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Abstract— Bargaining games on exchange networks have been
studied by both economists and sociologists. A Balanced Out-
come [9], [15] for such a game is an equilibrium concept that
combines notions of stability and fairness. In a recent paper,
Kleinberg and Tardos [13] introduced balanced outcomes to the
computer science community and provided a polynomial-time
algorithm to compute the set of such outcomes. Their work left
open a pertinent question: are there natural, local dynamics that
converge quickly to a balanced outcome? In this paper, we provide
a partial answer to this question by showing that simple edge-
balancing dynamics converge to a balanced outcome whenever one
exists.

1. INTRODUCTION

Exchange networks and their properties have been well-
studied by sociologists and economists, who have often
made similar discoveries independently. For a sociologist, an
exchange is any social interaction based on reciprocity. For
an economist, an exchange is a trade that generates a surplus
for the parties involved. A network of exchanges arises when
there are multiple players involved in pairwise exchanges
but when the potential pairings between players are limited.
The object of interest in such networks is how the players
bargain for the surplus generated by exchanges, and how
the outcome depends on the topology of the network. In
sociology, this is studied using network exchange theory
[20], and in economics it is studied using cooperative game
theory [17], [19].

Interaction in such exchange networks takes the form of
the following bargaining game [9], [19], defined by a graph
G = (V,E) with edge weights w : E → Z+. Each node of
the graph is a player, and the weight on an edge signifies
the value generated by an exchange between the two players
connected by the edge. Any two players that are connected
by an edge are allowed to negotiate on how to split the value
on the edge. Eventually, however, each player is allowed an
exchange with only one other player. An outcome of such
a game corresponds to a matching M , which represents the
pairs of players involved in an exchange, and a vector x
describing each player’s allocation of the value generated

by the exchange. If xu is the allocation of node u in the
outcome, then for all edges uv ∈ M , we have xu + xv =
wu,v , and for all u /∈M , we have xu = 0.

There are various notions of equilibrium that are intended
to capture rational play in this game. The most basic and
natural one is that of a stable outcome. In such an outcome,
no two players have an unrealised exchange that is better
for each of them than their realised exchanges; in other
words, xu + xv ≥ wu,v for all unmatched edges uv.
Stability, however, is a mild restriction that does not fully
capture the bargaining aspect of the game. Rochford [15],
and independently, Cook and Yamagishi [9], introduced the
notion of balanced outcomes, which has been found to
match experimental data on such games quite well [7], [8].
Balanced outcomes can be seen as a generalization of Nash’s
bargaining solution for two players [14], so we describe that
first. Suppose that two players have a dollar to split among
themselves if they agree how to split it. Each player also
has an alternative which is his utility in case they disagree.1

If the alternatives of the two players are α1 and α2, then
Nash’s bargaining solution suggests that they split the sur-
plus s = 1− (α1 +α2) equally if it is positive, and disagree
otherwise. That is, the players get α1+ s

2 and α2+ s
2 if s ≥ 0.

For the network bargaining game, an outcome is balanced
if it is stable and the value of each realised exchange is
split according to Nash’s bargaining solution. However, as
opposed to the exogenously given alternatives in Nash’s
game, the alternatives in the network bargaining game are
given indigenously, to be the maximum value a player can
get by executing an exchange with a neighbor other than his
match and offering that neighbor the same value that he is
currently getting. More precisely, the alternative of a node
u is αu = max{0,maxv:uv∈E\M{wu,v − xv}}. In a recent
work that brought this concept into the realm of computer
science, Kleinberg and Tardos [13] gave a polynomial-time
algorithm to compute the set of balanced outcomes.

Kleinberg and Tardos asked a pertinent question left

1This is also sometimes called the disagreement point.



open by their work: “are there natural, local dynamics that
converge to a balanced outcome?” In fact, Rochford [15] and
Cook and Yamagishi [9] already define one such process.
This process, which we call the edge-balancing dynamics,
assumes that the players have determined their matches and
are just negotiating on their allocations. With this matching
M fixed, the process works as follows: for a matched edge
uv, let the surplus be su,v = wu,v − (αu + αv). If the edge
is not already balanced, then rebalance it by setting xu and
xv to the values suggested by Nash’s bargaining solution:
xu ← αu + su,v

2 and xv ← αv + su,v

2 . Do this even if the
surplus su,v is negative – unless doing this would make xu

or xv negative, that is, unless αu+ su,v

2 < 0 or αv+ su,v

2 < 0.
In the first of these cases, set xu ← 0 and xv ← wu,v , and
in the second, set xu ← wu,v and xv ← 0. In this way, the
allocation on each edge is set to be as close to balanced as
possible while maintaining the condition that xu and xv are
always non-negative and add up to wu,v .2

In order to completely specify the dynamics, one has
to specify the order in which the edges are rebalanced
and the initial state. For instance, if all matched edges are
simultaneously rebalanced, then it is easy to show that the
dynamics may cycle. On the other hand, if the dynamics
start at a particular state, then it is easy to show that they
converge. (More on this in the section on related results.) In
order to be as general as possible, we consider an arbitrary
order of edges and an arbitrary initial state. Our main result
is that the edge-balancing dynamics converge to a balanced
outcome whenever one exists with matching M .

In fact, it is not even clear that a fixed point of this process
is a balanced outcome. This is because, at a fixed point, the
surplus of an edge could be negative, or worse, it could
be so negative that αu + su,v

2 < 0 and we set xu ← 0,
and xv ← wu,v . In Section 3, we show examples where
the edge-balancing dynamics do indeed get stuck on such
an outcome. However, in each of these examples, it can be
seen that there is no balanced outcome with respect to the
given matching M . To prove our result, we need to argue
that this is always the case: the dynamics can only get stuck
in such a way if there is no balanced outcome with M . To do
this, we show that if a fixed point is not a balanced outcome,
then an “exploration” algorithm always finds a structure in
the graph that acts as a witness to the non-existence of a
balanced outcome.

The convergence proof uses a potential function argument.
Given the potential function, the proof of convergence
is fairly easy. However, the potential function we use is
somewhat peculiar, owing to the fact that many natural
potential functions do not work. This is because balancing
one matched edge might lead to an increase in the imbalance
of many other edges. In fact, the only special case where we

2Actually the process as defined by Rochford and Cook and Yamigishi is
simpler because they only consider initial conditions in which the surplus
is always guaranteed to be non-negative.

know an alternate (easier) potential function is the case of
a path.

In our dynamics we assume that we are given a match-
ing M . One might ask why this assumption is justified.
Besides seeing it as a natural starting point for research
in understanding more realistic dynamics, we also make
the following observation: the message passing algorithm
of [3], [4], [18] for finding maximum matchings can be
thought of as a first phase in which the players converge
to a matching before they use our dynamics as a second
phase to compute their allocation. The messages of this
algorithm have a natural interpretation as offers (which is
not surprising, since the algorithm has been shown to be
equivalent to the auction algorithm of [5]). We elaborate on
this in the full version of the paper.

Other Related Work: The bipartite version of the bar-
gaining game was introduced by Shapley and Shubik [19],
who called it the assignment game. Assignment games can
also be thought of as a variant of the two-sided markets of
Gale and Shapley [12] with transferable utilities. Assignment
games have been the subject of numerous papers in game
theory. The most relevant to our paper is that of Rochford
[15], who also defined balanced outcomes for such games
(under the name “pairwise-bargained allocations”). Rochford
also considered a simplified version of our edge-balancing
dynamics, and showed that if the initial state is one of two
special points, then the process converges to a balanced
outcome. The issue of characterizing the fixed points does
not arise in Rochford’s work since the initial states are such
that the allocations are always guaranteed to be stable. Also,
the special initial states give a natural monotonicity property
that is lacking when considering arbitrary starting points.

Papers in a similar vein that consider price setting through
a bargaining processes include the work by Corominas-
Bosch [10]. At a meta-level, the convergence of local
dynamics to a global equilibrium is a common theme.
Ackerman et. al [1] showed an exponential lower bound
for random best-response dynamics for the Gale-Shapley
stable matching game [12]. Several papers [2], [6], [16] have
studied the convergence of best-response dynamics to Nash
equilibria in congestion games. In terms of structural results,
Driessen [11] shows that the kernel is included in the core
of an assignment game. This is in a similar spirit to one of
the structural results we prove (Proposition 5).

Future Directions: The rate of convergence of the dy-
namics is obviously important. However, the edge-balancing
dynamics may not reach an exact balanced outcome in finite
time.3 Therefore, we define a notion of sufficiently balanced
outcomes, which helps in measuring the rate. This gives a
bound that is exponential in the size of the graph, and linear
in 1/ε where ε is the approximation parameter. Bringing the

3This is easily seen, even for a path on 4 nodes, since the edge-balancing
dynamics may be made to always have numbers whose denominators are
powers of 2, whereas a balanced outcome has values 1/3 and 2/3.



rate down to a polynomial in the input size is a major open
problem. To do this, one might also consider the process
in which the edge to be balanced is picked uniformly at
random.

Another direction of research is to remove the assumption
that there is a fixed matching. Although this assumption is
partially justified by our observation regarding the message
passing algorithm of [3], [4], [18], it would be more sat-
isfying to have dynamics that naturally mix the process of
finding a matching and bargaining across the edges of the
matching.

2. THE EDGE-BALANCING DYNAMICS

Let M be a matching on a graph G = (V,E) with weights
w : E → Z+. Let x ∈ RV

+ be an allocation on V . We
have already defined stable and balanced outcomes. It is
also useful to define stable and balanced edges. An edge
uv 6∈M is stable if xu +xv ≥ wu,v and unstable otherwise.
An edge uv ∈M is balanced if its endpoints satisfy Nash’s
bargaining solution, that is, if the surplus is not negative
(su,v = wu,v−αu−αv ≥ 0) and the values at the endpoints
are xu = αu + su,v/2 and xv = αv + su,v/2.

We introduce the term quasi-balanced to denote an edge
uv ∈M such that xu = αu +su,v/2 and xv = αv +su,v/2,
regardless of whether or not su,v ≥ 0. In a quasi-balanced
outcome every matched edge is quasi-balanced. Recall that a
balanced outcome is a stable outcome in which the endpoints
of each edge satisfy Nash’s bargaining solution. This implies
in particular that in a balanced outcome, each matched
edge must have positive surplus. However, it is not hard to
show that the stability condition alone implies the positive
surplus of the matched edges. Hence, balanced outcomes
are equivalent to stable quasi-balanced outcomes; this is the
characterization we will use.

We define one other type of matched edge for clarity in
describing situations in which the surplus is negative. We
say that an edge uv ∈ M is unhappy if αu + su,v/2 < 0
or αv + su,v/2 < 0. That is, an edge is unhappy whenever
the edge-balancing dynamics suggest a negative value for an
endpoint. We say that vertex v is saturated if the unhappy
edge uv ∈ M is as close to being balanced as it can get
without causing xu to be negative, namely, αu +su,v/2 < 0,
xv = wu,v and xu = 0. We call an edge saturated if one of
its endpoints is saturated.

Using these definitions, we describe the edge-balancing
dynamics formally in Figure 1. Clearly we maintain the
invariant that xu + xv = wu,v for all uv ∈ M , and if
z 6∈ M then xz does not change. Thus, at any point in
the dynamics, x is a valid allocation with respect to M .
In a fixed point of these dynamics, every matched edge is
either quasi-balanced or unhappy with a saturated endpoint,

4We assume the natural non-starvation condition that each edge is
considered an infinite number of times.

Edge-Balancing Dynamics
Let x be an arbitrary allocation with respect to M .
Repeat:

Choose any edge uv ∈M that is not quasi-balanced
or saturated.4

Let αu and αv be the best alternates for u and v.
Let x′u = αu + su,v/2, and
Let x′v = αv + su,v/2.
If x′u < 0 (that is uv is unhappy with αu < αv)

Set xu ← 0 and xv ← wu,v .
Else if x′v < 0 (that is uv is unhappy with αu > αv)

Set xu ← wu,v and xv ← 0.
Else

Set xu ← x′u and xv ← x′v .

Figure 1. The Edge-Balancing Dynamics
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(a) Fixed point that is not quasi-balanced.
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(b) Fixed point that is quasi-balanced,
but not stable.

Figure 2. Examples of fixed points of the edge-balancing dynamics
that are not, in fact, balanced. In Figure 2(a), the fixed point is not
quasi-balanced and in Figure 2(b), the fixed point is quasi-balanced
but not stable. However, it can be shown that there is no balanced
outcome with either of these matchings.

and unmatched edges may or may not be stable. Thus there
can be (and are) examples of fixed points that are not quasi-
balanced or stable (see Figure 2). However, our main result
shows that in any such example there is no balanced outcome
on matching M .

Theorem 1. If there exists a balanced outcome on M , then
any fixed point of the edge-balancing dynamics is balanced.

This theorem is proved in Section 3. In Section 4, we
prove that the dynamics converge to a fixed point.

Theorem 2. For any initial allocation x and any matching
M , the edge-balancing dynamics converge to a fixed point.



3. FIXED POINT CHARACTERIZATION

Since a stable outcome must be on a maximum weight
matching [13], [19], a balanced outcome must also be on a
maximum weight matching. It is also known that if M is
maximum, then a balanced outcome with M exists if and
only if a stable outcome on G exists [13], [15]. Hence, a
balanced outcome exists on a matching M if and only if M
is a maximum matching and there exists a stable outcome
on G. A straightforward duality argument [13] shows that
there exists a stable outcome on G if and only if a maximum
fractional matching on G is integeral. Hence, we have the
following fact.

Fact 3. There exists a balanced outcome on matching M ⊆
G if and only if M is a maximum fractional matching.

Note that in Figure 2, neither of the two matchings are
maximum fractional matchings.

We will prove Theorem 1 in two steps. The first step is
to show that when a balanced outcome exists, a fixed point
of the edge-balancing dynamics is quasi-balanced.

Proposition 4. If M is a maximum fractional matching and
x is a fixed point of the edge-balancing dynamics, then x
has no unhappy edges (and is therefore quasi-balanced).

The second step is to show that, given these same conditions,
a quasi-balanced allocation is stable.

Proposition 5. If M is a maximum fractional matching and
x is quasi-balanced, then x contains no unstable edges (and
is therefore balanced).

Combined with Fact 3, these two propositions prove Theo-
rem 1.

Proposition 5 is of independent interest because it shows
that although quasi-balanced is a weaker notion than bal-
anced, the two are equivalent on matchings that allow
balanced outcomes. In fact, we can prove a generalization
that is motivated by practical concerns. Recall that although
the edge-balancing dynamics converge, they may not reach
a fixed point in finite time. However, once parties are
sufficiently satisfied they may not want to negotiate further.
Thus we consider a notion of sufficiently quasi-balanced or
sufficiently stable.

We say that allocation x is ε-quasi-balanced if the surplus
is split evenly, to within an additive constant of ε; namely
every edge uv ∈ M satisfies |(xu − αu) − (xv − αv)| ≤
ε. Similarly, an allocation is δ-stable if no two unmatched
players have an unrealized exchange that is more than δ
better for them; namely xu + xv ≥ wu,v − δ for each edge
uv 6∈M . In light of Proposition 5, one might ask if there is a
similar relationship between ε-quasi-balanced and δ-stable.
We settle this question in the affirmative in the following
proposition.

Exploration Algorithm
Choose u0 ∈ V .
Let S = ∅ be the set of explored vertices.
For i = 0, 1, 2, 3, . . .

If ui ∈ S, break.
Else,

S ← S ∪ {ui}.
If i is even:

If ui 6∈M , break.
Else, let ui+1 = M(ui).

Else (i is odd):
If αi = 0, break.
Else, choose ui+1 ∼ ui such that

αi = wi,i+1 − xi+1.
For i = 0,−1,−2,−3, . . .

If i < 0 and ui ∈ S, break.
Else,

S ← S ∪ {ui}.
If i is odd:

If ui 6∈M , break.
Else, let ui−1 = M(ui).

Else (i is even):
If αi = 0, break.
Else, choose ui−1 ∼ ui such that

αi = wi,i−1 − xi−1.

Figure 4. The exploration algorithm.

Proposition 6. If M is a maximum fractional matching and
x is an ε-quasi-balanced allocation on M , then x is (nε)-
stable, where n = |V (G)|.

The proof of Proposition 6 follows similar ideas as the proof
of Proposition 5. We present this proof in the full version of
the paper, and show this bound is tight to within a constant
factor.

The proofs of Propositions 4 and 5 share a common
technique for proving the contrapositive. We assume there
exists an edge uv that is unhappy (in the case of Propo-
sition 4) or an edge uv that is unstable (in the case of
Proposition 5). Starting from this edge, we explore the
graph along matched edges and best alternatives and show
that this exploration must terminate by finding a structure
with properties that imply M is not a maximum fractional
matching. This exploration algorithm is shown in Figure 4.
To ease notation, we typically write wui,uj

and xui
simply

as wi,j and xi.
Note that by the definition of best alternate αi, when αi >

0 a vertex ui′ ∼ ui exists such that αi = wi,i′ − xi′ as
desired. Thus, this dynamics are well defined. Let H be
the subgraph formed by the set of vertices S and the edges
travelled in their discovery. Because both directions of the
exploration terminate if a vertex in S is rediscovered, the
subgraph H can be classified in one of the six ways shown
in Figure 3.

Because the proof of Proposition 5 is simpler than the
proof of Proposition 4 and more clearly illustrates our



(a) Capped: at least one endpoint is
matched. The other endpoint can take any
form.

(b) Lollypop: at least one endpoint forms an
alternating (even length) cycle. The other end-
point can take any form.

(c) Augmenting path: both endpoints are un-
matched.

(d) Flower: one endpoint forms a blossom
(odd cycle), and the other endpoint is un-
matched.

(e) Bicycle: both endpoints form disjoint
blossoms.

(f) Pretzel: both endpoints form blossoms
which are not disjoint.

Figure 3. The exploration algorithm finds a subgraph H that can be classified in one of these six ways. Matched edges are depicted in bold.



exploration technique, we present it first.
Quasi-Balanced Outcomes are Stable: The proof of

Proposition 5 makes use of the following lemma, which
is proved in the full version of this paper. Note that the
structures in this lemma played a prominent role in [13] as
well.

Lemma 7. Let G be a graph and let (M,x) be an outcome
on G. If there is a subgraph H ⊆ G that is an augmenting
path, alternating cycle, flower, or bicycle (see Figure 5) such
that

• for each uv ∈ H ∩M , xu + xv = wuv , and
• for each uv ∈ H \M , xu + xv < wuv ,

then there exists a (possibly fractional) matching on G with
weight strictly greater than M .

We now proceed with the proof of the proposition.
Proof of Propositon 5: We prove the contrapositive.

Assume there exists an unstable edge uv ∈ M . If neither
u nor v are matched, then M is not maximum. Without
loss of generality, assume u is matched and let u0 = u. Let
u`, . . . , u0, . . . , ur be the set of vertices discovered by the
exploration algorithm, and let H ⊆ G be the subgraph of
vertices and edges traversed. We first prove that every edge
uv ∈ H \M is unstable.

Specifically, we prove by induction that for 0 ≤ i ≤
br/2c, we have x2i−1 + x2i < w2i−1,2i, and an equivalent
argument holds for 0 ≥ i ≥ d(`+ 1)/2e. To prove the base
case we show u−1u0 is unstable. Note α0 ≥ wv0 − xv ,
which implies x0 − α0 ≤ x0 + xv − wv0 < 0. Specifically,
0 < α0, so u−1 exists and α0 = w−1,0 − x−1. Thus,
x0 − (w−1,0 − x−1) = x0 − α0 < 0, or equivalently
x0 + x−1 < w−1,0. Hence u−1u0 is unstable.

Now let us assume u2i−3u2i−2 is an unmatched edge that
is unstable and let us show that u2i−1u2i is unstable. Since
u2i−2u2i−1 is a matched edge, it is by assumption quasi-
balanced. Also, since u2i−3 ∼ u2i−2, it follows that α2i−2 ≥
w2i−3,2i−2−x2i−3. Hence, x2i−1+x2i = x2i−1+w2i−1,2i−
α2i−1 = x2i−2 − α2i−2 +w2i−1,2i ≤ x2i−2 −w2i−3,2i−2 +
x2i−3 +w2i−1,2i < w2i−1,2i, and thus u2i−1u2i is unstable.
We conclude that every edge uv ∈ H \M is unstable.

Now consider H , and recall it takes the form of one of
the six structures in Figure 3. We consider each case, and
show our desired conclusion. Since every unmatched edge
in H is unstable, we know αi > xi ≥ 0 for all i. Thus, H
cannot be capped (Figure 3(a)). Now suppose that H is a
lollypop (Figure 3(b)) or a pretzel (Figure 3(f)). If H is a
lollypop then by definition it contains an alternating cycle.
Alternately, if H is a pretzel then a simple parity argument
shows that one of its cycles must have even length, and must
therefore be alternating.

Hence, H is either an augmenting path (Figures 3(c)), a
flower (Figures 3(d)), a bicycle (Figure 3(e)), or contains an
alternating cycle. Since each unmatched edge is unstable,

we apply Lemma 7 to conclude that M is not a maximum
fractional matching, thus proving the contrapositive.

Fixed Points are Quasi-Balanced: To prove that fixed
points are quasi-balanced, we begin with the following
lemma.

Lemma 8. Let x be a fixed point of the edge-balancing
dynamics on a maximum matching M , and let u0u1 ∈ M
be an unhappy edge with u1 saturated. Consider the vertices
u0, u1, . . . , ur discovered by the first part of the exploration
algorithm. If ` ≤ r, then for any odd `:

1) For any j such that 0 ≤ j < b`/2c, we have

x` +
b`/2c∑
i=j+1

w2i−1,2i > x2j+1 +
b`/2c∑
i=j+1

w2i,2i+1 .

2) x` > 0.

3) x` − α` ≤ x`−1 − α`−1.

4) α` > x`.

5) For any odd `′ < `, we have α` − x` ≥ α`′ − x`′ .
Alternatively, for any even `:

6) For ` ≥ 2, w`−1,` > x`−1 + x`.

7) For ` ≥ 2, we have α` > x`.

8) For any j such that 0 ≤ j < `/2, we have

x` +
`/2−1∑
i=j

w2i,2i+1 <

`/2∑
i=j+1

w2i−1,2i .

Proof: We prove this lemma by joint induction on `.
When ` = 0, Lemma 8(6) and Lemma 8(7) do not apply
(note that their proofs when ` = 2 only rely on ` = 1), and
Lemma 8(8) holds vacuously. Additionally, when ` = 1,
Lemma 8(1) holds vacuously; Lemma 8(2) holds because
x1 = w0,1 > 0; Lemma 8(3) holds because x0 = 0 and α1−
α0 > w0,1 = x1; Lemma 8(4) holds because α1 > x1 + α0

and α0 ≥ 0; and finally, Lemma 8(5) holds vacuously. Let
us assume the lemma holds for for all 0, . . . , ` − 1 where
`− 1 < r. We now show that the claims hold for `, proving
the inductive step.

First consider the case where ` is odd, and denote ` =
2k + 1:
• Lemma 8(1): Let 0 ≤ j < k. We have

x` +
k∑

i=j+1

w2i−1,2i

= x` + w`−2,`−1 +
k−1∑

i=j+1

w2i−1,2i



(a) augmenting path (b) alternating cycle (c) flower (d) bicycle

Figure 5. Witnesses that prove that M is not a maximum fractional matching.

= (w`−1,` − x`−1) + w`−2,`−1 +
k−1∑

i=j+1

w2i−1,2i

(since u`−1u` ∈M )

> w`−1,` + x`−2 +
k−1∑

i=j+1

w2i−1,2i

(by Lemma 8(6), IH)

≥ w`−1,` + x2j+1 +
k−1∑

i=j+1

w2i,2i+1

(by Lemma 8(1), IH)

= x2j+1 +
k∑

i=j+1

w2i,2i+1 .

Note that while we do use Lemma 8(6) for ` − 1, we
know that ` ≥ 3, so this does not present a problem.

• Lemma 8(2): We have

x` > x1 +
k∑

i=1

w2i,2i+1 −
k∑

i=1

w2i−1,2i

(by Lemma 8(1), with j = 0)

=
k∑

i=0

w2i,2i+1 −
k∑

i=1

w2i−1,2i

(since x1 = w0,1)
≥ 0 .

(see below)

Note that the edges u0u1 and u`−1u` are both matched.
Thus the last inequality follows since M is a maximum
matching.

• Lemma 8(3): Because x is a fixed point, u`−1u` is
either balanced or unhappy with an endpoint saturated.
By Lemma 8(2), it cannot be unhappy with u`−1

saturated. Thus, it is either balanced and x` − α` =
x`−1 − α`−1 or it is unhappy with u` saturated. In the
latter case, note that x` + x`−1 = w`,`−1 < a` − a`−1

by definition. Since x`−1 = 0, we have x` − α` <
x`−1 − α`−1, as desired.

• Lemma 8(4): From Lemma 8(3), we have α` ≥ x` −
x`−1+α`−1. By Lemma 8(7) for `−1 we know α`−1 >
x`−1. Hence α` > x`.

• Lemma 8(5): First consider `′ = `−2. By Lemma 8(3),
we have α` − x` ≥ α`−1 − x`−1. Since u`−2 ∼ u`−1,
we have α`−1 ≥ w`−1,`−2 − x`−2. Hence α` − x` ≥
w`−1,`−2− x`−2− x`−1 = α`−2− x`−2 by our choice
of u`−1. Thus, α`−x` ≥ α`−2−x`−2. By the induction
hypothesis, this holds for all odd `′ < ` as desired.

Now consider the case where ` is even, and denote ` = 2k:
• Lemma 8(6): By our choice of u`, we know w`−1,` =
α`−1 + x`. By Lemma 8(4), we have α`−1 > x`−1.
Thus w`−1,` > x`−1 + x` as desired.

• Lemma 8(7): Because u`−1 ∼ u` and u`−1u` 6∈ M ,
we have α` ≥ w`−1,`−x`−1. By Lemma 8(6) we have
α` > x` as desired.

• Lemma 8(8): We have

x` +
k−1∑
i=j

w2i,2i+1 = x` + x`−1 + x`−2 +
k−2∑
i=j

w2i,2i+1

≤
k−1∑

i=j+1

w2i−1,2i + x`−1 + x`

(see below)

< w`−1,` +
k−1∑

i=j+1

w2i−1,2i

(by Lemma 8(6))

=
k∑

i=j+1

w2i−1,2i .

The first inequality follows by the inductive hypothesis
of Lemma 8(8) if ` = 2k ≥ 4. If ` = 2k = 2, it follows
because x`−2 = x0 = 0.



Note that each case of the above lemma relies only on
previous cases, or on the inductive hypothesis. Thus this
concludes the proof.
We can now proceed with the proof of the proposition.

Proof of Proposition 4: We prove the contrapositive.
Recall that the only unhappy edges that appear in a fixed
point must be saturated. Suppose u0u1 ∈M is unhappy with
u1 saturated. Consider the structure formed by the vertices
u0, u1, . . . , ur of the exploration algorithm started at u0.
Note that if the algorithm ends because ur is a previously
labeled vertex, then for some s ≥ 0 the sequence us, . . . , ur

forms an even alternating cycle or a blossom (odd cycle).
Alternately, the algorithm ends with ur either capped or
unmatched. We examine each possible case:
• If ur is capped (Figure 3(a)): From Lemma 8(4) we

know that αi > xi ≥ 0 for all odd i ≥ 0. Hence, by
the definition of the exploration algorithm this cannot
occur.

• If ur is unmatched: By Lemma 8(8) with j = 0 and
` = r we know

r/2−1∑
i=0

w2i,2i+1 <

r/2∑
i=1

w2i−1,2i .

Since u0 is matched to u1, and ur is not matched at
all, M is not a maximum matching.

• If us, . . . , ur forms an even alternating cycle for some
0 ≤ s < r (Figure 3(b)):
First suppose us = u0, so u0, . . . , ur forms a single
alternating cycle, and r is even. By Lemma 8(5),
αr−1 − xr−1 ≥ α1 − x1. Since x0 = 0, and ur = u0,
we know αr−1 = wr−1,0. Because ur−1 is adjacent to
u0, we have α0 ≥ wr−1,0−xr−1. Hence α0 ≥ α1−x1,
and x1 = w0,1 implies α1 − α0 ≤ w0,1, contradicting
the fact that u0u1 is unhappy with u1 saturated.
Otherwise, we have an alternating cycle where 0 < s.
Note that r is even since any preceding us is already
matched. If r is even, then s is also even, and by
Lemma 8(8) with j = s/2 and ` = r, we know

r/2−1∑
i=s/2

w2i,2i+1 <

r/2∑
i=s/2+1

w2i−1,2i .

Thus, M is not a maximum matching.

• If us, . . . , ur form a blossom: We know that r = 2k
must be even and s = 2k′ − 1 (where k′ < k) must
be odd. Note that although us . . . ur forms a blossom
and u0u1 . . . us forms a stem, the bottommost edge is
matched. Hence this is not equivalent to a flower, and
Lemma 7 does not apply. Nevertheless, we can argue in
a similar way to its proof by constructing a fractional
y matching of weight higher than M . This is done as

follows.

ye =


1 if e = uiui+1 6∈M for 1 ≤ i ≤ 2k′ − 2
1
2 if e = uiui+1 for 2k′ − 1 ≤ i ≤ 2k − 1
1 if e ∈M but e not in explored structure
0 otherwise

.

This places weight 1/2 on the edges in the blossom,
weight 1 the edges of the stem which are not in M .
We wish to show that

k′−1∑
i=1

w2i−1,2i +
1
2

r−1∑
i=s

wi,i+1 >

k−1∑
i=0

w2i,2i+1 ,

or equivalently

2
k′−1∑
i=1

w2i−1,2i +
k∑

i=k′

w2i−1,2i

> 2
k′−1∑
i=0

w2i,2i+1 +
k−1∑
i=k′

w2i,2i+1 .

We have

2
k′−1∑
i=1

w2i−1,2i +
k∑

i=k′

w2i−1,2i

> 2
k′−1∑
i=1

w2i−1,2i +

(
k−1∑
i=k′

w2i−1,2i + x2k−1

)
+ x2k

(by Lemma 8(6))

> 2
k′−1∑
i=1

w2i−1,2i +

(
k−1∑
i=k′

w2i,2i+1 + x2k′−1

)
+ x2k

(by Lemma 8(1), with ` = 2k − 1)

= 2

k′−1∑
i=1

w2i−1,2i + x2k′−1

+
k−1∑
i=k′

w2i,2i+1

(since u2k = u2k′−1)

= 2

k′−1∑
i=1

w2i−1,2i − x2k′−2 + w2k′−2,2k′−1


+

k−1∑
i=k′

w2i,2i+1

(since u2k′−2,2k′−1 is matched)

≥ 2

k′−2∑
i=0

w2i,2i+1 + w2k′−2,2k′−1

+
k−1∑
i=k′

w2i,2i+1

(see below)

= 2
k′−1∑
i=0

w2i,2i+1 +
k−1∑
i=k′

w2i,2i+1 .

The last inequality follows from Lemma 8(8) if k′ ≥ 2,
and if k′ = 1, it follows because x2k′−2 = x0 = 0.



Hence, we conclude that M is not a maximum weighted
fractional matching.

Thus, in all cases M is not a maximum fractional match-
ing, and we have proved the contrapositive.

4. CONVERGENCE

In this section, we prove Theorem 2. Note the statement
of the theorem holds for any G = (V,E) and M , although
as previously stated, if M is not a maximum fractional
matching then the point we converge to is not balanced.
In this section, let n = |V | and m = |E|.

Proof of Theorem 2: Let W = max {wuv : uv ∈ E},
so a valid allocation x is a point in [0,W ]n.
Consider the multiset S = {xv : v ∈ V } ∪
{xu + xv − wuv : uv ∈ E}. We call the values in S
the slacks of x. Let s = s(x) ∈ [−W, 2W ]n+m be the
vector obtained by sorting the values in S in non-decreasing
order. Define the potential function Φ : [−W, 2W ]n+m → R
by

Φ(s) =
n+m∑
i=1

2−isi.

We first show the value of Φ converges as we run the
edge-balancing dynamics, and then prove this implies the
convergence of x. We know the entries of s are at most
2W , so Φ(s) ≤ 2W for any such slack vector. We now
show that Φ is monotonically increasing as we bargain, and
thus converges.

Assume x is not fixed, and let x′ be the allocation
obtained from one step of the balancing dynamics. Let
uv ∈ M be the edge selected for this step, and suppose
that x′u = xu + ε (and thus x′v = xv − ε) for some ε > 0.
Note that the slacks that change are those corresponding to
edges adjacent to u or v (except for uv), and the vertices u
and v. Additionally, each such slack changes by exactly ε,
and thus ‖x− x′‖∞ = ‖s− s′‖∞ = ε.

For any au ∈ E where a 6= v we have xu − αu ≤ xu −
(wa,u−xa) = xa +xu−wa,u and xu−αu ≤ xu. Similarly,
for any bv ∈ E where b 6= u, we have xv−αv ≤ xv−(wb,v−
xb) = xb+xv−wb,v and xv−αv ≤ xv . Note that since xu <
x′u we know that x′u 6= 0. Thus, either |αu − αv| ≤ wu,v ,
or αu − αv > wu,v . In either case, xu < x′u ≤ 1

2 (wu,v +
αu − αv). Since xu = wu,v − xv , we have xu + (wu,v −
xv) < wu,v +αu−αv , or equivalently xu−αu < xv −αv .
Hence, before the balancing step, the minimum slack that
will change is xu − αu. (Note that when u has degree 1
this is simply xu.) Similarly, after the balancing step, we
can show that x′u − αu is the minimum slack that changed.
Hence, Φ(s′)−Φ(s) ≥ (x′u−xu)2−(m+n) = ε2−(m+n). We
conclude that Φ is increasing, and thus convergent.

However, Φ is simply a function of the vector x. Its
convergence does not necessarily imply the convergence
of x. This is not hard to show, however. First, since Φ
converges, the quantity 2n+mΦ must also converge and

is therefore Cauchy. Because 2n+mΦ(s′) − 2n+mΦ(s) ≥
ε = ‖x′ − x‖∞, the vector x is Cauchy under the `∞
norm. Therefore, as the edge-balancing dynamics proceed,
x converges to a point in [0,W ]n.

Thus the edge-balancing dynamics converge regardless
of the sequence of edges chosen. However, without a non-
starvation condition, it is possible that we will not converge
to a fixed point of the dynamics. Despite this fact, it suffices
for every edge to be considered an infinite number of times.
Assume for the sake of contradiction that we converge to a
point z that is not fixed. Since Φ is increasing, we know
Φ(x) ≤ Φ(z) for all intermediate x. Additionally, since
z is not a fixed point, there exists some edge uv that is
not quasi-balanced or saturated. Let ε be such that uv is ε-
quasi-balanced in allocation z. Since both Φ and x converge,
we can proceed until uv is at least ε/2 unbalanced and
Φ(z) − Φ(x) < ε2−(n+m)/4 for all remaining allocations
x. Since the non-starvation condition ensures that uv be
balanced eventually, at some point Φ(x) must increase by
at least ε2−(n+m)/2, and Φ(x) > Φ(z), which gives a
contradiction. Hence we converge to a fixed point of the
dynamics.

Recall that while the dynamics always converge, they may
not reach a fixed point in a finite amount of time. However,
if we fix some ε and modify the edge-balancing dynamics so
that edges only balance if they are not ε-quasi-balanced or ε-
close to saturated, then Φ must increase by at least ε2−(n+m)

in each step. In addition to preventing starvation, this shows
a convergence time of 2Wε · 2n+m for these dynamics. We
do not know if this bound is tight, and present this as a
significant open problem.
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