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Abstract

Hilbert posed the following problem as the 17th in the list of 23 problems in his famous 1900 lecture:
Given a multivariate polynomial that takes only non-negative values over the reals, can it be repre-

sented as a sum of squares of rational functions?

In 1927, E. Artin gave an affirmative answer to this question. His result guaranteed the existence of
such a finite representation and raised the following important question:

What is the minimum number of rational functions needed to represent any non-negative n-variate,
degree d polynomial?

In 1967, Pfister proved that any n-variate non-negative polynomial over the reals can be written as sum
of squares of at most 2n rational functions. In spite of a considerable effort by mathematicians for over
75 years, it is not known whether n+ 2 rational functions are sufficient!

In lieu of the lack of progress towards the resolution of this question, we initiate the study of Hilbert’s
17th problem from the point of view of Computational Complexity. In this setting, the following question
is a natural relaxation:

What is the descriptive complexity of the sum of squares representation (as rational functions)
of a non-negative, n-variate, degree d polynomial?

We consider arithmetic circuits as a natural representation of rational functions. We are able to show,
assuming a standard conjecture in complexity theory, that it is impossible that every non-negative,
n-variate, degree four polynomial can be represented as a sum of squares of a small (polynomial in
n) number of rational functions, each of which has a small size arithmetic circuit (over the rationals)
computing it.

Our result points to the direction that it is unlikely that every non-negative, n-variate polynomial over
the reals can be written as a sum of squares of a polynomial (in n) number of rational functions. Further,
relating to standard (and believed to be hard to prove) complexity-theoretic conjectures sheds some light
on why it has been difficult for mathematicians to close the n+ 2 and 2n gap. We hope that our line of
work will play an important role in the resolution of this question.
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1 Introduction

Hilbert proposed 23 problems in 1900, in which he tried to lift the veil behind which the future lies hidden.1

His description of the 17th problem is (see [6]):

A rational integral function or form in any number of variables with real coefficient such that it becomes negative
for no real values of these variables, is said to be definite. The system of all definite forms is invariant with respect to
the operations of addition and multiplication, but the quotient of two definite forms in case it should be an integral
function of the variables is also a definite form. The square of any form is evidently always a definite form. But since,
as I have shown [11], not every definite form can be compounded by addition from squares of forms, the question
arises which I have answered affirmatively for ternary forms [12] whether every definite form may not be expressed
as a quotient of sums of squares of forms. At the same time it is desirable, for certain questions as to the possibility
of certain geometrical constructions, to know whether the coefficients of the forms to be used in the expression may
always be taken from the realm of rationality given by the coefficients of the form represented.

An affirmative answer to this problem was given by Emil Artin in 1927 [2]:

For every non-negative polynomial f ∈ R[x1, . . . , xn], there exist rational functions g1, . . . , gs ∈
R(x1, . . . , xn), such that f = g2

1 + · · ·+ g2
s .

Motzkin’s example (see [24]) of P (x, y, z) = z6+x4z2+x2y4−3x2y2z2 illustrates that the rational functions
in Artin’s result cannot, in general, be replaced by polynomials. P (x, y, z) is non-negative everywhere over
the reals, and yet, cannot be written as sum of squares of polynomials over the reals. Notice that Artin’s
result shows that every non-negative polynomial can be written as sum of squares of finitely many rational
functions. This raised the following important question about the size of such a representation:

What is the smallest number (denoted as ν(n, d)), such that every n-variate, degree d, non-negative polynomial
can be written as sum of squares of ν(n, d) rational functions over the reals?

In 1967, Pfister [19] proved that ν(n, d) ≤ 2n. However, this upper bound holds when one is allowed
rational functions over a real closed field 2. Remarkably enough, his bound does not depend on the
degree of the polynomial. The best lower bound on ν(n, 3) is n + 2. Over 75 years of effort by various
mathematicians, these are still the best known bounds in general. We remark that the function ν(n, 2) is
quite well understood from the time of Hilbert (see [11, 13, 14]).

In lieu of the lack of progress towards the determination of ν(n, d), we initiate the study of Hilbert’s
17th problem from the point of view of Computational Complexity. In this setting, the following question
is a natural relaxation:

What is the descriptive complexity of the sum of squares representation (as rational functions) of
a non-negative, n-variate, degree d polynomial?

We consider arithmetic circuits as a natural representation of rational functions. We are able to show,
assuming a standard conjecture in complexity theory, that it is impossible that every non-negative, n-
variate, degree four polynomial can be represented as a sum of squares of a small (polynomial in n) number
of rational functions, each of which has a small size arithmetic circuit (over the rationals) computing it.

Our result points to the direction that it is unlikely that every non-negative, n-variate polynomial over
the reals can be written as a sum of squares of a polynomial (in n) number of rational functions. Further,
relating to standard (and believed to be hard to prove) complexity-theoretic conjectures sheds some light
on why it has been difficult for mathematicians to close the n+ 2 and 2n gap.

1A quote taken from [26].
2See [4, 21] for a definition.
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1.1 Related work

Like all of Hilbert’s problems, the 17th has received a lot of attention from the mathematical community and
beyond. For an extensive survey of the development and impact of Hilbert’s 17th problem on Mathematics,
the reader is referred to excellent surveys by [9, 22, 24, 25]. The books [4, 21] also provide good accounts
of this and related problems.

Apart from what can be found in the references above, we are aware of some recent work on various
quantitative aspects of Hilbert’s 17th problem. For instance, in [3], it has been proved that if the degree
is fixed and the number of variables are allowed to increase, then there are significantly many more non-
negative polynomials than those that can be written as sum of squares of polynomials. Further, in [23], it
is shown that in general, one cannot obtain a sum of squares representation in which each rational function
has the same denominator.

To the best of our knowledge the problem raised by this work, about the representational complexity
of non-negative polynomials in the computational setting, is new.

2 Overview of our result

Notations

For k = R,Q or Z, k[x1, . . . , xn] denotes the ring of polynomials over k and k(x1, . . . , xn) denotes the
corresponding field of fractions. The following notation about polynomials is used throughout this paper:
A polynomial is written as f =

∑
α cαxα. Here xα = xα1

1 · · ·xαnn . deg(f) denotes the maximum total degree
of f. H(f) := maxα |cα|.

Arithmetic circuits

An arithmetic circuit C over k 3 is a directed acyclic graph. Each vertex has indegree 0 or 2 and is labeled
either by addition, multiplication, one of the input variables: {x1, . . . , xn}, or scalars from k. If the vertex
is labeled by a scalar or an input variable, then its indegree must be 0. If the vertex has indegree 2,
then it must be labeled either by + or by ×. There is exactly one vertex with no outgoing edge, which
naturally corresponds to the polynomial (over k[x1, . . . , xn]) computed by C. The size of C is the number
of gates along with description size of all the constants used. As observed, C computes a polynomial
f(x1, . . . , xn) ∈ k[x1, . . . , xn]. The size of the smallest arithmetic circuit that computes f ∈ k[x1, . . . , xn] is
denoted by Lk(f). We will drop the subscript wherever k is clear from the context.

Unsatisfiability

Consider a boolean function φ : {0, 1}n 7→ {0, 1} in the conjunctive normal form (3-CNF), that is
φ(x1, . . . , xn) =

∧m
i=1Ci, where each Ci is a boolean OR of at most 3 literals from {x1, x1, . . . , xn, xn}.

φ is said to be satisfiable if there is a satisfying assignment a1, . . . , an ∈ {0, 1}, such that φ(a1, . . . , an) = 1.
The set of such boolean functions, in 3-CNF form, that have a satisfying assignment is denoted 3SAT. It
is well known that 3SAT is NP-complete. The corresponding co-NP problem is UN3SAT, i.e. the set of
boolean functions in 3-CNF that have no satisfying assignment. It follows that UN3SAT is complete for
co-NP.

Now we give the key definition and the main result of this paper. (Readers not familiar with standard
notations and definitions in computational complexity theory, should refer to the appendix.)

3In general k could be a commutative ring, but here k will be either the fields R and Q, or the ring of integers Z.
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Definition 2.1.

HZ(n, d, h) := {f ∈ Z[x1, . . . , xn] : deg(f) ≤ d,H(f) = O(h),∀(x1, . . . , xn) ∈ Rn f ≥ 0} .

Further, let HZ(d, h) := ∪n≥0HZ(n, d, h).

Remark 2.2. Note that we are implicitly viewing HZ(d, h) as a language. Fixing a unique representation
of polynomials (say the smallest arithmetic circuit over Q), we can view polynomials in this set as binary
strings, thus, justifying our viewpoint. Hence, the length of the input is related to the description of the
polynomial and not n. But we concern ourselves only with the case when the smallest arithmetic circuit
computing an n-variate polynomial f is of size at most a fixed polynomial in n, say n6. 4

2.1 Main theorems

Theorem 2.3. Assuming PH 6=Σ2, for all n ≥ 1, there exists a polynomial f ∈ HZ(n, 6, 1) such that no
representation of f as sum of squares of rational functions over Q, f =

∑s
i=1 g

2
i , gi ∈ Q(x1, . . . , xn),

satisfies both of the following:

1. s = poly (L(f)).

2. For all i = 1, 2, . . . , s, L(gi) = poly (L(f)).

Thus, unless the polynomial hierarchy collapses to the second level, not every non-negative polynomial
has a succinct sum of squares representation. It is a standard hypothesis in complexity theory that
PH 6=Σ2.

5 In fact this theorem says that even if the polynomial has degree 6 and all coefficients are integers
and bounded by a constant, there is no such representation. As remarked earlier, the degree 2 case is well
understood. We strengthen the previous result by bringing the degree down to 4, at the cost of blowing
up the size of the coefficients. It is an interesting open problem if such a statement can be obtained for
degree 3.

Theorem 2.4. Assuming PH 6=Σ2, for all n ≥ 1, there exists a polynomial f ∈ HZ(n, 4,poly(n)) such
that no representation of f as sum of squares of rational functions over the rationals, f =

∑s
i=1 g

2
i ,

gi ∈ Q(x1, . . . , xn), satisfies both of the following:

1. s = poly (L(f)).

2. For all i = 1, 2, . . . , s, L(gi) = poly (L(f)).

A remark about the representation field

Although we state our theorems for Q, one can replace it by a finite real algebraic extension of Q. The
details are easy and we omit the details for the ease of presentation. It is important to note though, that
Artin’s result does not, in general, imply existence of a sum of squares representation, where each rational
function is over Q. The hard to represent polynomials guaranteed by our results have a further property
that these have small arithmetic circuits over the integers. It is conceivable that for such polynomials, a
succinct representation (in our sense) exists if and only if a succinct representation exists over the reals.
This is an interesting question for which we do not know an answer.

4For a non-negative, n-variate polynomial with arithmetic circuit complexity not bounded by any polynomial in n, one
cannot hope to write an efficient (polynomial in n) sum of square representation by rational functions. Hence it makes sense
only to consider polynomials which are efficiently computable by small circuits.

5Refer to the appendix for a substantiation of this belief.
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Outline of the proofs

As the first step in the proof of Theorems 2.3 and 2.4, we reduce an instance φ of UN3SAT to a polynomial
Fφ which is non-negative if and only if φ is unsatisfiable. This is a variant of an often used trick, which
allows one to use algebraic considerations to study a boolean formula. We give two such reductions,
corresponding to the two theorems: for Theorem 2.3 we give a reduction such that Fφ ∈ HZ(6, 1) and
for Theorem 2.4, Fφ ∈ HZ(4,poly(·)). These results establish the co-NP hardness of the classes HZ(6, 1)
and HZ(4,poly(·)). Artin’s Theorem guarantees a sum of squares representation of Fφ over the reals. If
there is some such representation which is succinct (describable by a polynomial number of polynomial size
arithmetic circuits), in NP we can guess it and in co-RP, check if the guessed representation is the same
as Fφ. (This last step is done by invoking polynomial identity testing.) Formally we prove the following
theorem:

Theorem 2.5. For all n, d, h ≥ 1, if for all f ∈ HZ(n, d, h), there exist g1, g2, . . . , gs ∈ Q(x1, . . . , xn),
such that f =

∑s
i=1 g

2
i , s = poly (L(f)), and for all i = 1, 2, . . . , s, L(gi) = poly (L(f)) , then HZ(d, h) ∈

NPco−RP.

To derive the desired contradiction, in the end we invoke a result of Boppana, Hastad and Zachos [5],
which states that co-NP 6⊆ NPco−RP, unless PH=Σ2.

Organization

Section 3 contains the arithmetizations of SAT needed to prove Theorems 2.3 and 2.4. The main results,
viz proofs of Theorems 2.3, 2.4, 2.5, are proved in Section 4.

3 Arithmetization of SAT

In this section we give two different arithmetizations of instances of UN3SAT, each of which will be used
in proving one of Theorems 2.3, 2.4.

Given an instance φ = ∧mi=1Ci of a UN3SAT problem: Call a literal z ∈ {z1, z1, . . . , zn, zn} positive, if
z ∈ {z1, . . . , zn}. Else, call it negative. For a clause C = C+ ∨C− (C+ consists of positive literals while C−
consists of negative literals), define

A(C) :=

 ∏
z∈C+

(1− z)

 ·
 ∏
z∈C−

z

 .

For instance, if C = x1 ∨ x2 ∨ x3, then A(C) = (1 − x1)x2(1 − x3). Further for a1, a2, a3 ∈ {0, 1},
A(C)(a1, a2, a3) = 0 if and only if C(a1, a2, a3) = 1, (or C is satisfiable). Now define

Fφ(z1, . . . , zn) := 300

 n∑
i=1

z2
i (1− zi)2 +

m∑
j=1

(A(Cj))2

− 1. (1)

Thus for all φ, Fφ ∈ Z[z1, . . . , zn]. It is convenient to let fφ := Fφ/300. The problem remains the same
though, as the sign of fφ is the same as that of Fφ. Let ε = 1

300 .

Lemma 3.1. φ is not satisfiable if and only if fφ ≥ 0 over the reals.

Proof. If φ is satisfiable, let a = (a1, . . . , an) ∈ {0, 1}n ⊂ Rn be a satisfying assignment. Then by definition
fφ(a) = −ε < 0. To prove the converse, consider the case when φ is unsatisfiable. We need to show that
fφ ≥ 0 over the reals. Let δ = 1/4. We consider two cases:
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1. Case 1: Let (s1, . . . , sn) ∈ Rn be a point such that there is an 1 ≤ i ≤ n such that si does not
lie in either of the two intervals: [−δ, δ], [1 − δ, 1 + δ]. In this case s2

i (1 − si)2 > δ4. Since ε ≤ δ4,
fφ(s1, . . . , sn) > 0.

2. Case 2: Hence, we may assume that for a point (s1, . . . , sn), all si are in one of the intervals:
[−δ, δ], [1− δ, 1 + δ]. From this we construct a point a = (a1, . . . , an) ∈ {0, 1}n as follows:

• If si ∈ [−δ, δ] then let ai = 0.

• If si ∈ [1− δ, 1 + δ] then let ai = 1.

Since φ is unsatisfiable, there is a clause, say C, which is not satisfied by a. LetA(C) =
(∏

z∈C+
(1− z)

)
·(∏

z∈C− z
)
. If zi ∈ C+, since C is not satisfied by a, it must be that ai = 0, and hence si ∈ [−δ, δ],

or equivalently (1− si) ∈ [1− δ, 1 + δ]. Similarly, if zi ∈ C−, ai = 1, and hence si ∈ [1− δ, 1 + δ]. This
implies that at the point (s1, . . . , sn), fφ ≥ A2(C) ≥ (1− δ)6 > ε.

Thus, if φ is unsatisfiable, fφ > 0 over the reals. This completes the proof.

The above arithmetization reduces UN3SAT to HZ(6, 1). Thus, the following proposition follows from
Lemma 3.1 and co-NP hardness of UN3SAT.

Proposition 3.2. HZ(6, 1) is co-NP hard.

Next we show how to obtain a quantitatively better result, if we allow the coefficients to grow with the
input size. First, we need a new reduction. As before, let φ be a boolean function given in 3-CNF form on
n variables and m clauses.

f ′φ(z1, . . . , zn) :=
n∑
i=1

(33 + 1)m
δ(m)4

z2
i (1− zi)2 +

m∑
j=1

(A(Cj))− ε(m). (2)

Here δ and ε are positive functions (but less than 1) of m such that ε < (1− δ)3 −mδ(1 + δ)2. Note that
one can choose such a δ and an ε since (1 − δ)3 → 1 and mδ(1 + δ)2 → 0 as δ → 0. As in the previous
case, we can always multiply f ′φ suitably to obtain a polynomial F ′φ over the integers.

Lemma 3.3. φ is not satisfiable if and only if f ′φ ≥ 0 over the reals.

Proof. If φ is satisfiable, let a = (a1, . . . , an) ∈ {0, 1}n ⊂ Rn be a satisfying assignment. Then by definition
f ′φ(a) = −ε < 0. To prove the converse, consider the case when φ is unsatisfiable. We need to show that
f ′φ ≥ 0 over the reals. We consider two cases:

Case 1: Suppose that for a point s := (s1, . . . , sn), all si are in one of the intervals: [−δ, δ], [1− δ, 1 + δ].
From this we construct a point a = (a1, . . . , an) ∈ {0, 1}n as follows:

• If si ∈ [−δ, δ] then let ai = 0.

• If si ∈ [1− δ, 1 + δ] then let ai = 1.

Since φ is unsatisfiable, there is a clause, say C, which is not satisfied by a. LetA(C) =
(∏

z∈C+
(1− z)

)
·(∏

z∈C− z
)
. If zi ∈ C+, since C is not satisfied by a, si ∈ [−δ, δ], or equivalently (1−si) ∈ [1−δ, 1+δ].

Similarly, if zi ∈ C−, ai = 1 and hence si ∈ [1 − δ, 1 + δ]. This means that at the point s,
A(C) ≥ (1− δ)3.
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Now consider a clause C ′ satisfied by a. Writing C ′ = C ′+
∨
C ′−, we see that either some variable in

C ′+ is set to 1, or some variable in C ′− is set to 0 in the assignment a. Without loss of generality,
assume that zi ∈ C ′+ is set to 1 (ai = 1). Thus, si ∈ [1− δ, 1 + δ], or (1− si) ∈ [−δ, δ]. Thus

A(C ′) =

 ∏
z∈C′+

(1− z)

 ·
 ∏
z∈C′−

z

 ≥ −δ(1 + δ)2.

Adding the inequalities for unsatisfied and satisfied clauses, one gets that
m∑
j=1

A(Cj) ≥ (1− δ)3 −mδ(1 + δ)2.

By the choice of ε and δ, we have ε < (1− δ)3 −mδ(1 + δ)2, and therefore f ′φ(s) > 0.

Case 2: Now consider a point s = (s1, . . . , sn) such that, there is an 1 ≤ i ≤ n, such that si does not lie
in either of the two intervals: [−δ, δ], [1− δ, 1 + δ]. For a clause C, define

∆C := max {{|1− si| : zi ∈ C+} ∪ {|sj | : zj ∈ C−}} .

It follows that A(C)(s) ≥ −∆3
C . Now consider the following 2 cases:

Case 2a ∆C > 3
Let sj∗ be such that either |sj∗ | or |1−sj∗ | is equal to ∆C . Then (sj∗)2(1−sj∗)2 ≥ ∆2

C(∆C−1)2 >

∆3
C + 1. This implies that A(C)(s) + 33+1

δ4 (sj∗)2(1− sj∗)2 > −∆3
C + 33+1

δ4 (∆3
C + 1) > 1. The last

inequality follows by noticing that δ < 1.
Case 2b ∆C ≤ 3

From the definition of case 2, ∃sj∗ such that (sj∗)2(1 − sj∗)2 ≥ δ4. Hence, 33+1
δ4 (sj∗)2(1 −

sj∗)2 > 33 + 1. By definition of ∆C , A(C)(s) ≥ −33. Combining these inequalities, we get
A(C)(s) + 33+1

δ4 (sj∗)2(1− sj∗)2 > 1.

Now summing over all clauses, we get,
∑m

j=1A(Cj)(s)+
∑n

i=1
(33+1)m

δ4 s2
i (1−si)2 > m. This is exactly

what we set out to prove: fφ(s) > 0.

Thus, if φ is unsatisfiable, f ′φ > 0 over the reals. This completes the proof.

This leads to the following:

Proposition 3.4. HZ(4,poly(·)) is co-NP hard.

Amplifying positivity

Using the PCP Theorem of [1], one can transform the given formula so that, if it is unsatisfiable, then a
large fraction (say c, 0 < c < 1) of clauses are unsatisfiable. This gives rise to an arithmetization such that
fφ > cm − 1 if and only if φ is unsatisfiable. This shows that even if one is given that whenever f > 0,
f > cm− 1, it is still co-NP hard to decide the positivity of f .

Circuit complexity of the arithmetized polynomials

It is important to note that for any 3CNF formula φ, there is an arithmetic circuit over Z which computes
Fφ and F ′φ, whose sizes are at most n6. 6 In fact, the explicit arithmetizations written down earlier can be
converted into such circuits.

6Since φ is in 3CNF, m ≤ (2n)3.
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4 Main results

Testing identities The Identity Testing problem for arithmetic circuits is to decide if two given arithmetic

circuits evaluate the same polynomial. More formally, given two arithmetic circuits C1, C2 over Z, let
f, g ∈ Z[x1, . . . , xn] be the polynomials computed by them respectively. The problem is to decide efficiently
if f − g is identically zero over the integers. Here, efficiency is measured in terms of the input size, which
in this case, is the sum of the sizes of C1 and C2. The following result by Ibarra and Moran [15] establishes
that, in the presence of randomness, there is an efficient solution to this problem. Formally, there is an
efficient randomized algorithm which takes as input two circuits and decides if they compute the same
polynomial. The algorithm is always correct when it says NO, but there is a small chance that is is wrong
when it says YES. This simple but important result will play a crucial role in the proof of the main results
which we describe next.

Lemma 4.1. ([15]) The Identity Testing problem for arithmetic circuits over Z is in co-RP.

The fact that non-negative polynomials can be represented as sum of squares suggests the following
algorithm for checking if f ∈ HZ(n, d, ·). Suppose it is true that f = g2

1 +· · ·+g2
s , where each gi = αi

βi
, αi and

βi are polynomials over the integers, and βi 6= 0. Further assume that this representation is succinct, that
is s = poly(n) and for all 1 ≤ i ≤ s, L(αi),L(βi) ≤ poly(n). Then in NP, we can guess these polynomials
αi, βi, as the total bits one has to guess is a polynomial in n. Once we have guessed the representation,
one checks the following identity:

f

s∏
j=1

β2
j −

s∑
i=1

αi∏
j 6=i

βj

2

≡ 0 (3)

Since f itself has an arithmetic circuit over the integers of size at most n6, the polynomial on the LHS of
the above identity has a polynomial size circuit. Hence using the identity testing algorithm for arithmetic
circuits over the integers, one can verify the above identity in co-RP. Thus checking the validity of the
guessed representation.
This is formalized in the following proof:

Proof of Theorem 2.5. Using NP, guess each gi = αi
βi

where αi and βi are polynomials over Q. By hypoth-

esis, we know that f
∏s
j=1 β

2
j and

∑s
i=1

(
αi
∏
j 6=i βj

)2
are arithmetic circuits with length a polynomial in

n. Hence by Lemma 4.1, checking whether they are equal is in co-RP. The time required to evaluate the
gi’s is also a polynomial in n. Hence we get HZ(d, h) ∈ NPco−RP.

Finally, we need the following result of Bopanna, et al [5].

Theorem 4.2. [5] co-NP ⊆ NPco−RP ⇒ PH = Σ2.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Assume on the contrary. From Theorem 2.5, HZ(6, 1) ∈ NPco−RP. But HZ(6, 1) is
co-NP-Hard by Proposition 3.2. Now by Theorem 4.2, PH = Σ2, a contradiction is achieved.

Using Proposition 3.4 instead of Proposition 3.2 in the above proof, one obtains a proof of Theorem 2.4.
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Computational Complexity preliminaries

The aim of this section is to present the definitions and notions in Computational Complexity Theory. 7

The reader is refered to the book by Papadimitriou [18] for a comprehensive treatment of this subject.

Some complexity classes
A language is a subset of {0, 1}∗. For a language L, L̄ := {0, 1}∗\L. A p-ary relation is a language

over the following p-ary product: {0, 1}∗ × · · · × {0, 1}∗.8 The complexity class DTIME(f(n)) is the set of
all languages for which membership can be tested in time f(n), by a deterministic Turing machine, in
time f(n). P := ∪t≥0DTIME(nt). NP is the collection of all languages L, such that there is a 2-ary relation
RL ∈ P (called a polynomially decidable relation) and a polynomial p(·), such that x ∈ L if and only if there
is a y ∈ {0, 1}∗, with |y| = O(p(|x|)), and (x, y) ∈ RL. The class co-NP is defined as ∪L∈NPL̄. It follows that
a language L is in co-NP if and only if there is a polynomially decidable 2-ary relation RL and a polynomial
p(·), such that x ∈ L if and only if and for all y ∈ {0, 1}∗, with |y| = O(p(|x|)), (x, y) ∈ RL. It is natural
to define complexity classes based on compositions of these existential and universal quantifiers. Starting
with Σ1 = NP and Π1 = co-NP, one can define Σi and Πi as follows. For i ≥ 2, Σi is the collection of all
languages L such that there is a i-ary relation RL ∈ Πi−1, and a polynomial p(·), such that x ∈ L if and
only if there exists a y ∈ {0, 1}∗, with |y| = O(p(|x|)), (x, y) ∈ RL. Πi is defined similarly as co-Σi. Further,
define ∆i := Σi ∩ Πi. One often thinks of ∆0 = Σ0 = Π0 = P and ∆1 =NP∩co-NP. Polynomial Hierarchy
(PH) is defined to be the collection of classes ∆i,Σi and Πi, for all i ≥ 0. It follows from definitions that if
NP=co-NP then Σi = ∆i for all i ≥ 1.

Completeness
A language L is said to be hard for a a complexity class C, for all L′ ∈ C, there is a polynomial p(·) and

a Turing machine ML,L′ : {0, 1}∗ → {0, 1}∗, such that x ∈ L if and only if ML,L′(x) ∈ L′. Moreover, for the
complexity classes we will be interested in, we assume that ML,L′ runs in time O(p(|x|)). If L ∈ C and L is

7The reason we do so is it to broaden the scope of this paper to mathematicians who may not be familiar with these
notions, but are interested in understanding our results on Hilbert’s 17th problem.

8A 1-ary relation is just a language.
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hard for C, then L is said to be complete for C. Complete problems for a complexity class can be thought
of as the hardest problems in their class and can be thought of as characterizing the complexity class.

Next we define a problem which is known to be NP-complete. Consider a boolean function φ : {0, 1}n 7→
{0, 1} in the conjunctive normal form (3-CNF), that is φ(x1, . . . , xn) =

∧m
i=1Ci, where each Ci is a boolean

OR of at most 3 literals from {x1, x1, . . . , xn, xn}. φ is said to be satisfiable if there is a satisfying assignment
a1, . . . , an ∈ {0, 1}, such that φ(a1, . . . , an) = 1. The set of such boolean functions, in 3-CNF form, that
have a satisfying assignment is denoted 3SAT. One of the earliest and most important results in complexity
Theory (see [8, 16, 17]) was establishing that 3SAT is NP-complete. The corresponding co-NP problem is
UN3SAT, i.e. the set of boolean functions in 3-CNF that have no satisfying assignment. It follows that
UN3SAT is complete for co-NP. Generalizing these results, it is known that there is a complete problem
for Σi (and hence for each Πi), for all i ≥ 1. This is precisely the reason why it is widely believed that for
all i ≥ 1, Σi 6= Πi. This implies that PH 6= Σ2, a conjecture on which our result will be based on.

Probabilistic complexity classes
Randomized complexity classes are defined with respect to Turing machines which have access to an

additional tape which contains an infinite number of uniform and independent random bits. For this paper,
we are just concerned with probabilistic polynomial time Turing machines which always halt (independently
of the random tape) after a polynomial number of steps (in the length of the input). Naturally, for an input
x to such a randomized machine M , one associates probabilities to the computation M(x). The class RP
is the class of all languages L, such that there is a probabilistic polynomial time Turing machine ML, such
that for all x ∈ L, Pr[ML(x) accepts] = 1 and for all x 6∈ L, Pr[ML(x) accepts] ≤ 1/2. The probabilistic
complexity classes important for this paper will be RP and co-RP. Finally, we define the class NPco−RP

as the collections of languages L, for which there is a probabilistic polynomial time machine ML, and a
polynomial p(·), such that if x ∈ L there is a y ∈ {0, 1}∗, with |y| = O(p(|x|)), Pr[ML(x, y) accepts] ≤ 1/2,
and if x 6∈ L, then for all y ∈ {0, 1}∗, with |y| = O(p(|x|)), Pr[ML(x, y) accepts] = 1.
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