variable, let’s
call it X, that is used to lower bound the revenue of the
RSOP auction. We show that the same quantity X can be
used to bound the revenue of the RSEM auction for limited
supply as well. While the fact that X lower bounds the
revenue of the RSOP auction for unlimited supply is more or
less straightforward, the analogous statement for the RSEM
auction for limited supply is more complicated because the
revenue of lotteries is more complicated that the revenue of
posted price auctions.

We now define the random variable X. Without loss
of generality, let the highest bidder be in B. Let si =˛̨
{j ∈ A : vj ≥ v(i)}

˛̨
be the number of bidders in A among

the top i bidders. Note that the distribution of si is inde-
pendent of the actual values, and has the same distribution
as the following discrete random walk on integers: for each
i, si is either si−1, or si−1 + 1, with probability half each,
with s1 = 0. Let z = mini (i− si)/si. Suppose that the

optimum single price auction sells λ units, i.e. F (2) = λv(λ).
Then

X = z · sλ
λ
.

Note that for every possible value of λ we get a different
random variable X. The main lemma that we need from [1]
lower bounds E[X] for all possible values of λ.

Lemma 11. [1] For all positive integers λ, E[X] ≥ 1
4.68

.

As is usual in the analysis of random sampling auctions,
we relate the revenue of the RSEM auction from side B to
some function of the values from side A. Here, that function
is the concave hull of the revenue curve from side A. Let RA

be the revenue curve restricted to the bidders in A; more
precisely RA(i) = ivA(i). Let R̄A be its concave hull. How-

ever, for i > iAT , we define R̄A(i) = R̄A(iAT ). Note that this
makes R̄A a monotonically non-decreasing concave function.
Let RSEM(k) denote the profit of the RSEM Auction with
k items.

Lemma 12. RSEM(k) ≥ zR̄A( k
2
)/min{ 4

3
, 1 + 1

k
}.

Proof. Recall that the highest bidder is in B. Define
RSEMB(i) to be the revenue obtained by the RSEM auction
from side B, as a function of the number of units allocated to
B. In the proof we will only consider the revenue obtained
from side B, i.e., we will use that RSEM(k) ≥ RSEMB(k) .
This is tight in the worst case, because if v(1) is high enough,

then the optimal Myerson auction for FB (the empirical
distribution for B) is to run a Vickrey Auction with reserve
price equal to v(1). This auction would fetch no revenue
from side A.

Suppose k
2
∈ [jBt , j

B
t+1). Consider the following function

defined on the interval [jBt , j
B
t+1): let L(i) be the linear

function such that L(jBt ) is equal to jBt p
A
t and L(jBt+1) =

jBt+1p
A
t+1. As in the proof of part 3 of Theorem 10, in the

interval [jBt , j
B
t+1), the function RSEMB(i) is within a fac-

tor min{ 4
3
, 1 + 1

k
} of L(i). From the definition of z, we get

that jBt ≥ ziAt . These two facts point to the conclusion we
need. However, the proof needs more argument because of
the following:

• It could be that L(jBt+1) < L(jBt ). We used the fact
that this does not happen in the proof of Theorem 10.

• It could be that k
2
/∈ [iAt , i

A
t+1). Thus we cannot directly

compare L( k
2
) to R̄A( k

2
).

We get around these difficulties by comparing L to the fol-
lowing function instead. Let RA(ziAt ) = ziAt p

A
t . Extend RA

to all i ∈ [1, ziAT ] by a linear interpolation. For i > ziAT , let
RA(i) = RA(ziAT ). We note the following easy observations
without proof (see Figure 4):

• For all i, RA(zi) = zR̄A(i).

• RA is an increasing concave function.

• For all i ∈ [jBt , j
B
t+1], L(i) ≥ RA(i).

We now argue that L( k
2
) ≥ zR̄A( k

2
) via the following se-

quence of inequalities; this sequence of inequalities corre-
sponds to the points A ≥ B ≥ C = zD in Figure 4.

L(
k

2
) ≥ RA(

k

2
) ≥ RA(z

k

2
) = zR̄A(

k

2
).

Therefore it is enough to show that

RSEMB( k
2
) ≥ L( k

2
)/min{ 4

3
, 1 + 1

k
}.

The proof of this is identical2 to that in the proof of part 3
of Theorem 10, unless L(jBt+1) < L(jBt ). In case L(jBt+1) <
L(jBt ), we use the observation that the revenue of the auc-
tion actually decreases in the interval [jBt , j

B
t+1) and is in fact

at least L(jBt+1). The conclusion holds from the following se-
quence of inequalities, each of which is easy to see given the
discussion so far.

RSEMB( k
2
) ≥ L(jBt+1) ≥ RA(jBt+1) ≥ RA( k

2
) ≥ zR̄A( k

2
).

This completes the proof of the lemma.

Finally, we relate R̄A(k/2) to the benchmark F (2)(k) as
in the following lemma.

Lemma 13. R̄A(k/2) ≥ sλ
2λ
· F (2)(k).

Proof. In unlimited supply, if the optimum single price
sells λ units, i.e. F (2) = λv(λ), then one can offer v(λ) to
the bidders in A and get a revenue of v(λ)sλ, so one would
conclude that

FA ≥ v(λ)sλ =
sλ
λ
· F (2).

However the same argument does not work in case of limited
supply, because we split the supply also in half for each side.
Thus offering v(λ) to the bidders in A is guaranteed to get

a revenue of v(λ) · min{sλ, k2 }. Since sλ ≤ k, we can use

that min{sλ, k2 } ≥
sλ
2

to get the required conclusion for the
lemma.

2We also have to consider an additional case, when jBt+1 −
jBt = 1, which is similar to the case jBt+1 − jBt = 2.
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Figure 4: Revenue curves illustrated for the proof of Lemma 12.

Our main theorem now follows easily from Lemmas 11,
12, 13 and Theorem 10.

Theorem 14. RSEM is at most a min{8/3, 2(1 + 1
k

)} ·
4.68-approximation with respect to F (2) and at most a
min{16/3, 4(1+ 1

k
)}·4.68-approximation with respect to F̄ (2).

16
3
· 4.68 ≈ 25.

Remark. In using Lemma 11 from [1] as a blackbox, we
lose a factor of 2 in the proof of Lemma 13. It is natural to
wonder if the random variable X is defined as z ·min{ sλ

λ
, 1

2
},

then what is the lower bound on E[X]? Naively, the bound is
1/(2·4.68) (as used in the present analysis). An improvement
in this bound would improve the approximation factor in our
analysis.

4. CONCLUSIONS
In this paper we show that the standard prior-free mecha-

nism design approach to random sampling gives an approx-
imately optimal auction for multi-unit single-item settings
of limited supply. Furthermore, the supply limitation may
be determined online and this does not affect the auction
protocol nor its performance. We obtain a bound on the
approximation factor of 25 which implies that the auction
(RSEM) is the best known auction for the online supply
problem. Furthermore we have no reason to believe that
the actual approximation factor does not in fact match the
conjectured 4-approximation for the unlimited supply case.
Thus, the random sampling auction could potentially out-
perform the best known auction for (offline) limited supply
[10] which is a 6.5 approximation.

Open Question. What is RSEM’s approximation factor to

G(2)?

One direction for future study is in whether the bench-
mark G(k) has a profit extractor, i.e., is there an (incen-
tive compatible and individually rational) auction that when
given target profit R can extract profit R on any valuation
profile v with R ≤ G(k,v). This question is especially in-
teresting because the best prior-free auctions for unlimited
supply are based on profit extractors for F . As we argued,
F is the wrong benchmark for limited supply. The challenge
in developing a profit extractor for G(k) is that the bench-
mark is inherently two dimensional where as all known profit
extractors work by searching linearly in a single dimension.

Open Question. Is there a profit extractor for G(k)?
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