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In the context of online ad serving, display ads may appear on different types of web-pages, where each

page includes several ad slots and therefore multiple ads can be shown on each page. The set of ads that

can be assigned to ad slots of the same page needs to satisfy various pre-specified constraints including
exclusion constraints, diversity constraints, and the like. Upon arrival of a user, the ad serving system

needs to allocate a set of ads to the current web-page respecting these per-page allocation constraints.

Previous slot-based settings ignore the important concept of a page, and may lead to highly suboptimal
results in general. In this paper, motivated by these applications in display advertising and inspired by the

submodular welfare maximization problem with online bidders, we study a general class of page-based ad
allocation problems, present the first (tight) constant-factor approximation algorithms for these problems,

and confirm the performance of our algorithms experimentally on real-world data sets.

A key technical ingredient of our results is a novel primal-dual analysis for handling free-disposal, which
updates dual variables using a “level function” instead of a single level, and unifies with previous analy-

ses of related problems. This new analysis method allows us to handle arbitrarily complicated allocation

constraints for each page. Our main result is an algorithm that achieves a 1 − 1
e
− o(1) competitive ra-

tio. Moreover, our experiments on real-world data sets show significant improvements of our page-based

algorithms compared to the slot-based algorithms.

Finally, we observe that our problem is closely related to the submodular welfare maximization (SWM)
problem. In particular, we introduce a variant of the SWM problem with online bidders, and show how to

solve this problem using our algorithm for whole page optimization.

Categories and Subject Descriptors: F.1.2 [Modes of Computation]: Online Computation

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Display Ads, Primal Dual, Free Disposal

1. INTRODUCTION

With a multi-billion dollar market, display-related advertising – including banner ads, rich
media, digital video and sponsorships – is a fast growing business that accounts for ap-
proximately 37% of Internet advertising [PwC and IAB 2011]. Unlike sponsored search
advertising, display ads on the Internet are often sold in bundles of thousands or millions
of impressions1 over a particular time period. Advertisers pay the website publisher per
impression and buy them ahead of time via contracts, often specifying a subset of pages

1The exposure of a user to a display ad on a web-page is called an “impression”.
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on which they would like their ads to appear, or a type of users they wish to target. The
terms of these contracts may vary among advertisers and publishers but usually include a
number of impressions to be assigned to a particular advertiser.

Display ad serving systems that assign ads to pages on behalf of web publishers must sat-
isfy the contracts with advertisers, respecting targeting criteria and delivery goals. Modulo
this, publishers try to allocate ads intelligently to maximize overall quality (measured, for
example, by clicks). This has been modeled in the literature as an online allocation problem,
where quality is represented by edge weights, and contracts are enforced by overall delivery
constraints (e.g., [Feldman et al. 2009a; Mehta et al. 2007; Buchbinder et al. 2007]).

Display ads may appear on different types of pages (like sport, finance, or news sites)
owned by a web publisher. In most cases, each page includes several ad slots and therefore
multiple ads can be shown on each page. The set of ads that can be assigned to ad slots
of the same page needs to satisfy various pre-specified constraints. One reason for this is
that display ads are often used for brand advertising, in contrast to sponsored search ads,
in which the goal is to get the user to take an immediate action. For example, when a
user explicitly searches for “car rentals”, both Hertz and Enterprise may wish for their ad
to be shown (even and perhaps especially if their competitor’s ad is shown, as they might
otherwise lose a sale). On the other hand, when a user is viewing a sports website, Nike and
Reebok might prefer that their ads not appear together. The set of constraints in display
ads often includes (but not limited to):

— Exclusion constraints: Advertisers can have competitive relationships. One often needs
to impose the constraint that if some slots are allocated to one advertiser, no slots are
given to any of its competitors.

— All-or-nothing constraints: Some advertisers require that all or none of a set of related
ads be shown on the same page. This is particularly common when ads reinforce each
other.

— Diversity constraints: Publishers often want to diversify the ads shown to a user for
each page. One way to do this is to form a hierarchical category of advertisers, and for
each sub-category (possibly even containing a single advertiser) at each level, impose an
upper bound on the number of impressions that can be allocated to advertisers within
this sub-category.

As a result, the online optimization problem that the ad serving system must solve requires
satisfying such complex page-level constraints. Previous research in online ad allocation and
online matching ignores these important per-page constraints, and if applied directly to the
page-based problem, may result in highly suboptimal outcomes. (It is easy to construct
examples with either exclusion or all-or-nothing constraints with a competitive ratio that
becomes worse linearly with the number of slots on a page.)

In this paper, we formally study page-based online ad allocation considering general
allocation constraints with multiple ads per each page, and develop the first constant-factor
competitive algorithms for these problems. In particular, assuming that the capacity of
each ad is large, we develop a 1− 1

e −o(1)-approximation for this problem. Furthermore, we
show that our problems are closely related to the submodular welfare maximization (SWM)
problem with online bidders, and our online algorithms also imply the same competitive
ratio for the SWM problem with online bidders. Below, we first define these problems and
summarize our results.

1.1. Problems and Results

In this paper, we define the whole page optimization problem (with free disposal). In this
problem we have a finite set of advertisers A, and a finite set of online pages P , where
each page consists of a (small) set Ip of impressions (or slots). For each page p, we have
a family Cp of feasible alloctions, and for each feasible allocation C ∈ Cp of page p, each
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advertiser a may derive a value of wp,C,a. An advertiser derives value from the top na best
impressions she receives, where na is the number of impressions sold to her by contract.
The only assumption about the Cp’s is that we have access to a demand oracle: given a
cost βa for allocating an impression to each advertiser a, the demand oracle returns the
configuration that maximizes the total value minus the total cost:

arg max
C∈Cp

{∑
a

wp,C,a − βanp,C,a
}
,

where np,C,a is the number of impressions allocated to a in configuration C. It is easy
to construct polynomial-time demand oracles for most natural allocation constraints in
this context like the exclusion, all-or-nothing, and diversity constraints described in the
previous section. Note that we allow the value of an advertiser for an impression to depend
on other ads shown in the page. Such a dependent-value model can model the fact that
users’ attention to a particular display ad on a page may depend on the whole set of ads
on that page. Considerable research in advertising supports the idea that multiple ads in
proximity affect how each ad is perceived; see, for instance, [Burke and Srull 1988; Mandese
1991; Keller 1991; Kent and Allen 1994] for such work in classical advertising, and [Athey
and Ellison 2011; Aggarwal et al. 2008; Kempe and Mahdian 2008] for models for sponsored
search ads.

In the online version of the problem, the pages arrive online one by one and a feasible
allocation for a page must be chosen immediately upon its arrival. This choice cannot be
changed later.

As the main result in this paper, assuming that the capacities na are sufficiently
large, we present a 1− 1

e − o(1)-competitive algorithm for the whole page opti-
mization problem.

This is also the optimal competitive ratio achievable. Without the assumption on large
capacities na, the competitive ratio of our algorithm is 1/2. (See Section 3 for details). Fur-
ther, our algorithms are eminently practical; we implemented and tested them on real data,
and obtained improvements, over the algorithm of [Feldman et al. 2009a], (with different
constraint levels) averaging 10 to 19%, and ranging up to 31 to 54%. See Section 5 for
details.

Relationship to Online Submodular Welfare Maximization. Submodular Welfare Maxi-
mization is a well-studied problem in which a set V of items should be partitioned and
allocated to a set A of bidders, each of whom has a submodular valuation function fi; the
goal is to maximize the total social welfare

∑
i∈A fi(Vi). The offline variant of this problem

is well studied and it admits a 1− 1
e -approximation algorithm [Vondrak 2008]. Commonly,

the online version of the problem is concerned with the case where the items arrive online.
In this paper, we propose a different version, where agents arrive online. In this online agent
setting, given an offline set of items, bidders arrive online each with a monotone submodular
(valuation) function over items. Upon arrival of each bidder, we assign an unconstrained
subset of items to the bidder, allowing previously assigned items to be re-assigned to the
current bidder. However, we may not assign or re-assign items to previous bidders. (This
is in spirit similar to the literature on online allocations with buy-back [Feige et al. 2008;
Constantin et al. 2009; Babaioff et al. 2009].) Our goal is to maximize welfare or total value
of bidders at the end of the process. We show that the SWM problem with online bidders
can be reduced to a special case of whole page optimization, and thus, we have the same
competitive ratio for this problem. Moreover, if we have a multiset of items with many
copies of each item, and no bidder wants more than a small number of copies of any item,
the competitive ratio improves to 1 − 1

e − o(1). One can also implement this algorithm in
polynomial time given demand oracle access to the valuation functions. To the best of our
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knowledge, this is the first competitive algorithm known for this natural online variant of
the SWM problem.

1.2. Algorithm and Technique

The algorithm uses the primal-dual technique that has been used extensively for different
generalizations of the online bipartite matching problem. The general format of such an
algorithm is that it maintains a discount factor βa for each advertiser a. For an allocation
C, if advertiser a is assigned np,C,a slots and receives total value wp,C,a, we discount the
value wp,C,a by an amount of np,C,a ·βa. Formally, the format of the algorithm is as follows:

(1) Initially, βa = 0 for each advertiser a.
(2) For every arriving page, do the following:

(a) Choose feasible allocation C for the page maximizing the discounted value∑
a(wp,C,a − np,C,a · βa)

(b) Allocate according to C.
(c) Update βa accordingly.

In order to define the final algorithm, it remains only to actually define the rule to update the
discount factor βa. The discount factors βa’s are interpreted as (a subset of) dual variables
of a natural LP relaxation of the problem. The proof that such an algorithm is 1 − 1/e
competitive requires two things, that the βa’s can be extended (by setting the remaining
dual variables accordingly) to a feasible dual solution and that the total primal and dual
objective values are within a factor of 1− 1/e.

Even though this technique has been used extensively, we offer new insights into the
application of this technique, in particular for the class of free disposal problems, introduced
by [Feldman et al. 2009a]. We first recount the state of the art in our understanding of this
very important technique. Several variants of the online bipartite matching problem have
had a 1 − 1/e competitive algorithm, albeit from seemingly different techniques. Some of
the notable examples are as follows.

— The ranking algorithm of [Karp et al. 1990] for the online bipartite matching problem.
— A generalization of the ranking algorithm for the vertex weighted online bipartite match-

ing problem, due to [Agarwal et al. 2011].
— The Adwords problem with small bids, due to [Mehta et al. 2007; Buchbinder et al. 2007],

generalizing the online b−matching problem of [Kalyanasundaram and Pruhs 2000].
— The greedy algorithm for the Adwords problem with small bids and random arrival order,

due to [Goel and Mehta 2008].

Recently [Devanur et al. 2013] gave a unification of all these results by showing how
they all arise from essentially the same dual update function (which we call the exponential
update function). They also showed how this update function and the competitive ratio of
1 − 1/e arise as the optimal solution to a particular differential equation. But the online
matching with free disposal problem2 of [Feldman et al. 2009a], which also had a 1 − 1/e
competitive primal-dual algorithm, remained separate from this unification and seemingly
used a different update rule.

An important contribution of this paper is that we resolve this separation and
show how the update function for [Feldman et al. 2009a] can be thought of as an
extension of the exponential update function. Further this perspective allows us
to naturally generalize this technique to the whole page optimization problem.

2In this problem, which is a precursor to the whole page optimization problem, impressions arrive online.
Each impression i has a value wia for each advertiser a and advertiser a derives his value from the top na
impressions assigned to him. Any extra impressions allocated to him are ”disposed” off.
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We now give a brief overview of how we achieve the above. We start with most basic
problem, the online fractional bipartite matching problem, and the primal-dual analysis of
the algorithm based on the exponential update function. The first step is a new primal-
dual proof of the free disposal problem, extending the analysis of the fractional bipartite
matching. The new idea needed for this as follows: the exponential update rule is based
on the “level” of consumption for each advertiser. For the fractional matching problem,
the level is the total fraction of edges matched to that vertex, for the Adwords problem, it
is the fraction of the budget consumed by the advertiser. We extend the concept of level
from being a real number to a real valued function from <+ to itself. In other words, each
real number x ∈ <+ has its own level. This is because we also think of the capacity of an
advertiser as a function from <+ to itself. The capacity at x is the capacity to benefit from
an impession of value x. Suppose that an advertiser has filled his capacity with impressions
of value v. Then his capacity at x is filled for all x ≤ v. However, he still has capacity
to benefit from impressions of value > x. The level at x is simply the level to which the
capacity at x is filled. The update rule is now the integral of the exponential update function
of the level at x over the entire real line.

We next generalize the algorithm to the case where each impression could consume dif-
ferent amounts of the capacity of an advertiser. We show that instead of thinking of the
level (and the capacity) as a function of the value, we should think of the level as a function
of the density, which is the ratio of the value to the amount of capacity consumed by an
impression. The algorithm and the analysis then extend naturally to this setting.

Finally we consider the whole page optimization problem. The main new difficulty here
is that a particular allocation C that we have chosen for a page p could count towards
one advertiser but not towards another. This issue does not arise in the earlier problems
since each impression is allocated to only one advertiser. This change is captured in the
LP relaxation by having one set of variables that capture the choice of C for each page
and another set of variables that capture whether C is counted towards the capacity of
each advertiser. Due to this, we have a new set of dual variables that need to be set and
dual constraints that need to be satisfied. We show that these new dual variables have
natural interpretations that allow us to extend the technique to this case. Another difference
is that since an allocation now benefits multiple advertisers, we need to accumulate the
“contributions” of all the advertisers to a given allocation in order to decide the best possible
allocation. This is reflected in the way we choose the allocation, as the one maximizing the
total discounted value among all feasible allocations.

1.3. Related Work

Our work is closely related to the previously studied online ad allocation problems, includ-
ing the Display Ads Allocation (DA) problem [Feldman et al. 2009a; Feldman et al. 2010;
Agrawal et al. 2009; Vee et al. 2010], and the AdWords (AW) problem [Mehta et al. 2007;
Devanur and Hayes 2009]. In both of these problems, the publisher must assign online im-
pressions to an inventory of ads, optimizing efficiency or revenue of the allocation while
respecting pre-specified contracts. Both of these problems have been studied in the com-
petitive adversarial model [Mehta et al. 2007; Feldman et al. 2009a; Buchbinder et al. 2007]
and the stochastic random-arrival model [Devanur and Hayes 2009; Feldman et al. 2010;
Agrawal et al. 2009; Vee et al. 2010].

The AW problem [Mehta et al. 2007; Buchbinder et al. 2007; Devanur and Hayes 2009] is
related to our online allocation problem and the display ads allocation (DA) problem. In the
AW problem, the publisher allocates impressions resulting from search queries. Advertiser j
has a budget B(j) on the total spend instead of a bound N(j) on the number of impressions.
Assigning impression i to advertiser j consumes w(i, j) units of j’s budget instead of 1 of
the N(j) slots, as in the DA problem. 1− 1

e -approximation algorithms have been designed
for this problem under the assumption of large budgets [Mehta et al. 2007; Buchbinder et al.
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2007]. In the DA problem, given a set of m advertisers with a set Sj of eligible impressions
and demand of at most N(j) impressions, the publisher must allocate a set of n impressions
that arrive online. Each impression i has value w(i, j) ≥ 0 for advertiser j. The goal of
the publisher is to assign each impression to one advertiser maximizing the value of all the
assigned impressions. The adversarial online DA problem was considered in [Feldman et al.
2009a], which showed that the problem is inapproximable without exploiting free disposal;
using this property (that advertisers are at worst indifferent to receiving more impres-
sions than required by their contract), a simple greedy algorithm is 1

2 -competitive, which

is optimal. When the demand of each advertiser is large, a (1 − 1
e )-competitive algorithm

exists [Feldman et al. 2009a], and this is tight. None of the previous work for the adversarial
model consider the allocation of multiple ads per page, or general allocation constraints per
page. Our primal-dual analysis is based on a new configuration linear program formulation
as it needs to deal with an arbitrary family of allocation constraints per page, and therefore
it is different from all the previous work.

Other than the adversarial model studied in this paper, online ad allocations have been
studied extensively in various stochastic models. In particular, the problem has been studied
in the random order model, where impressions arrive in a random order; and the i.i.d. model
in which impressions arrive i.i.d. according to a known or an unknown distribution. There
are two main category of algorithms used in such stochastic settings: primal techniques and
dual techniques. The primal technique is based on solving an offline allocation problem on the
instance that we expect to arrive according to the stochastic information, and then applying
this offline solution online. This technique has been applied to the online stochastic matching
problem [Karp et al. 1990] and in the i.i.d. model with known distributions [Feldman et al.
2009b; Menshadi et al. 2011; Haeupler et al. 2011], and resulted in improved competitive
algorithms. The dual technique is based on computing an offline dual solution of an expected
instance, and using this solution online [Devanur and Hayes 2009; Feldman et al. 2010;
Agrawal et al. 2009; Vee et al. 2010]. Following the training-based dual algorithm of [Devanur
and Hayes 2009], training-based (1− ε)-competitive algorithms have been developed for the
DA problem and its generalization to various packing linear programs [Feldman et al. 2010;
Vee et al. 2010; Agrawal et al. 2009]. These papers develop a (1− ε)-competitive algorithm

for online stochastic packing problems in which opt
wij
≥ O(m logn

ε2 ) and the demand of each

advertiser is large, in the random-order and the i.i.d model. It is not hard to generalize
these techniques to capture the stochastic variant of the page-based ad allocation problem.
Recently, improved approximation algorithms have been proposed for this problem [Karande
et al. 2011; Mahdian and Yan 2011] in the random order model for unweighted graphs.
Other than the above, online adaptive optimization techniques have been applied to online
stochastic ad allocation [Tan and Srikant 2011; Devanur et al. 2011]. Such control-based
adaptive algorithms achieve asymptotic optimality following an updating rule inspired by
the primal-dual algorithms, but they do not achieve any bounded approximation factor for
the adversarial model.

While these techniques provide improved approximation factors for stochastic models,
they do not provide guaranteed approximations in the adversarial model. (However, this
was achieved for the unweighted matching problem in [Mirrokni et al. 2011].) In reality,
there are unexpected traffic spikes and dips and it is desirable to have an algorithm that
can cope with such surprises. Our theoretical study of the whole page optimization problem
in adversarial settings along with our experimental results for real-world data show that
our algorithm satisfies these desirable properties.

2. ONLINE FRACTIONAL ASSIGNMENT

In this section, we describe (1−1/e)-competitive algorithms for the online weighted matching
and online generalized assignment problems with free disposal. These results were previously
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known from [Feldman et al. 2009a], but we analyze them here as a warm-up to the whole
page optimization problem, and to demonstrate our unifying analysis. Key to our analysis
is the Linear Program for weighted matching.

LP Formulation. Let xia be the indicator of allocating impression i to advertiser a. We
will consider the following standard primal and dual linear programs of the online matching
problem:

Maximize
∑
i,a

wiaxia Minimize
∑
a

naβa +
∑
i

αi

∀i :
∑
a

xia ≤ 1 ∀i, a : βa + αi ≥ wia

∀a :
1

na

∑
i

xia ≤ 1 ∀i, a : xia, αi, βa ≥ 0

(1)

2.1. Online bipartite fractional matching

A special case of the above problem is when the weights are either 0 or 1, and the capacity
constraints are all 1. The instance can be thought of as a bipartite graph with advertisers
on one side and impressions on the other, with an edge between them iff wia = 1. An
allocation for such an instance is a matching in the bipartite graph. We actually consider
fractional allocations here; a fractional allocation allows the allocation of an impression to
an advertiser to be any real number in [0, 1] with the sum of these “fractions” being no
more than 1. The capacity constraints for the advertisers are that the sum of the fractions
allocated to each advertiser is no more than his capacity. This is simply a solution to the LP
relaxation (1). For this problem, one does not need free disposal since all the edge weights
are 1. It is well known that there is a simple primal-dual algorithm for this problem with a
1− 1/e competitive ratio. One of the goals of this paper is to point out how the algorithm
and the analysis for the free disposal problem relates to that of the bipartite matching
problem. We sketch a quick proof for the bipartite matching problem now. We use γ to
denote the competitive ratio, which will be 1− 1/e. The algorithm builds primal and dual
solutions so that

(1) The cost of the primal solution is at least γ times the cost of the dual solution.
(2) The dual constraint βa + αi ≥ 1 is feasible for all impressions seen so far.

It is easy to see that these two properties imply that the algorithm is γ-competitive.
We must now describe how to actually construct primal and dual solutions to satisfy

these properties. In the beginning, all the primal and the dual variables are zero, hence
primal and dual costs are both zero; thus the two properties are satisfied. The algorithm
allocates impressions in a continuous process and we describe this process by specifying how
primal and dual variables change as an infinitesimal quantity of an impression is allocated
at any time. The dual variables, βa’s and αi’s are monotonically non-decreasing and are
also changing continuously. When we allocate an infinitesimal quantity dx of an impression
i to advertiser a, the primal cost increases by dx. The increase in the dual cost will then
have to satisfy dβa + dαi ≤ dx/γ; this maintains the invariant that the primal and dual
costs are within a factor γ throughout, satisfying the first desired property.

Whenever there is an opportunity to allocate dx of impression i to an advertiser, there is
up to dx/γ of the dual cost to go around. Different advertisers “offer” different ways to split
this dual cost between the βa’s and αi. The dx fraction of the impression is then allocated
to the advertiser(s) who makes the highest offer for dαi. The offer made by an advertiser
depends on the value of βa he has already accumulated up to that point; this is because each
advertiser tries to make sure that his own dual constraint is satisfied, that is βa + αi ≥ 1.
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A lower βa means that the advertiser needs to offer a higher amount. A natural choice (to
help ensure dual feasibility, as we will show in Lemma 2.1) is to offer dαi = (1− βa)dx. To
achieve dβa + dαi = dx/γ, then, we must set dβa = (1/γ − 1 + βa)dx.

This differential equation in the dual variable βa means that βa will then be a function
of the total fraction of impressions allocated to a, which is ya :=

∑
i xia. Let us denote

the dependence of βa on ya as βa = G(ya) for some monotonically non-decreasing function
G(·). We denote the rate of change of βa, dβa/dya by g(ya). That is, we can rewrite this
equation as:

g(y)−G(y) = 1/γ − 1. (2)

With this notation, at any point advertiser a offers to split dx/γ as dβa = g(ya)dx and
dαi = (1−βa)dx = (1−G(ya))dx. Equation (2) restricts our choice of g(x) to be exponential;
the particular functions we use are g(x) = ex−1/γ and G(x) =

∫ x
0
g(y)dy = (ex−1− e−1)/γ.

This gives G(1) = 1, which means that when ya = 1, which is when the advertiser’s capacity
is exhausted, his offer is 1−G(1) = 0. This is by design, since once the advertiser’s capacity
is exhausted we don’t want to allocate any more impressions to him. In fact, our choice
of G(·) is the function that satisfies (2) for the largest possible constant γ, subject to the
boundary constraint of G(1) = 1. With this background, we now define the algorithm:

ALGORITHM 1: Online bipartite fractional matching

1: Initialize all βa’s and αi’s to be zero.
2: for each impression i that arrives do
3: while

∑
a xia < 1 and ya < 1 for some a s.t. wia = 1 do

4: Allocate a dx amount of i to each a in arg maxa:wia=1{1− βa}.
5: If dx of i is allocated to a, then increment βa and αi respectively by

dβa = g(ya)dx and dαi = (1− βa)dx .

6: end while
7: end for

The fact that this algorithm is γ-competitive follows from the two properties mentioned
earlier, that the primal and the dual are within a factor of γ and that duals are feasible.
The first follows immediately from (2) since whenever we allocate dx of i to a, the dual
increase is (g(ya) + 1−G(ya))dx = dx/γ. The proof that the second property also holds is
as follows.

Lemma 2.1. For all a and i such that wia = 1, the dual variables βa and αi at the end
of the algorithm are such that

βa + αi ≥ 1.

Proof. Consider the value of ya =
∑
i xia at the end of the algorithm. βa at the end is

equal to G(ya). If ya = 1, then βa = G(1) = 1 and αi ≥ 0 and the lemma follows. Suppose
that ya < 1. Then the while loop for i must have ended with

∑
a xia = 1. Also, throughout

the loop dαi/dx must have been at least 1− βa, since βa is monotonically non-decreasing.
Therefore αi ≥ 1− βa.

Since any feasible dual solution is an upper bound on the optimum offline solution, the
competitive ratio follows.

Theorem 2.2. The algorithm is γ-competitive, with γ = 1− 1/e.
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ya(w)

w1 w2 w3

1

ww40

dx

dx

dx

Fig. 1. Suppose advertiser a’s capacity is fully occupied with minimal weight w1. Further, some of the
impressions have weight w2 and some other have weight w3. Then, allocating a dx amount of an impression
with weight w4 to a results in an increase in ya(w) by dx for w1 < w ≤ w4.

2.2. Online Weighted Matching with Free Disposal

We now extend the algorithm and the analysis of the bipartite matching problem to the
fractional version of the free disposal problem. One difference between the two problems
is that in the free disposal problem, different impressions have different weights. Following
the same framework as before, this means that the offer from advertiser a would depend
on wia; since we have to ensure feasiblity of the dual constraint αi + βa ≥ wia, the natural
choice is that advertiser a offers dαi = (wia−βa)dx. Another difference is that the increase
in the primal on allocating dx of impression i to a is not always wiadx, since a might have
to discard some of its previously allocated impressions. If a discards dx of i′ in order to
accommodate dx of i, then the increase in the primal is (wia − wi′a)dx. The increment in
βa will then be ((wia − wi′a)/γ − wia + βa)dx. Now βa is no more simply a function of
ya = 1

na

∑
i xia. In fact, once ya = 1, it stays there but βa continues to increase as we

allocate new impressions to a and discard older ones. βa would be a function of the history
of allocations to a, which would make the analysis rather complicated. We next present the
key idea that makes sure that the analysis remains essentially the same as before, with a
small extension.

Recall that earlier the offer of advertiser a was a function of ya, which is the “level” to
which his capacity was exhausted. The main idea, which allows this concept to be easily
generalized to the free disposal problem (and beyond), is that instead of thinking of the level
as a single number, we think of there being a level for every non-negative real number in
[0,∞). Imagine that there is a capacity of 1 for each w ∈ [0,∞) and the level corresponding
to w is the amount of capacity exhausted corresponding to w. (This is depicted in Figure
1.) To be precise, let

ya(w) =
1

na

∑
i:wia≥w

xia.

As we will show, we can define βa to be a function of ya(·); in fact it is the most natural
generalization:

βa =

∫ ∞
0

G(ya(w))dw. (3)

It is easy to see that in the unweighted case, this reduces to the earlier definition of βa =
G(ya). Suppose now that when an impression i arrives, a would have to discard i′ in order
to accept i. Here, i′ is the impression with the smallest weight that is still allocated to a,
i.e. arg mini{wia : xia > 0}. If

∑
i xia < 1 then let i′ be a dummy bidder with wi′a = 0. If a

dx amount of i is allocated to a, then the increase in the primal is (wia − wi′a)dx. One of
the difficulties (a priori) with the free disposal problem is that the primal rate of increase
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is wia − wi′a but the dual constraint is still βa + αi ≥ wia. With the definition of βa as in
(3) above, it is easy to see that this does not cause any problems. βa has already accounted
for the weight wi′a since ya(w) = 1 for all w ∈ [0, wi′a] and∫ wi′a

0

G(ya(w))dw =

∫ wi′a

0

1dw = wi′a.

With this observation, the offer of a to i, can be rewritten as

dαi
dx

= wia − βa =

∫ wia

wi′a

(1−G(ya(w)))dw −
∫ ∞
wia

G(ya(w))dw ≤
∫ wia

wi′a

(1−G(ya(w)))dw.

The rate of increase in βa w.r.t dx is

dβa
dx

=

∫ wia

wi′a

g(ya(w))dw

since ya(w) increases by dx precisely in the interval [wi′a, wia] and remains unchanged
everywhere else. Therefore the total rate of increase in the dual cost is

dαi
dx

+
dβa
dx
≤
∫ wia

wi′a

(1−G(ya(w)) + g(ya(w))) dw =

∫ wia

wi′a

1

γ
dw =

wia − wi′a
γ

. (4)

Therefore the primal and the dual rates of increase are within a factor of γ. With this,
we now define the algorithm in Algorithm 2.

ALGORITHM 2: Online Weighted Matching with Free Disposal

1: Initialize all βa’s and αi’s to be zero.
2: For each a, create na dummy impressions with zero weight and allocate them completely to a.
3: for each impression i that arrives do
4: while

∑
a xia < 1 and βa < wia for some a do

5: Allocate a dx amount of i to each a in

arg max
a:ya(wia)<1

{wia − βa} .

6: If dx of i is allocated to a, then increment βa and αi respectively by

dβa =

(∫ wia

wi′a

g(ya(w))dw

)
dx and dαi = (wia − βa) dx ,

where for each a, the i′ in the lower limit of the integral is in arg mini{wia : xia > 0}.
7: Decrease xi′a by dx
8: end while
9: end for

As before we need to prove that primal and dual costs are within γ and dual feasibility.
The proof goes along the same lines as before.

Lemma 2.3. The following are invariants throughout the algorithm.

(1 ) For all a, 1
na

∑
i xia = 1.

(2 ) For all a, equation (3) holds.
(3 ) The primal and dual are within a factor of γ.

Proof. For (1), the statement is true initially due to the allocation of the dummy
impressions. Subsequently whenever we allocate a dx amount of an impression i to a, we
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discard an equal amount of another impression i′. Therefore the invariant is maintained
throughout.

For (2), suppose Eq. (3) holds before the arrival of impression i. Consider a step in the
algorithm where dx of i is allocated to a for some i, and an equal amount of i′ is discarded.
wia is strictly greater than wi′a, since otherwise βa ≥ wia by Eq. (3). Note that for all
w ∈ [0, wi′a], y(w) = 1 by the definition of i′ and y(w) does not change due to the step.
Also for all w ∈ (wia,∞], y(w) does not change. Finally, for all w ∈ (wi′a, wia], ya(w)
increases by dx.

Recall that in this step βa is incremented by dβa =
(∫ wia

wi′a
g(ya(w))dw

)
dx. By the above

argument, this increment can be written as

dβa =

∫ ∞
0

(
g(ya(w))dya(w)

)
dw =

∫ ∞
0

dG(ya(w))dw .

Therefore Eq. (3) continues to hold.
Proof of (3): We already argued this and proved it in Eq. (4).

Lemma 2.4. For all a and i, the dual variables βa and αi at the end of the algorithm
are such that

βa + αi ≥ wia.
Proof. Consider the value of ya(·) at the end of the algorithm. If βa ≥ wia, then by

αi ≥ 0 the lemma follows. If βa < wia, then the while loop for i must have ended with∑
a xia = 1. Throughout the loop dαi/dx must have been at least wia − βa, since βa is

monotonically non-decreasing. Therefore αi ≥ wia − βa.

Theorem 2.5. Algorithm 2 is γ-competitive, with γ = 1− 1/e.

3. CONFIGURATIONS

We now consider a generalization of the problem where multiple advertisements can be
shown on a single page. It is the pages which arrive online, instead of impressions as before.
A page has multiple distinct slots in which ads can be placed and a configuration of ads
for a page specifies which ad is shown in each slot. The same ad (or ads from the same
advertiser) may be shown on multiple slots on the same page. There may be rules about
which configurations are allowed; for each page p we denote the set of feasible configurations
for that page by Cp. The value derived by an advertiser may depend not only on where his
own ads are shown, but also on which ads are shown in the other slots. In other words it
depends on the entire configuration of ads. For a configuration C ∈ Cp the value derived by
advertiser a is denoted by wp,C,a.

For an advertiser a, the number of different slots his ad is shown in configuration C on
page p is denoted by np,C,a. We also refer to this as the number of impressions allocated.
Advertiser a has a bound na on the total number of impressions that can be allocated to
him. The free disposal version of this is that he can be allocated more impressions, but we
only count the top na impressions towards the objective function. A given configuration may
be counted towards one advertiser and be not counted towards another. The configurations
are picked online and cannot be changed later, but the accounting of which impressions
to count towards an advertiser may be changed. In particular, the algorithm adds new
impressions to this pool of top na impressions and drops some of the ones picked earlier.
Once an impression is dropped it is never considered again.

Let cp,C,a := np,C,a/na. The following is an LP relaxation for the above problem, and its
dual. The variable zp,C indicates whether configuration C is chosen for page p. The variable
xp,C,a indicates whether the impressions in configuration C on page p are counted towards
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the top na impressions for advertiser a.

Maximize
∑
p,C,a

wp,C,a · xp,C,a Minimize
∑
a

βa+
∑
p

αp

∀a :
∑
p,C

cp,C,a · xp,C,a ≤ 1 ∀p, C, a : δp,C,a + cp,C,a · βa ≥ wp,C,a

∀p, C, a : xp,C,a ≤ zp,C ∀p, C : αp ≥
∑
a

δp,C,a

∀p :
∑
C∈Cp

zp,C ≤ 1 ∀p, C, a : xp,C,a, zp,C , αp, βa, δp,C,a ≥ 0

As before we will consider the fractional version of the problem, which is just a solution
to the LP above. This can be easily extended to the integral version when the na’s are all
large.

The main new component introduced by this problem is that multiple advertisers can
benefit from one configuration. The concept of offers used earlier extends naturally here:
each advertiser makes an offer for each of the configurations, based on his value for the
configuration and his level function. The configuration chosen is simply the one for which
the sum of the offers of all the advertisers is the highest. Another new aspect in this problem
is that there are new dual variables, namely δp,C,a. These simply capture the offer made by
each advertiser for each configuration and don’t appear in the objective function. Except for
these small modifications the algorithm and the analysis is almost identical to the previous
case with densities.

When a page p arrives, suppose we were to allocate dx of the page to the configuration C ∈
Cp. Then each advertiser potentially gets an additional value of wp,C,adx, if this configuration
was better for him than the ones he already has. For a given advertiser a, suppose he would
have to discard dx′ of a previously allocated configuration C ′ on page p′ in order to accept
C. Let ρp,C,a := wp,C,a/cp,C,a; then (p′, C ′) = arg minp,C{ρp,C,a : xp,C,a > 0}. The actual
increase in the primal objective value corresponding to a due to this allocation is then

wp,C,adx− wp′,C′,adx
′ = (ρp,C,a − ρp′,C′,a) · cp,C,adx. (5)

This increase in the primal is split between the dual variables based on the function ya(·)
which as before is defined as follows:3

ya(ρ) =
∑

p,C:ρp,C,a≥ρ

cp,C,a · xp,C,a.

βa is defined in terms of ya as before:

βa =

∫ ∞
0

G(ya(ρ)) dρ. (6)

Now a offers an amount of δp,C,a = wp,C,a − cp,C,a · βa to each configuration C from which
he can benefit, i.e., each C such that ya(ρp,C,a) < 1. Otherwise, she offers δp,C,a = 0. We
allocate dx amount of a given page p to the configuration C that receives the highest total
offer. The dual variable αp is then incremented by

∑
a δp,C,adx. We can bound δp,C,a as

δp,C,a = wp,C,a − cp,C,a · βa = cp,C,a(ρp,C,a − βa) ≤ cp,C,a
∫ ρp,C,a

ρp′,C′,a

(1−G(ya(ρ))) dρ.

3Note that configuration C is beneficial to advertiser a iff ya(ρp,C,a) < 1. We will use this notation to filter
only those advertisers for whom a configuration is actually beneficial.
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since ya(ρp′,C′,a) = 1 and G(ya(ρ)) = 1 for ρ ∈ [0, ρp′,C′,a].
The increase in βa is

dβa
dx

= cp,C,a

∫ ρp,C,a

ρp′,C′,a

g(ya(ρ))dρ

since ya(·) remains unchanged everywhere except in (ρp′,C′,a, ρp,C,a], and for all ρ in that
interval ya(ρ) increases by cp,C,adx. The total rate of increase in dual is

dαp
dx

+
∑
a

dβa
dx
≤
∑
a

cp,C,a

∫ ρp,C,a

ρp′,C′,a

(1−G(ya(ρ)) + g(ya(ρ))) dρ =
∑
a

cp,C,a(ρp,C,a − ρp′,C′,a)

γ
,

which is 1/γ times the primal rate of increase, from (5).
The entire algorithm is summarized as Algorithm 3.

ALGORITHM 3: Free disposal with configurations

1: Initialize all primal and dual variables to be zero.
2: Create a dummy page p with a single configuration C such that for all a,wp,C,a = 0 and
cp,C,a = 1. Set xp,C,a = zp,C = 1.

3: for each page p that arrives do
4: while

∑
C zp,C < 1 and cp,C,a · βa < wp,C,a for some a and C do

5: Allocate a dx amount of p to each C (that is, increase zp,C by dx) in

arg max
C

{∑
a

max

{
0, wp,C,a − cp,C,a · βa

}}
.

6: if dx of p is allocated to C then
7: Increment αp by

dαp =
∑
a:cp,C,a·βa<wp,C,a

(wp,C,a − cp,C,a · βa) dx.

8: Increase xp,C,a by dx.
9: for each a such that cp,C,a · βa < wp,C,a do
10: Increment βa by

dβa = cp,C,a
(∫ ρp,C,a

ρp′,C′,a
g(ya(ρ))dρ

)
dx ,

where the p′, C′ is in arg minp,C{ρp,C,a : xp,C,a > 0}.
11: Decrease ρp′,C′,a by cp,C,adx/cp′,C′,a.
12: end for
13: end if
14: end while
15: Set δp,C,a = max{0, wp,C,a − cp,C,a · βa}.
16: end for

We need to prove that primal and dual costs are within γ and dual feasibility.

Lemma 3.1. The following are invariants throughout the algorithm:

(1 ) for all a,
∑
p,C cp,C,a · xp,C,a = 1.

(2 ) for all a, equation (6) holds.
(3 ) The primal and dual are within a factor of γ.

The proof is similar to that of Lemma 2.3 and hence omitted.

Lemma 3.2. For all a, p and C, the dual variables βa, αp and δp,C,a at the end of the
algorithm are such that



Proceedings Article

(1 ) cp,C,aβa + δp,C,a ≥ wp,C,a and
(2 ) αp ≥

∑
a δp,C,a.

Proof. Consider the first constraint. If for some p, C, a, it so happens that cp,C,a · βa <
wp,C,a, then it is satisfied by the definition of δp,C,a and the fact that βa is monotonically
non-decreasing. Otherwise, δp,C,a = 0 but cp,C,aβa ≥ wp,C,a so the first constraint is still
satisfied.

Consider the second constraint for a given page p. Suppose that the while loop for that
page ends in cp,C,a · βa ≥ wp,C,a for all a and C. Then δp,C,a = 0 for all a,C and hence the
second constraint is trivially satisfied.

Now suppose that the while loop for p ended with
∑
a zp,C = 1. Throughout the

loop dαa/dx only decreases since βa’s are all monotonically non-decreasing. Further,
maxC

∑
a δp,C,a is exactly the value of dαa/dx at the end of the while loop. Therefore

the second constraint is satisfied at the end of the while loop. These dual variables are not
changed after that, so it continues to hold.

Theorem 3.3. Algorithm 3 is γ-competitve, with γ = 1− 1/e.

4. SUBMODULAR WELFARE MAXIMIZATION WITH ONLINE BIDDERS

In this section, we consider a variant of the Submodular Welfare Maximization (SWM)
problem. Here, items are known offline, and bidders arrive online; this is contrast to the
more well-studied online variant where bidders are known offline and items arrive online. In
our problem, at every time step, a bidder arrives with a monotone submodular function over
items. We then assign an unconstrained subset of items to the bidder, allowing previously
assigned items to be assigned again. However if an item was assigned to a previous bidder,
but is now assigned to a new bidder, the old bidder is no longer assigned the item. Our goal
is to maximize welfare or total value of bidders at the end of the process.

Note that for this online SWM to make sense, we need to allow one-way reassignment
of items since otherwise, no reasonable competitive ratio can be achieved for this problem.
Also it is worth noting that such a reassignment is in spirit similar to the literature on
buy-back [Feige et al. 2008; Constantin et al. 2009; Babaioff et al. 2009], except that we can
buy back for free.

In the following, we show that SWM with online bidders can be reduced to the whole
page optimization setting. In making the connection, the intended meaning of bidders and
items in the context of whole page optimization will be reversed. In particular, items now
correspond to offline advertisers, and bidders now correspond to online pages.

Lemma 4.1. Given a ρ-competitve algorithm for whole page optimization for arbitrary
n′as, there is a ρ-competitive algorithm for SWM with online bidders.

Proof. Given an instance of SWM with online bidders, we construct a corresponding
whole page optimization setting as follows. Let there be m items numbered 1, . . . ,m. For
each item j, there is a corresponding advertiser j with capacity one. For each bidder with a
monotone submodular function f(·) over the item set, we construct a page p with m slots
in the following way. For each subset of items S ⊆ {1, . . . ,m}, include a feasible allocation
configuration where for all j ∈ S slot j is assigned to advertiser j, and all slots outside S
are not assigned. Furthermore, the value of advertiser j in this configuration is defined as
f({1, . . . , j} ∩ S) − f({1, . . . , j − 1} ∩ S). Note that the values are defined in a way such
that the total value of allocated advertisers in S is equal to f(S), and it follows that the
offline versions of both the SWM problem and the whole page optimization problem have
identical solutions and optimal values.

Now given a ρ-approximation algorithm for whole page optimization, we can simulate it
on the above whole page optimization instance using a demand oracle. If an allocation is
chosen, which specifies the set of advertisers that get assigned, then for each such advertiser,



Proceedings Article

say j, in the online SWM problem we assign the corresponding item j to the current bidder
either if (1) item j wasn’t assigned before, or if (2) the value by doing this is higher than
the value v of item j for the bidder that it was assigned to previously. In the latter case, let
b be the bidder that was assigned the item j, in whole page optimization, we lose a value
of v in accounting for advertiser j, while in the online SWM problem, by submodularity,
bidder b loses a value of at most v. It follows that at the end of process, the algorithm
for online SWM achieves total objective value that is at least as large as the algorithm for
whole page optimization. Since both problem settings share the same optimal value, our
lemma follows.

Our algorithm for whole page optimization can give a 1
2 -approximation even when ca-

pacities of advertisers are small, by setting dαi = dβa = wiadx. It follows that we have a
1
2 -approximation algorithm for SWM with online bidders. Furthermore, under the following

assumption, whole page optimization gives a 1− 1
e − o(1)-approximation for this problem:

Consider a more general setting where the item set is a multi-set, and submodularity is
defined w.r.t. multi-sets. At every step, the arriving bidder reports a monotone submod-
ular valuation function defined on the items. For this setting, we can apply our result for
whole page optimization to get (1 − 1

e − o(1))-approximation assuming that the minimum
multiplicity of an item tends to infinity.

Furthermore, our whole page optimization algorithm can be implemented in polynomial
time given demand oracle access. (Details in full version.)

5. EMPIRICAL EVALUATION

An important motivation behind the whole page optimization problem is the display ad
allocation with whole-page-based constraints. Besides being theoretically optimal, a key
feature of our algorithm is its simplicity and ease of implementation, allowing easy empir-
ical evaluation. In this section, we present experimental results, comparing a whole-page
allocation algorithm to the slot-based equivalent.

Experimental Details. Our data sets consist of impressions for 5 (anonymous) publish-
ers from 2 days in January 2012. The number of daily impressions per publisher varies
from roughly 150,000 to 1,300,000, and the number of advertisers per publisher is up to
several hundred. Advertisers specify complex targeting criteria to define the set of eligible
impressions (giving the bipartite graph between impressions and advertisers), and the edge
weights capture the “targeting quality” (in these experiments, click probability) of an ad-
vertiser for an impression. The specification of all per-page constraints for each advertiser
is non-trivial and hard to describe succinctly; in fact, many internet advertising services
specify constraints differently. We do not describe all the nuances of the ad-serving system’s
constraints, as our goal here is to demonstrate that significant improvements are possible by
considering configurations for the entire page at once. Therefore, we present results here for
the case of only exclusion constraints (where advertiser a can specify that their ad is not to
be shown along with the ad of competitor b); further, to aid reproducibility of these exper-
iments, we consider randomly generated pairwise exclusions. From the point of view of the
online algorithm, the manner in which exclusions are generated is irrelevant; the algorithm
simply works with the graph specifying which pairs of ads cannot be shown together. That
is, we work with “real” weighted bipartite graphs between impressions and advertisers (as
in previous work [Feldman et al. 2010]), but use randomly generated per-page constraints.
This allows us to (a) demonstrate that the significant improvements obtained are not due
to specific constraints of the advertisers for these publishers, and (b) investigate how the
performance of the algorithm changes with an increase in the number of constraints.

In every other respect, the experimental setup is as close to a real system as possible;
impressions are considered by the algorithms in the order of the page-views of the cor-
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responding users to the publishers’ websites. We work with the real capacities / budget
constraints of advertisers, etc.

A separate issue is that in real systems, the algorithms used can be stochastic, or based
on historical data. One could repeat our experiments with a single-slot-at-a-time stochastic
algorithm vs. a page-configuration-based stochastic algorithm. We do not report on such
experiments here, as this paper is focused on worst-case algorithms. A further advantage
of worst-case algorithms is that they can cope with new advertisers, changing capacities,
etc.; for this reason, algorithms used in practice are typically a hybrid of worst-case and
stochastic algorithms; for more details, see [Feldman et al. 2010].

Algorithms. The algorithms we used are essentially similar to those of this paper and the
slot-based algorithm of [Feldman et al. 2009a], with a few minor differences: Our theoretical
results assumed that an impression could be infinitesimally split among multiple advertisers;
instead, we discretize the algorithm by assigning an impression i to a single advertiser a in
arg max{wia − βa}, breaking ties arbitrarily. Further, the ideal discretization might have a
each one of a million impressions contributing in a slightly different way to βa, all of which
must be updated after each allocation; we bucket these, but this does not significantly
affect algorithm performance; this also helps deal with floating-point issues. For the page-
based algorithm, recall that we need demand oracle access to find the optimal configuration
for a page; in practice, we explicitly solve a (small) integer program to find the optimal
configuration that satisfies the exclusion constraints. Though such an integer program could,
in general, require time exponential in the number of page slots, the number of slots (and
advertisers eligible for each slot) is typically quite small. Generally accepted latency to serve
an ad request is on the order of 50-100 ms; the authors have in fact used a (specialized)
integer program solver to find the optimal configuration for ‘real’ instances with even more
complex constraints in far less time than this.

Results. For each publisher, we inserted random exclusion constraints between advertisers
with varying probabilities. Since these were the only page-level constraints considered, at a
constraint probability of 0, the two algorithms (page- and slot-based) are identical. Table 5
shows the performance of the algorithms on each publisher with constraint probabilities
ranging from 0.1 to 0.3. As one might expect, the performance of both algorithms decreased
(monotonically) with an increase in the constraint probabilities. Note, though, that the
decrease as a function of constraint probability is much more significant for the slot-based
algorithm than the page-based one, an average of 16% vs. 4.6%. (Figure 2 illustrates this for
1 publisher). In fact, for 3 out of the 5 publishers, the page-based allocation performance
decays so slowly that the score of the page-based algorithm with constraint probability 0.3
is higher than the slot-based algorithm with probability 0.1.

Overall, we note a significant gain from using page-based allocation, going from an average
of 3.9% with constraint probability 0.1 to an average of 18.6% with constraint probability
0.3. There is, of course, considerable variation among publishers; at a constraint probability
of 0.2, the gain from using page-based allocation ranges from 3.88% to 31.08%, and at a
constraint probability of 0.3, the gain ranges from 9.32% to 53.93%.

Further Discussion. We note that page-based allocation is of even more importance when
the publisher’s inventory of impressions is almost fully sold to advertisers. If there is a
surplus of users (many more than required by the contracts sold in advance), the deficiencies
of a slot-based algorithm are less significant; even if it makes sub-optimal decisions, leaving
several slots empty to satisfy page-level constraints, it can “make up the difference” with
the surplus users. Those ads under-assigned to the first users can be shown to those arriving
later; the surplus of users ensures that there are enough high-quality impressions for each
advertiser. On the other hand, if there are few users, it is critically important that early
opportunities not be wasted, and page-based algorithms have an even clearer advantage.
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Pub A Pub B Pub C Pub D Pub E Avg Gain
Prob. Slot Page Slot Page Slot Page Slot Page Slot Page Slot Page

0.1 100 102.7 100 108.8 100 100.8 100 103.4 100 103.9 100 103.9 3.9%
0.15 98.7 102.1 84.9 107.5 97.0 99.3 94.4 100.8 98.4 103.5 94.7 102.6 8.3%
0.2 96.9 101.7 81.4 106.7 94.1 97.9 93.3 100.5 96.5 103.2 92.4 102.0 10.4%
0.25 94.9 101.2 74.4 103.1 89.3 96.0 91.4 99.9 95.5 103.0 89.1 100.6 12.9%
0.3 92.3 100.9 66.2 101.9 82.6 94.5 86.6 98.2 93.1 102.5 84.0 99.6 18.6%

Normalized scores comparing the slot-based and page-based algorithms for each publisher, and
averaged over all publishers. Scores are normalized for each publisher such that the slot-based
algorithm with constraint probability 0.1 has a score of 100. The average column is a simple
average, not weighted by the number of impressions per publisher.

We demonstrate this by repeating the experiments for the 5 publishers above, randomly
sampling half the users. As one can see from Figure 3 for Publisher D, the benefit of
page-based allocation is larger for these reduced-inventory instances than in the original
instances. Even the publisher with least gain (Publisher C) sees its gain go from 3.88% to
5.36% at the constraint probability of 0.2. In general, using our algorithm for whole page
optimization produces high single-digit to double-digit percentage gains compared to the
slot-based algorithms, and for supply-constrained publishers, we see gains of another 3-5%.

The experiments above only considered exclusion constraints; these play a particularly
significant role in small or niche websites, where many of the advertisers may compete with
each other to target a particular community of users. For many publishers, all-or-nothing
(sometimes referred to as road-blocking) constraints are also important. It is clear that
page-based allocation plays an important role here as well; if a slot-based algorithm picks
an ad with a 5-or-nothing constraint for one slot, it is compelled to pick the ad 4 more
times on the page, regardless of how low a “targeting quality” or weight the ad may have
for those 4 slots. Other kinds of constraints are also used in practice, but these vary from
one publisher to another, and it is harder to compare these scientifically and publish results
of reproducible experiments.
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