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In Internet ad auctions, search engines often throttle budget constrained advertisers so as to spread their
spends across the specified time period. Such policies are known as budget smoothing policies. In this paper,
we perform a principled, game-theoretic study of what the outcome of an ideal budget smoothing algorithm
should be. In particular, we propose the notion of regret-free budget smoothing policies whose outcomes
throttle each advertiser optimally, given the participation of the other advertisers. We show that regret-free
budget smoothing policies always exist, and in the case of single slot auctions we can give a polynomial time
smoothing algorithm. Inspired by the existence proof, we design a heuristic for budget smoothing which
performs considerably better than existing benchmark heuristics.
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1. INTRODUCTION

Advertising is the main source of revenue for search engines such as Google and Bing.
For every search query, these search engines run an auction using the advertisers’
keyword bids to determine which ads are shown alongside search results. Since the
search traffic is unknown ahead of time, and since prices are determined by unknown
and changing competitor bids, the amount of money that an advertiser can spend is
uncertain and can vary significantly. Because of this, search engines allow advertisers
to provide budget constraints that cap their spends over some period of time.

To respect budget constraints, search engines implement policies that “‘throttle out”
advertisers from some of the auctions; these policies are commonly referred to as bud-
get smoothing policies. A naı̈ve budget smoothing policy, for example, is to throttle out
an advertiser only when the budget runs out. With this policy, the market is thick at
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the start of the day1 and subsequently thins out as the day progresses; high-bidding
advertisers get throttled out early, which can be unprofitable for both the advertisers
and the search engine company.

Following are three desiderata of a good budget smoothing policy.

. High welfare: The welfare of an advertiser is the value2 derived over all auctions.
The budget smoothing policy should attain high social welfare (i.e., the sum of all
advertisers’ welfare) because delivering more value can lead advertisers to spend
more money, thereby increasing the long-term revenue of the search-engine com-
pany. While the total welfare of all the advertisers is a natural objective, care must
be taken that each individual advertiser’s welfare is kept reasonably high.

. No large short-term revenue loss: As noted above, we expect to increase long-
term revenue by increasing advertiser welfare, but we would also like the budget
smoothing policy to not significantly decrease the short-term revenue.

. Even smoothing: Advertisers have come to expect budget smoothing policies to
spread budgets evenly over the course of the day; although it is not always clear why
this would be desirable, it sometimes can give the advertiser a more representative
sample of the day’s auctions.

The problem of budget smoothing has been the source of many theoretical investiga-
tions, most notably in the form of the so-called Adwords problem introduced by [Mehta
et al. 2005]. This problem is a simplified version of the budget smoothing problem that
ignores many of the real-world constraints including the presence of multiple slots and
the need to run a GSP auction to determine the prices. To address this, the Adwords
problem has been generalized, and one example is the class of resource allocation prob-
lems considered by [Feldman et al. 2010; Devanur et al. 2011]. The budget smoothing
problem does indeed fall in this class: for every search query, the algorithm needs to
pick a slate of advertisers, i.e., the subset of advertisers that participate in the auc-
tion. The particular slate chosen determines the price paid by each advertiser in that
auction. Given an objective of (e.g.) social welfare, the papers provide algorithms that
achieve a near optimal guarantee under reasonable stochastic assumptions.

Unfortunately, an optimal solution to such a social-welfare optimization problem may
not be good for the other desiderata discussed earlier. Suppose, for example, there are
1000 copies of the same auction, with two advertisers A and B. Further suppose that
advertiser A bids 2, advertiser B bids 1, there is a reserve price of 0.1, the budget of
advertiser A is 100 and the budget of advertiser B is 10000. The welfare maximizing
solution throttles advertiser B out of all the auctions, letting advertiser A win them all
for the reserve price of 0.1. This solution is terrible in terms of advertiser B’s welfare,
and it is worse in terms of revenue when compared to the naive policy or other baseline
policies that we consider later.

One could replace the objective of social welfare with revenue, but because we care
about keeping welfare high, this is not necessarily a desirable choice. One could try
a linear combination of welfare and revenue, and so on, but it is not clear if there is
some objective function that is appropriate for the problem. This leads to important

1 We refer to a day as the duration for which the budget constraint is enforced. In practice, the budget
constraint could be for the duration of a day, a week, a month, etc.
2In our experiments, we use the advertiser bids as approximations to their per-auction values; GSP is not
a “truthful auction”. Sometimes the true values can be deduced from the bids in GSP, in which case it is
possible to use these true values instead.
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conceptual questions. What is an ideal solution to the budget smoothing problem, even
in hindsight when all the information about advertisers and auctions is known? Can
we formally characterize an ideal solution in terms of a few key properties?

The main contribution of this paper is the introduction of a novel solution concept for
the budget smoothing problem. This solution concept is game theoretic in nature rather
than a solution to an optimization problem.

The outcome of any smoothing algorithm defines a participation profile, that is, the
slate of participating advertisers for each auction. We introduce the notion of a regret-
free profile. When the number of slots equals3 the number of advertisers, the regret-
free profile is equivalent to a Nash equilibrium of a particular game. When the number
of slots is fewer, the regret-free profile is a refinement of a Nash equilibrium that
makes the equilibrium more robust. This refinement is similar to, but different from,
related concepts such as trembling-hand perfect equilibrium. Consider the game with
advertisers as players where the strategy of an advertiser is the choice of a subset of
auctions to participate in. In a Nash equilibrium of this game, for any advertiser, given
the participation of every other advertiser, switching to a different set of auctions does
not improve his own utility.

When the number of slots is fewer than the number of advertisers, an advertiser who
participates in an auction may not win any slot. In such a case, the Nash constraint
says nothing about whether the advertiser should participate in that auction or not,
since it does not affect his own utility. However his participation may affect the price
paid by the other advertisers. This freedom may lead to “delicate” equilibria where
some advertisers are made to participate in auctions that they would not participate
in if there were an extra dummy slot with very low, but positive, click through rate. We
define our regret-free notion so that such participation profiles are disallowed, thereby
keeping only advertisers who pose “credible threats”. Therefore, our regret-free notion
is a refinement of Nash equilibria to make it more robust.

The best-response in the game we consider has a simple structure which is summa-
rized by the following two observations:

— For a given auction and advertiser, the value-to-price ratio for winning a slot only
depends on the valuation of the given advertiser and the next highest value, but is
independent of which slot is won. We call this ratio as the ROI4.

— The optimum solution to a fractional knapsack problem has a simple structure:
given prices and values for a set of (divisible) items, we identify the (fractional)
subset of items that maximizes the total value subject to a budget constraint on the
prices by picking the items in decreasing order of ROI, until the sum of the prices
of the selected items exhausts the budget.

For an advertiser i, the participation of all other advertisers fixes the ROI for i in ev-
ery auction. A best response mimics the optimal solution to the fractional knapsack
problem; i.e., we pick the auctions for i in decreasing order of ROI until the budget of
i is exhausted5. For auctions in which the advertiser does not win any slot, his ROI is
zero. Our robustness concept calls for an extension of ROI that includes extra dummy
slots; we call this extension the potential ROI or pROI for short. This is the ratio of the

3Or exceeds, because excess slots have no impact.
4Return on Investment.
5A fractional solution to the knapsack can be thought of as a randomized strategy. We only impose the
budget constraint in expectation. In practice the price of a single auction is usually much smaller than the
budget, and therefore an overflow in the last auction is not a concern.
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valuation of the given advertiser to the next highest value (or the reserve price), even
for advertisers that don’t win any slot. The robust best response mimics the optimal
solution to the fractional knapsack problem with pROIs instead of ROIs. A participa-
tion profile is regret-free if the participation set of each advertiser is simultaneously a
robust best response.

The concept of a regret-free outcome is also very similar to a market equilibrium in the
Fisher market model. With a GSP auction, the price faced by an advertiser is governed
by the next-highest advertiser and cannot be set independent of the allocation. Instead,
suppose that each slot in each auction had a posted-price. Then a regret-free outcome
would essentially be equivalent to an equilibrium in a Fisher market, with the slots as
items and advertisers as agents. Nonetheless this difference about whether the price
is exogenous (posted-price) or endogenous (GSP price) is significant, and it’s not clear
if techniques from computing market equilibria are useful in our setting.

In addition to introducing the concept of regret-free participation profiles as a solution
concept for the budget smoothing problem, we provide the following results:

— We show that a regret-free randomized participation profile always exists. The proof
relies on Brouwer’s fixed point theorem, and is surprisingly much simpler than
other existence proofs of equilibria such as Nash equilibrlia and market equilibria.

— For the single slot case, we give a polynomial time algorithm to find a (weaker notion
of a) regret-free participation profile. This algorithm is a variant of the deferred
acceptance algorithm of [Gale and Shapley 1962] for finding stable matchings.

— We give a heuristic for the online version of the problem where the auctions are
not known beforehand. The heuristic is inspired by the algorithm of [Devanur et al.
2011] for general resource allocation optimization problems in a stochastic setting.
The heuristic maintains a threshold ROI for each advertiser that must be met in or-
der for the advertiser to participate. Each threshold is continuously updated based
on how fast the corresponding budget is being spent, so that a steady state set of
thresholds corresponds to a regret-free participation profile.

— We perform extensive experimentation of this heuristic on real-world data. We pro-
vide evidence that the heuristic is an attractive option for a budget smoothing policy.

Experimental evaluation

We compare the performance of our heuristic against a benchmark random throttling
heuristic that independently throttles each advertiser such that the rate of spend is
spread uniformly across time. We run our experiments on samples of a few million
auctions drawn from a set of 200 micromarkets6 over a 10-day period. We scale the
budget in different ways to get different data sets.

We find that our heuristic consistently yields higher advertiser value while maintain-
ing similar short-term revenue. We also consider a regret measure that measures the
difference in the sum of per-auction ROI values obtained from both heuristics com-
pared to the best participation in hindsight. We find that our algorithm’s regret is
much smaller than that of random throttling; that is, the online heuristic is doing
what it is supposed to do. Finally, we find that the exhaust time (fraction of budget
period at which an advertiser’s budget is exhausted) is close to 1. Therefore the budget
is indeed smoothed out as desired.

6A micromarket is a dense, well separated cluster of advertisers and auctions within the Bing adver-
tiser/auction graph.
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We also consider the effects of our heuristic versus random throttling on individual
advertisers. We find that most advertisers get higher value with our heuristic, with
< 10% of them having a decrease. Furthermore, > 50% of the advertisers had at least
a 5% increase in value. The difference in spend between the two heuristics is typically
small: 97% of advertisers had both spends within 5% of their budgets. Finally, of the
top 10 advertisers by budget, none had a lower spend using our heuristic. Three of
them has spend higher by > 20% and 5 of them had value higher by > 5%.

Conclusions: Our heuristic results in an overall positive boost to social welfare while
remaining neutral with respect to revenue. The effect on individual advertisers is simi-
lar to the aggregate effect: mostly positive in value and mostly neutral in spend.

Related Work

As noted earlier, the first theoretical investigation of budget smoothing was performed
by [Mehta et al. 2005] as the Adwords problem. This paper was one of the first in the
regime of Internet ad auctions, and since then the field has seen a great outpouring
of research. The winner determination and pricing algorithm in [Mehta et al. 2005],
however, was not GSP. [Abrams et al. 2007] investigated multiple slot auctions with
GSP pricing and exhibited a linear program that maximizes search engine revenue
when the advertiser bids and budgets are known. Subsequently, [Goel et al. 2010] gave
a constant competitive online algorithm; they also show that the [Mehta et al. 2005]
algorithm, and the greedy algorithm, performs poorly in this setting. None of these
papers, however, consider the advertiser point of view that we take in this paper.

Another very rich line of work was the study of the Adwords problem in the stochastic
setting. This was first studied by [Mahdian et al. 2012] in the partial information
setting, and by [Devanur and Hayes 2009] in the random permutation setting. This
was followed by a series of papers, [Feldman et al. 2009, 2010; Devanur et al. 2011;
Haeupler et al. 2011; Mirrokni et al. 2012; Devanur et al. 2012], both for the Adwords
problem and more general packing resource allocation frameworks in the stochastic
setting. In fact, the heuristic in the experimental section of the paper is inspired by
the algorithm in [Devanur et al. 2011].

There has also been work on bid optimization, where given the GSP auction and the
budget constraints, advertisers try to optimize their bids for various keywords. Most
approaches, such as [Feldman et al. 2007; Chakrabarty et al. 2008; Amin et al. 2012],
cast this as a (multiple / multiple choice) knapsack problem and use offline/online al-
gorithms to find efficient bids. On the other hand, in our work, we consider the bids to
be immutable and rather change the participation profiles to increase welfare.

Finally, although GSP (with minor variants) is the auction of choice in practice today,
it is known that the auction is not truthful, see [Varian 2006; Edelman et al. 2007; Ag-
garwal et al. 2006]. In light of this, [Lame and Tardos 2010] recently studied the price
of anarchy of a certain natural game induced by GSP, and showed that it is bounded
by a constant. However, these papers consider just one auction in isolation as opposed
to considering multiple auctions that are tied together by budget constraints.

Organization: We state our model, definitions and results formally in Section 2. The
theoretical and experimental results are presented in Sections 3 and 4 respectively.
Concluding remarks are in Section 5.



Proceedings Article

2. FORMAL STATEMENT OF MODEL AND RESULTS

We operate in the ad-auction setting with N advertisers and M auctions. Advertiser
i ∈ [N ] specifies a budget Bi for participating in these auctions, and a bid bij for the jth
auction, with j ranging from 1 to M . We denote the relevance of the ad by advertiser
i for the auction j as pij , a parameter between 0 and 1. We let vij := bijpij denote the
rank-score of advertiser i in auction j. We assume each auction has K ad-slots in each
auction. We associate a slot click-through-rate (slot CTR) θ` ∈ [0, 1] with the `th slot,
and for simplicity we assume θ`’s are non-increasing in `. Finally, each auction j is
associated with a reserve price rj .

Each auction j is a generalized second price auction (GSP) on a subset Sj ⊆ [N ] of
the advertisers that participate in the auction. This set could be smaller than [N ] due
to the budget smoothing policy (or throttling) of the search engine. The crux of this
paper is to arrive at this subset of participating advertisers in a systematic fashion, as
discussed in the introduction. In the subsequent paragraphs we put this into a formal
framework.

Given a participation set Sj , the GSP auction sorts the advertisers in Sj in the order
of decreasing rank-score. Suppose this ordering is

v1j > v2j > . . . > v`j > rj > v(`+1)j > . . . > vtj

where t := |Sj |, and we have renamed the advertisers in Sj for notational convenience.
If ` ≤ K, then the set {1, . . . , `} are the winners of this auction; otherwise, the set of
winners is {1, . . . ,K}. The cost per click (CPC) of a winner i is precisely the minimum
bid required to win the current position. Therefore,

CPC(i) :=
max

(
v(i+1)j , rj

)
pij

We assume that the ad of advertiser i shown on slot ` in the auction j gets a click with
probability equal to the product of the relevance and the slot CTR. Thus the effective
CTR is given by CTR(i, j, `) := pij · θ`. Therefore the expected spend of advertiser i on
winning the `th slot of auction j is

spend(i, j) :=
max

(
v(i+1)j , rj

)
pij

· (pijθ`) = θ` max
(
v(i+1)j , rj

)
We assume that the bids made by the advertisers are a proxy for the utility they derive
from getting a single click. Therefore, the utility obtained by advertiser i in winning
`th slot of auction j is

util(i, j) = bij · (pijθ`) = vijθ`

We now define one of our central driving concepts: the return on investment (ROI) of
advertiser i in auction j. It is defined, quite simply, as the ratio of util(i, j) and spend(i, j)
and is the bang-per-buck the advertiser obtains by winning a slot in auction j.

ROI(i, Sj) := util(i, j)/spend(i, j) =
vij

max
(
v(i+1)j , rj

) .
ROI(i, Sj) is zero if i does not win any slot. As discussed in the introduction, we consider
a robust version of ROI, which we call pROI, defined as

pROI(i, Sj) :=
vij

max
(
v(i+1)j , rj

) ,



Proceedings Article

even if i does not win any slot. ROI and pROI differ only for such non-winning advertis-
ers; for them, ROI is zero and pROI is non-zero.

Regret-free Participation Profiles. A budget smoothing algorithm chooses a partic-
ipation set Sj for all auctions j ∈ [M ]. Once this set is chosen, GSP is run as described
earlier. We call the set {S1, . . . , SM} the participation profile generated by the smooth-
ing algorithm.

We say that an advertiser i has been throttled from auction j if i /∈ Sj . We let spend(i)
denote the total spend of the advertiser, thus spend(i) :=

∑
j∈[M ] spend(i, j). Finally, we

define minROI(i) as his minimum pROI among those auctions in which he participates.
We stress that the minimum is over the potential ROIs and not the actual ROIs.

minROI(i) := min
j:i∈Sj

pROI(i, Sj).

We call a participation profile (S1, . . . , SM ) regret-free if for each advertiser, the auc-
tions in which he participates is a robust best response to the participation profile of
all other advertisers. This translates into the following three conditions: (1) no adver-
tiser overspends, (2) no advertiser with budget remaining is ever throttled, and (3) if
an advertiser is ever throttled from an auction (and thus necessarily has spent his
budget), then his pROI in this auction is no larger than his minROI.

Regret-free participation profiles may not always exist due to “knapsack issues”. Con-
sider two auctions with one slot where one bidder bids $5 on both with a total budget
of $7, while the second highest bidder in both cases bids $4 with a very large budget.
If the highest bidder participates in both auctions, feasibility is violated, otherwise
maximal participation is violated.

To fix this, we move to randomized participation profiles. For each auction j instead of
a single participation set Sj , we now have a distribution Sj on participation sets. Each
advertiser’s spend is now a random variable, and the relevant quantity is Exp[spend(i)]
where the expectation is over the randomization in the participation sets. We extend
the definition of minROI(i) in the strongest possible way:

minROI(i) := min
Sj∈supp(Sj):i∈Sj

pROI(i, Sj)

where supp(Sj) is the support of Sj .
Definition 2.1 (Main Definition). A randomized participation profile (S1, . . . ,SM ) is

regret-free if

(1) Feasibility: For each advertiser i, Exp[spend(i)] ≤ Bi.
(2) Maximal Participation: If Exp[spend(i)] < Bi, then for all j, ∀S ∈ supp(Sj), i ∈ S.
(3) Optimal Throttling: If i /∈ Sj for some Sj ∈ supp(Sj), then pROI(i, Sj ∪ i) ≤ minROI(i).

To go back to the example mentioned above, if advertiser 1 is throttled from auction 2
with 60% probability, then the expected spend is $7, and the optimal throttling condi-
tion remains satisfied due to symmetry.

Remark 2.2. Even though we allow arbitrary randomization, at an equilibrium the
randomization takes a very simple form. The only reason to randomize is to handle the
knapsack issue: for a given advertiser, when considering the auctions in the decreas-
ing order of ROI, there is exactly one which takes the spend over the budget. In order
to have the spend be exactly equal to the budget, the advertiser participates in this
“straddling auction” with an appropriate probability. This holds even if there are mul-
tiple auctions with the same ROI; they can be considered in an arbitrary order to find
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the one that straddles the budget. This randomization is only needed for theoretical
niceness. In practice, the price in any auction is small compared to the budget there-
fore for the knapsack problem that captures an advertiser’s best response, the integral
solution given by the greedy algorithm is very close to the fractional optimum. The fact
that randomized strategies are not crucial is also reflected in our heuristic which only
uses pure strategies.

Remark 2.3. Recall that spend(i, j) itself is an expectation, taken over the click
probabilities. Therefore the budget constraint we require is only on the expected spend
whereas in reality the budget constraint is on the actual spend. However, the small
bid to budget ratio comes to the rescue once again. We assume that the clicks on dif-
ferent auctions are independent events which implies that the actual spend is highly
concentrated around the expected spend, as can be seen by any of the concentration
inequalities such as the Chernoff-Hoeffding bounds. Therefore the constraint on the
expected spend is a good enough approximation.

Our main theorem is the following.

THEOREM 2.4. For any bids, budgets, auctions and slots, there always exists a
regret-free randomized participation profile.

The proof of the above theorem is via Brouwer’s fixed point theorem and is non-
constructive. Nevertheless, the proof technique, which we describe in detail in §3.1,
leads to a heuristic that performs well in our experiments; details can be found in §4.
Furthermore, unlike the situation in general equilibrium theory where existence of
equilibria does not necessarily imply finite time algorithms, we observe that existence
of regret-free randomized participation profiles implies finite time algorithms.

COROLLARY 2.5. The distribution in any regret-free randomized participation pro-
file has probabilities that are rational numbers and can be evaluated in finite time.

A theoretical question left open by our work is whether there exist polynomial (in
N,M,K) time algorithms to find regret-free randomized participation profiles. In fact,
we do not know such algorithms even in the case when M and K are constants.

Our second result states that in the case of a single slot, we can find deterministic par-
ticipation profiles that are ‘almost’ regret-free. In particular, we relax the requirement
about the losing advertisers being a credible threat. Also, the feasibility criteria is vi-
olated by at most one bid per advertiser. We define minROI′(i) to be the minimum ROI
among all the auctions that i wins.

minROI′(i) := min
j:spend(i,j)>0

ROI(i, Sj).

THEOREM 2.6. In the case of single slots, there exists a polynomial time algorithm
which given an auction instance finds a deterministic participation profile (S1, . . . , SM )
such that

(1) Feasibility: For each advertiser i, spend(i) ≤ Bi + vimax, where vimax = maxj vij
(2) Maximal Participation: If spend(i) < Bi, then i ∈ Sj for all j.
(3) Optimal Throttling: If i /∈ Sj , then ROI(i, Sj ∪ i) ≤ minROI′(i).
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3. THEORETICAL RESULTS

3.1. Regret-Free Randomized Participation Profiles always exist.

We start by proving Theorem 2.4. At a very high level, we maintain a parameter, which
we call a threshold ROI, for each advertiser. These parameters determine in which auc-
tions the advertisers participate, ensuring the optimal throttling condition. The goal
is then to find the parameters which also maintain feasibility and maximum partici-
pation; the existence of this is proved via a fixed point theorem.

Proof of Theorem 2.4: We associate with each advertiser i a parameter αi ≥ 1 which
denotes the minROI of this advertiser. In particular, we guarantee that in any of the
auctions that i participates, his pROI is at least αi. Furthermore, in any of the auc-
tions i doesn’t participate, we ensure that his pROI if he had participated is at most
αi.

Definition 3.1. Given α := (α1, α2, . . . , αN ), and an auction j, we say that a partici-
pation set Sj is α-respecting if for all advertisers i,

If i ∈ Sj , pROI(i, Sj) ≥ αi.
If i /∈ Sj , then pROI(i, Sj ∪ i) < αi.

Next we show a procedure which takes α and an auction j and returns a participation
set respecting α. Fix an auction j with reserve price rj . Renumber the advertisers so
that v1j > v2j > · · · > vNj . The procedure builds the set Sj by considering advertisers
in decreasing order, rejecting an advertiser i if vij/vi′j < αi, where i′ is the most recent
advertiser added to Sj . If there is no such i′, then vij is compared to the reserve price
rj . The detailed pseudocode is given below.

1: Input: v1j ≥ v2j ≥ · · · ≥ vNj
(α1, α2, . . . , αN ); αi ≥ 1.
reserve price rj

2: Output: Sj : an α-respecting participation set for auction j.
3: current.price = rj ; Sj = ∅;
4: for i = N → 1 do
5: if vi(j)

current.price ≥ αi then
6: Sj = Sj ∪ i.
7: current.price = vij
8: end if
9: end for

Fig. 1. Procedure ReturnParticipationSet (j)

CLAIM 1. The participation set returned by procedure ReturnParticipationSet is an
α-respecting set.

PROOF. Whenever an advertiser i is being considered, current.price is either the
rank-score of an advertiser i′ who is present in Sj and no one strictly between i and i′
are present, or is the reserve price. Therefore, if i were to be put in Sj , his pROI would
be vij/current.price. Since no advertiser between i and i′ will be in Sj , and since an
advertiser in Sj is never deleted, we get that if i ∈ Sj at the end, pROI(i, Sj) ≥ αi.
Otherwise, pROI(i, Sj ∪ i) < αi. That is, the final Sj is α-respecting.
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Given α, we can find a participation profile which is α-respecting and therefore
satisfies the optimal throttling condition. Also note that if αi = 1 for any advertiser,
then that advertiser participates in all auctions. The resulting profile, however, need
not be feasible. Therefore, if we can find αi’s such that the resulting participation
profile is feasible and αi = 1 for all advertisers i whose spends are smaller than their
budgets, then we have obtained a regret-free participation profile. In the next section
we show how to modify the above procedure to return randomized participation
profiles, and prove using Brouwer’s fixed point theorem that there exists α’s which
lead to regret-free randomized participation profiles.

Existence of Regret-Free Participation Profiles. For each advertiser i, there are
a finite number of obtainable pROI values. These are precisely {vij/rj , vij/vi′j : j ∈
[M ], vi′j < vij}. Let the cardinality of this set be Li; note that Li ≤ NM . Arrange these
Li rational numbers in increasing order and let them be 1 = f0 < f1 < f2 < · · · < fLi .
(Actually, these numbers should be indexed with a superscript i which we omit for
brevity). Let F be an upper bound on fLi , for all i.

Now given αi in [1, F ], we identify q such that fq ≤ αi < fq+1. Let αi↓ denote fq and αi↑
denote fq+1. (For convenience, let fLi+1 = F and fLi+2 = ∞). The following procedure
describes a randomized participation profile.

1: Input: (α1, α2, . . . , αn); αi ≥ 1.
2: Output: Randomized Participation Profile (S1,S2, . . . ,SM ).
3: For each i, evaluate αi↓ and αi↑ as described above.

Define pi :=
αi↑−αi

αi↑−αi↓
.

Set random variable α′i to αi↓ with probability pi and αi↑ with probability
(1− pi).

4: For each j run ReturnParticipationSet(j) with the random α′i’s. This induces
the required distribution.

Fig. 2. Procedure RandPartProf

CLAIM 2. For any advertiser i, for any set Sj ∈ supp(Sj), the following holds. If
i ∈ Sj , then pROI(i, Sj) ≥ αi↓. If i /∈ Sj , then pROI(i, Sj ∪ i) ≤ αi↓.

PROOF. Suppose i ∈ Sj . Since α′i ≥ αi↓, we get pROI(i, Si) ≥ αi↓. From Claim 1, if
i /∈ Sj , then we get pROI(i, Sj ∪ i) < αi↑. This implies pROI(i, Sj ∪ i) ≤ αi↓, since pROI
takes discrete values.

This implies the following claim.

CLAIM 3. The randomized participation profile (S1, . . . ,SM ) satisfies the optimal
throttling condition of Definition 2.1.

CLAIM 4. For all advertisers i, Exp[spend(i)] is a continuous function of α.

PROOF. Exp[spend(i)] =
∑

Pr[α′] · spend(i, α′), where α′ be an instantiation in the
random choices of the advertisers, and spend(i, α′) is the total spend of advertiser i in
the deterministic participation profile obtained in running ReturnParticipationSet(j) for
every auction j. The summation is over all possible α′s. Therefore, Exp[spend(i)] is a
piecewise linear continuous function.
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We now define a mapping φ : [1, F ]N 7→ [1, F ]N as follows. Given α, calculate
Exp[spend(i)] in the procedure RandPartProf with input α.

φ(α)i := Π(αi + η(Exp[spend(i)]−Bi)) (1)

where 0 < η < 1 is any scalar, and Π is the projection operator defined as Π(x) = x if
x ∈ [1, F ], Π(x) = F if x > F and Π(x) = 1 if x < 1.

From Claim 4, we get that φ is a continuous function defined over a compact
space. Therefore, Brouwer’s fixed point theorem guarantees the existence of α∗ :=
(α∗1, . . . , α

∗
N ) such that φ(α∗) = α∗. The following lemma proves Theorem 2.4.

LEMMA 3.2. RandPartProf with input α∗ returns a regret-free randomized partici-
pation profile.

PROOF. Claim 3 implies the optimal throttling condition. We now prove the fea-
sibility and maximal participation condition. Suppose there’s an advertiser i with
Exp[spend(i) < Bi]. We claim that α∗i = 1; this is because α∗

′

i = Π(α∗i − δ) for some
δ > 0. These two are the same iff α∗i = 1. The fact that α∗i = 1 means that bidder i
participates in all auctions. Therefore maximal participation is guaranteed.

Suppose there’s an advertiser i with Exp[spend(i)] > Bi. Once again, by a similar
argument above we’ll have α∗i = F . However, at α∗i = F , Exp[spend(i)] = 0. Since
budgets are positive, we get a contradiction.

� (Theorem 2.4)

Proof of Corollary 2.5: This follows from guessing the support of the regret-free pro-
file. For each auction j, let Sj be our guess of the support. Given (S1, . . . ,SM ), there is a
finite procedure to check the optimal throttling condition (note that this depends only
on the support, and not on the probabilities). Furthermore, the support also tells us
which advertisers must satisfy Exp[spend(i)] = Bi. Once we have these, the existence
of probabilities is a simple linear program. The existence theorem guarantees that for
one guess (out of the 2MNK

possible guesses) will lead to a feasible solution. The linear
program has rational entries, and thus the solution is rational. � (Corollary 2.5)

3.2. Polynomial Time Algorithm for Single Slot

In this section, we prove Theorem 2.6, which we restate below. Recall that for this case,
we focus on the weaker notion of regret-freeness where we only care about actual ROI
and not potential ROI. In particular, recall that minROI′(i) is the minimum ROI among
all the auctions that i wins: minROI′(i) := minj:spend(i,j)>0 ROI(i, Sj).

THEOREM 2.6. In the case of single slots, there exists a polynomial time algorithm
which given an auction instance finds a deterministic participation profile (S1, . . . , SM )
such that

(1) Feasibility: For each advertiser i, spend(i) ≤ Bi + vimax, where vimax = maxj vij
(2) Maximal Participation: If spend(i) < Bi, then i ∈ Sj for all j.
(3) Optimal Throttling: If i /∈ Sj , then ROI(i, Sj ∪ i) ≤ minROI′(i).

The proof differs from the one in the previous section. In fact, our algorithm is similar
to the deferred acceptance algorithm for stable matching. The algorithm is determin-
istic; the flip side is that it works only for the single slot case.

Proof of Theorem 2.6: For each auction j, we associate the order σj on the advertis-
ers in decreasing order of rank-scores. That is, vσj(1)j ≥ vσj(2)j ≥ · · · ≥ vσj(N)j . In fact,
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it suffices to restrict attention to n ≤ N such that vσj(n)j > rj . For simplicity, we will
henceforth assume σj is the identity permutation.

In what follows, we represent a participation set Sj as a pair (i, i′), i < i′, which rep-
resents the set {i, i′, i′+ 1, . . . , N}. For auction j, we associate the following ‘preference
list’ on pairs.

Πj := ((1, 2), (2, 3), (1, 3), (3, 4), (2, 4), (1, 4), · · · , (n− 1, n), (n− 2, n), · · · , (1, n))

Our algorithm proceeds in iterations with each iteration having a proposal phase and
a disposal phase as in the deferred acceptance algorithm; in our case, auctions propose
and advertisers dispose. Each advertiser i maintains a list of tentative auctions he
participates in. The list Λi for advertiser i, has entries of the form {(j, (i, i′))} where
vij > vi′j . That is, it participates and wins auction j, and the second-highest advertiser
is advertiser i′. We will maintain that any auction j appears in at most one Λi. If
auction j appears in exactly one (j, (i, i′)) ∈ Λi for some i, i′, we call it tentatively
allocated to (i, i′). Otherwise, it is called unallocated. Initially all Λi are empty, and
all auctions are unallocated. We will maintain the running counter spend(i) to denote∑

(jk,(i,ik))∈Λi
vikjk , the tentative spend of advertiser i.

In the proposal phase, every unallocated auction j “proposes” to the first pair (i, i′)
in its preference list Πj . This causes (j, (i, i′)) to be added to Λi, and j is tentatively
allocated to (i, i′). Note that the invariant on Λi’s is maintained. We delete (i, i′) from
Πj . At this point, each auction is now tentatively allocated.

Subsequently, in the disposal phase, each advertiser i sorts the tuples (j, (i, i′)) in
Λi in decreasing order of vij/vi′j . He then deletes the tuples at the end, until delet-
ing any more would underspend his budget. More precisely, suppose Λi is sorted as
((j1, (i, i1)), (j2, (i, i2)), . . . , (jk, (i, ik)), then we delete all tuples with index > r if∑

1≤`<r

vi`j` < Bi and
∑

1≤`≤r

vi`j` ≥ Bi (2)

All auctions whose associated tuples are deleted, that is {jr+1, . . . , jk}, are rendered
unallocated, and we move back to the proposing round.

The algorithm terminates if either there are no unallocated auctions subsequent to the
disposal phase, or Πj is empty for every unallocated auction.

CLAIM 5. The algorithm terminates in O(MN2) iterations.

PROOF. After every proposal phase the size of
∑
j∈[M ] |Πj | decreases by at least

one.

At the end, the final participation profile (S1, . . . , SM ) is determined as follows. If j
is tentatively allocated to pair (i, i′), we have Sj := {i, i′, i′ + 1, . . . , N}. Else, Sj = ∅.
The following claim implies the feasibility condition. In fact, the feasibility condition
is maintained after every iteration.

CLAIM 6. After the disposal phase of any iteration, spend(i) ≤ Bi + vimax.

PROOF. This follows from (2).

CLAIM 7. If at the disposal phase of some iteration t, an advertiser i disposes some
auction, then henceforth spend(i) ≥ Bi.
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PROOF. Whenever an advertiser disposes at some iteration t, right after that step
we have spend(i) ≥ Bi from (2). Furthermore, Λi remains unchanged till i has to dispose
again.

CLAIM 8. If spend(i) < Bi, then i ∈ Sj for all j.

PROOF. From Claim 7, we need to bother only about advertisers who never dispose.
Consider such an advertiser i and consider an auction j which has been allocated
(i1, i2). Again, for simplicity, assume σj is the identity. We claim that vij < vi2j which
will imply i ∈ Sj . Suppose vij > vi1j . Then (i, i1) lies before (i1, i2) in Πj , and therefore
since i must have disposed this. Similarly, if vi1j > vij > vi2j , then (i, i2) lies before
(i1, i2) in Πj , and thus i must have disposed before.

CLAIM 9. min(jk,(i,ik))∈Λi

vijk
vikjk

is monotonically nondecreasing over iterations.

PROOF. Whenever Λi is modified, the auctions with least ROI are deleted.

CLAIM 10. If i /∈ Sj , then ROI(i, Sj ∪ i) ≤ minROI′(i).

PROOF. Let (jk, (i, ik)) be the auction achieving minROI′(i). From Claim 8, we know
that spend(i) ≥ Bi. Suppose auction j has been allocated (j, (i1, i2)) and Sj 6= ∅. If
vij < vi1j , then ROI(i, Sj ∪ i) = 0 since it doesn’t win. (Note that pROI(i, Sj ∪ i) is non-
zero.) If vij > vi1j , then (i, i1) lies before (i1, i2) in Πj . Therefore, i must have disposed
(i, i1) implying vij/vi1j ≤ minROI′(i) at that time. From the previous claim, we see that
remains true at the end as well. If Sj = ∅, then either (i,N) /∈ Πj , that is, vij < rj in
which case ROI(i, Sj ∪ i) = 0; or, i disposed (i,N) implying vij/rj ≤ minROI′(i) at that
time, and which remains true till the end.

Claim 5, Claim 6, Claim 8, and Claim 10 prove the theorem. � (Theorem 2.6)

4. EXPERIMENTAL RESULTS

4.1. Heuristics

We first describe our benchmark budget smoothing algorithm, RandomThrottling,
which is inspired by heuristics commonly used in practice. We then describe our heuris-
tic, WaterLevel, inspired by the proof of Theorem 2.4.

RandomThrottling operates on the premise that if at any time an advertiser i has spent
faster than his average rate, then he is throttled with a certain probability depending
on the over-spend. For each advertiser i, we maintain a participation rate πi that is
continuously updated; it increases if the advertiser is underspending and decreases
if he is overspending. We define the precise (multiplicative) update below after first
introducing our new heuristic.

The new heuristic, which we call the WaterLevel algorithm, is inspired by the proof
of Theorem 2.4. The heuristic starts off with an initial guess of αi = 1. Recall (from
§3.1) that this implies every advertiser participates in every auction to begin with. As
the day progresses, we modify the αi’s of various advertisers depending on the rate
of spend. After m of the M auctions, we expect each advertiser to have spent m/M
fraction of his budget. The heuristic compares the fraction of actual budget spent after
m auctions and bumps up αi if the ratio is higher than m/M , and bumps down αi if it
is lower.

More precisely, the heuristic maintains a parameter η which is called the step-size,
and a parameter γ which is called the front loading parameter. After each auction j,
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the spend spend(i, j) is evaluated, and αi is modified to αi ·exp(η ·
(

spend(i,j)
Bi

− γ
M

)
). With

the parameter γ set to 1, the advertiser is expected to exhaust his budget at precisely
the last moment. A value of γ > 1 allows the advertiser to try to exhaust the budget
slightly earlier. This update function is inspired by an algorithm in [Devanur et al.
2011]. The complete heuristic is described in Fig. 3.

1: Input: For each advertiser, his total budget Bi.
Sequence of Auctions: {1, . . . ,M}, given by a reserve price rj , and for all
i, vij = bijpij , where bij is bid of advertiser i on auction j, and pij is the
relevance score.
The slot CTR values, i.e., for each slot `, θ`, for ` = 1..n. If there are fewer
than n slots, then θ` will be 0 for all such `.

2: Output: For each auction j, participation set Sj indicating the bidders on
which GSP is run.

3: Parameters: η (growth parameter); γ (front load parameter)
4: Initialize all αi = 1
5: for j = 1→ T do
6: Sj = ReturnParticipationSet(vij , αi, ∀ i).

Let Sj be ordered in the decreasing order of vij ’s. Sj := {i1, . . . , i|Sj |}.
7: spend(i, j) = 0 for i /∈ Sj .
8: for ` = 1→ |Sj | − 1 do
9: spend(i`, j) = vi`+1

(j) · θ`.
10: end for
11: spend(i|Sj |, j) = rj · θ`.
12: Modify α’s for all i.

αi := αi · exp

(
η

(
spend(i, j)

Bi
− γ

M

))
13: end for

Fig. 3. The WaterLevel heuristic.

The update rule for RandomThrottling is similar, except for a change in sign, since the
participation rate decreases with a higher spend.

πi := πi · exp

(
η

(
−spend(i, j)

Bi
+

γ

M

))
4.2. Results

The goal of our experiments is to compare the performances of the two algorithms on
instances that are as close to the real auctions as possible. Due to the enormity of the
number of advertisers and auctions in the Bing marketplace, an ideal solution is to
find a small piece of the market that is isolated from the rest. Towards this end we
used a clustering algorithm on the advertiser-auction graph and found a set of 200
clusters/micro-markets whose graph conductance is less than 10%.7 From these micro-
markets we obtained two datasets consisting of ≈ 3.70 million and ≈ 10 million auc-
tions corresponding to different lengths of time periods. We refer to these two datasets

7 The conductance of a subset of vertices of a graph is the ratio of the number of edges crossing the subset
to the number of vertices in the subset (or the complement of the subset, whichever is smaller).
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as Medium and Large. For these auctions we recorded all the information required to
be able to re-run the auction. In particular, we recorded reserve prices, number of ad
slots, bids and probability of click for each ad. Furthermore, we noted these details for
all the eligible ads for the auctions prior to any filtering. Thus the input data for the ex-
periments was independent8 of the throttling decisions made by the budget smoothing
policy in effect. In our simulations we assumed that the click probabilities were exact;
in fact, we treat click probabilities as fractions so that the effect due to randomization
of clicks is eliminated. This is necessary for offline experiments, but also avoids skew-
ing of results due to errors in click probabilities. We created advertiser budgets using
the observed spends in each sample; we were not able to use real budget constraints
because they are not given at a granularity that matches the time period, the traffic
sample or the auctions in the micro-markets.

We also created different instances by scaling the budgets differently, to study the
effect of budgets becoming more constraining. We created two budget levels, which we
call Generous and Constraining. The Constraining budgets are half as much as the
Generous budgets. Finally, for each instance we ran both algorithms with γ set to 1
and 1.2. The runs with γ = 1.2 are referred to as Frontloaded and the ones with γ = 1
as Non-frontloaded.

In addition to measuring the value generated and the revenue obtained by the algo-
rithms, we also measure a notion of regret which we define next.

Definition 4.1. Let A be a budget smoothing algorithm which chooses slate Sj for
auction j. We define the regret of a given advertiser i w.r.t the outcome of this algo-
rithm. For auction j, let qj be the price this advertiser faces assuming the rest of the
advertisers participate according to the throttling decisions of the algorithm. Let

OPT (i) := max{
∑
j

vijxj
qj

: 0 ≤ xj ≤ 1,
∑
j

xjqj ≤ Bi} and

Real(i) :=
∑

j:spend(i,j)>0

vij
qj
.

The Regret for advertiser i is defined as the quantity Regret(i) := OPT (i) − Real(i),
and the regret of the algorithm A is defined as the quantity

Regret(A) :=
∑
i

Regret(i).

Remark 4.2. If we assume that algorithm A respects budget constraints of every
advertiser, then Real(i) ≤ OPT (i) for each advertiser and equality holds if and only
if the algorithm allows the advertiser to participate in the top ROI auctions from the
advertiser’s standpoint. If we allow fractional allocation of auctions the regret metric
for a regret-free equilibrium allocation is zero.

We report our findings from these experiments next.

4.2.1. Aggregates. We first compare the social welfare, total revenue and total re-
gret of WaterLevel with that of RandomThrottling. The following table shows the per-
centage increase in the social welfare and total revenue of WaterLevel over that of

8The bids we observe may have been an adaptation to the current smoothing policy. However, we believe the
experiments still show the general features of the algorithm since the baseline heuristic was also run on the
same data.
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RandomThrottling. For regret, it shows the total regret of WaterLevel as a percentage
of the regret of RandomThrottling. We also report the following quantities:

— Percentage of advertisers for whom the value went down.

— Percentage of advertisers for whom the value rose by at least 5%.

— Percentage of advertisers for whom the spend changed by less than 5%.

— Percentage of advertisers in WaterLevel for whom the budget was exhausted
at a time 10% earlier than expected (the expected time at which budget ex-
hausts depends on the γ parameter.) This is the only statistic that depends on
WaterLevel alone.

We report this for each of the 8 runs, one for each data set medium and large, for each
of the two budget levels generous and constrained, and for each γ parameter of 1 and
1.2.

Conf. VI RI Reg VD 5% VI SC ET
M, G, F 12% 1% 56% 18% 66% 93% 3%
M, C, F 22% 2% 39% 12% 80% 95% 7%
M, G, NF 17% 0% 6% 16% 68% 86% 3%
M, C, NF 29% 2% 4% 11% 81% 91% 8%
L, G, F 13% 1% 62% 15% 68% 96% 7%
L, C, F 24% 2% 41% 8% 87% 98% 10%
L, G, NF 18% -1% 6% 12% 69% 90% 5%
L, C, NF 31% 2% 4% 5% 89% 96% 9%

Legend: M: Medium, L: Large, G: Generous, C: Constrained, F: Frontloaded, NF: Non-Frontloaded. VI:
Value increase, RI: Revenue Increase, Reg: Ratio of Regret of WaterLevel to that of RandomThrottling,
VD: advertisers with a decrease in value, 5% VI: advertisers with at least 5% increase in value, SC: Ad-
vertisers with less than 5% change in spend, ET: Advertisers with exhaust time 10% sooner than expected.

Observations.

— WaterLevel consistently gives a higher value than Random-throttling. The relative
increase in value is higher in case the budgets are more constraining. In fact most
advertisers don’t see their value decreasing and a majority of the advertisers see at
least a 5% boost to their value.

— The revenue of WaterLevel and RandomThrottling are essentially the same. In fact
most advertisers do not see a big change in the spend.

— WaterLevel does a very good job of actually minimizing regret as intended, espe-
cially without frontloading.

4.2.2. Change in value vs Change in revenue. For each advertiser, we consider the per-
centage change in his value and the percentage change in his spend when going from
RandomThrottling to WaterLevel. The results are shown for the (M, G, NF) run in the
left chart of Figure 4; all other runs were similar.

Observations. The scatter plot forms an “L” shape with the origin at the intersection
and we see that majority of advertisers get a higher value at the same spend. Quite
a few of them spend a lot more for a small increase in value. We conjecture that the
former are budget constrained and their budgets are better utilized; the latter are not
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budget constrained and they spend more since other advertisers’ increased efficiency
results in higher prices to these advertisers.

4.2.3. Regret. We take a closer look at the distribution of regrets between
WaterLevel and RandomThrottling. In the right chart of Figure 4 we plot the dis-
tribution of the regret for both algorithm for the (M, G, NF) run. For both algorithms,
we have sorted the individual advertiser regret in descending order and have plotted a
line graph of the regret values in this order. The graph has a logarithmic y-axis.

Fig. 4. Experimental findings for Medium Non-Frontloaded dataset

Observation. We observe that WaterLevel minimizes regret more effectively than does
RandomThrottling.

5. CONCLUDING REMARKS

In this paper we introduced a novel solution concept for the budget smoothing problem.
Our work raises many open problems, including the following prominent ones.

— Is there a polynomial time regret-free budget smoothing algorithm? Even if a single
auction is repeated multiple times?

— What is the complexity of finding the social welfare maximizing regret-free partici-
pation profile?

— Is there an online algorithm that approximates the regret-free participation profile?
Even in the case of a single slot?

— We have considered a model where the advertisers’ bids remain the same and stud-
ied the effects of changing the budget smoothing policy. It is natural to expect that
the advertisers will indeed react9 to a new policy and change their bids accordingly.
Studying this stage theoretically is an interesting and important open problem.

The experimental results indicate that WaterLevel is a good candidate for budget
smoothing. It benefits a majority of the advertisers while making a few worse-off. The
overall value improvement is quite significant while the overall revenue impact is neu-
tral. We are optimistic about this heuristic becoming practically useful.

9 Our experiments show that the effects of the new budget smoothing policy with the same bids is mostly
an increase in advertiser value, which indicates that the reaction to the new policy will be mostly positive.
In particular, we expect this increase in value to induce the advertisers to bring in more advertising dollars.
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