
On Computing the Distinguishing Numbers of
Planar Graphs and Beyond: a Counting Approach∗

V. Arvind
The Institute of Mathematical Sciences

Chennai 600 113, India
arvind@imsc.res.in

Christine T. Cheng
Department of Electrical Engineering and Computer Science

University of Wisconsin-Milwaukee
Milwaukee, WI 53211
ccheng@uwm.edu

Nikhil R. Devanur
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

nikhil@cc.gatech.edu

February 21, 2008

Abstract

A vertex k-labeling of graph G is distinguishing if the only automorphism that preserves the labels
of G is the identity map. The distinguishing number of G, D(G), is the smallest integer k for which G
has a distinguishing k-labeling. In this paper, we apply the principle of inclusion-exclusion and develop
recursive formulas to count the number of inequivalent distinguishing k-labelings of a graph. Along the
way, we prove that the distinguishing number of a planar graph can be computed in time polynomial in
the size of the graph.

1 Introduction

A vertex k-labeling of graph G is a mapping φ : V (G)→ {1, 2, . . . , k}. It is said to be distinguishing if
the only automorphism that preserves the labels of G is the identity map. The distinguishing number of
G, D(G), is the minimum number of labels needed so that G has a distinguishing labeling. The notion
of distinguishing numbers for graphs was first introduced and developed by Albertson and Collins [3].
Their focus was on determining the relationships between a graph’s automorphism group and its distin-
guishing number. Their work has since been extended in many directions by researchers for graphs and
groups (e.g., [2, 5, 8, 6, 7, 10, 12, 16, 17, 20, 21]).

∗A preliminary version of this paper [4] appeared in the Proceedings of the Nordic Combinatorial Conference in 2004.

1

21 GG

Figure 1: An example of two graphs with the same number of vertices, isomorphic automorphism groups
and identical distinguishing numbers but different number of inequivalent k-labelings: D(G1, k) = k4(k4−
1)/2 but D(G2, k) = k7(k − 1)/2.

Let (G, φ) denote the labeled version of G under the labeling φ. Given two distinguishing k-labelings
φ and φ′ of G, we say that φ and φ′ are equivalent if there is some automorphism of G that maps (G, φ)
to (G, φ′). We are interested in computing D(G, k) – the number of inequivalent k-distinguishing
labelings of G – which was first considered by Arvind and Devanur [4] and Cheng [9] to determine
the distinguishing numbers of trees. Our motivation for studying this parameter are as follows. First,
D(G) = min{k : D(G, k) > 0} so if we can compute D(G, k) efficiently then we can also determine
D(G) efficiently. The usual way of proving that D(G) = k∗ is to present a distinguishing k∗-labeling of
G and then argue that G has no distinguishing labelings that uses k < k∗ labels. Counting the number of
inequivalent distinguishing k-labelings of G provides us with an altogether different method for solving
D(G). Second, when G is connected, solving for D(G, k) allows us to determine the distinguishing
number of H where H = αG (i.e., H consists of α copies of G). To distinguish H , each copy of G
must be assigned a distinguishing labeling. Additionally, no two copies of G can be assigned equivalent
distinguishing labelings. Hence, D(H) = min{k : D(G, k) ≥ α}. Finally, researchers have noted
that two labels are sufficient for distinguishing many non-rigid graphs (e.g., [2, 12, 16]). The number
of inequivalent distinguishing k-labelings of graphs provides one more level of granularity that enables
us to differentiate between graphs with the same distinguishing numbers. For example, consider the
two graphs shown in Figure 1. They have the same number of vertices, their automorphism groups
are isomorphic, and they can be distinguished with two labels. Yet, D(G1, k) = k4(k4 − 1)/2 but
D(G2, k) = k7(k − 1)/2 so with two labels at most 120 copies of G1 can be distinguished compared
to 64 copies for G2. In this sense, G1 is less symmetric than G2 because k labels can distinguish more
copies of G1 than G2 for any k ≥ 2.

To solve for D(G, k), we apply two of the most common techniques for counting – the principle
of inclusion-exclusion (PIE) and recursion. We show that when G’s automorphisms are known and the
size of its automorphism group, Aut(G), is O(log n) where n is the number of vertices in G then a
straightforward application of PIE can determine D(G, k) efficiently. We then modify the technique so
that when Aut(G) is isomorphic to Zt (the cyclic group of order t), Dt (the dihedral group of order
2t), Zt × Z2, or Dt × Z2, the value of D(G, k) can be computed in time polynomial in n, t and log k.
Consequently, we are able to prove that if G is a triconnected planar graph then D(G, k) and D(G) can
be determined efficiently. Next, by viewing G via a tree decomposition TG that is made up of G’s cut
vertices, separating pairs, and triconnected components, we show that D(G, k) can be determined recur-
sively. To implement this technique efficiently for a family of graphs, several ingredients are necessary
including efficient algorithms for testing graph isomorphism and finding the automorphisms of a graph’s
triconnected components. Since these algorithms exist for planar graphs, we arrive at the main result of
the paper – that when G is a planar graph then D(G, k) and D(G) can be computed efficiently.

In their introductory paper, Alberston and Collins [3] raised the issue of determining the computa-
tional complexity of DIST = {(G, k)| G has a distinguishing k-labeling}. Currently, the best known
result about DIST , which is due to Russell and Sundaram [19], is that it belongs to AM, the set of
languages for which there are Arthur and Merlin games. This result essentially follows from the fact
that testing graph rigidity is in AM. When G is restricted to certain graph families, however, DIST can
belong to P. For example, distinguishing numbers of cycles, hypercubes [5, 8], and acyclic graphs [4, 9]
can be computed efficiently. Our main result extends this further – DIST belongs to P when G is a

2

planar graph. Our work complements that of Fukuda, et al [12] on triconnected planar graphs where
they show that, except for seven graphs, all graphs in this family have distinguishing number at most 2.

In the next section of the paper we give basic results that will be used throughout the paper. In Section
3, we show how the principle of inclusion/exclusion can be used to determine D(G, k). In Section 4,
we develop recursive formulas for a tree decomposition of G that eventually lead to the computation of
D(G, k). We conclude in Section 5. We note that our algorithms for computing D(G, k) have G and
k as input; hence, when we say that they are efficient, we mean that they run in time polynomial in the
size of G and log k. Additionally, these algorithms involve addition and multiplication. In cases where
the numbers used are functions of k, their values never exceed kn, where n is the number of nodes in
graph G; i.e., the numbers have at most n log k bits. Thus, in our analysis, we assume each addition
takes O(n log k) time and each multiplication takes O(n2 log2 k) time in the worst case.

2 Basic notions

Suppose φ and φ′ are two distinguishing labelings of G. Since (labeled) graph isomorphism is an
equivalence relation, we shall say that φ and φ′ are equivalent if (G, φ) ∼= (G, φ′); that is, there is an
automorphism of G that maps (G, φ) to (G, φ′). Let L(G, k) denote the set of all distinguishing k-
labelings of G, L(G, k) the size of L(G, k), and D(G, k) the number of equivalence classes of L(G, k).
Below, we establish the relationships between D(G), D(G, k) and L(G, k).

Lemma 2.1. Let G be a graph and Aut(G) its automorphism group.
(i) D(G) = min{k : L(G, k) > 0} = min{k : D(G, k) > 0}.
(ii) D(G, k) = L(G, k)/|Aut(G)|.

Proof: If there is a distinguishing k-labeling of G then the set L(G, k) must at least have one labeling
and one equivalence class. It follows that the smallest k for which this is true must be the distinguishing
number of G, proving the first part of the lemma.

To prove the second part, note that Aut(G) is a group that acts on L(G, k). By definition, each
φ ∈ L(G, k) is preserved by only one automorphism in Aut(G) – the identity automorphism. Hence,
according to the orbit-stabilizer lemma, the size of the equivalence class of L(G, k) that contains φ
(i.e., the orbit of φ) is |Aut(G)|. Consequently, the number of equivalence classes of L(G, k) is
L(G, k)/|Aut(G)|.

Throughout this paper, we shall make use of Lemma 2.1 by viewing the problem of finding a graph’s
distinguishing number as a counting problem. While it may seem that computing D(G, k) to find D(G)
requires more work than needed, the lemma below (first proved in [9]) shows that it does not if we need
to distinguish multiple copies of G.

Lemma 2.2. Let G be a graph whose g connected components are G1, G2, . . . , Gg . Let φ be a labeling
of G. Then φ is distinguishing if and only if the following two conditions hold:

i. φ when restricted to Gi is distinguishing for i = 1, . . . , g.

ii. If Gi
∼= Gj , i �= j, then (Gi, φ|Gi) �∼= (Gj , φ|Gj) for every pair of i, j ∈ {1, . . . , g}.

The following is immediate.

Lemma 2.3. Let G be a connected graph. If H consists of α copies of G (i.e., H = αG), then
D(H) = min{k : D(G, k) ≥ α}.

2.1 Blocks, cut vertices, separating pairs, triconnected components

Let G = (V, E) be a connected graph. Recall that G is r-connected if |V | > r and, for any X ⊆ V
such that |X | < r, removing the vertices in X from G does not disconnect G; i.e., G − X remains
connected. Suppose we are interested in determining if G has some property (e.g., if it is planar). A

3

common technique is to first decompose G into its blocks – which are either edges or 2-connected (or
biconnected) subgraphs of G – and then decompose the blocks into its “triconnected components”[14]
– which are either parallel edges (or bonds), cycles, or 3-connected graphs.1 It is then the triconnected
components which are initially studied; the results are then assembled to infer the properties of the
blocks, which in turn infer the property of G. We shall apply this technique in Section 4 to determine
D(G, k). In particular, we shall make use of a tree, TG, that captures the relationships between the cut
vertices, separating pairs and triconnected components of G to assemble the information for computing
D(G, k).

A block of G is a maximally-connected subgraph of G that does not contain a cut vertex. Thus, a
block of G is either an edge or a maximal biconnected subgraph of G. Furthermore, any two blocks of
G have at most one vertex in common and this vertex is a cut vertex of G. The block-cut vertex graph
of G is a bipartite graph where one partite set consists of b-vertices which correspond to the blocks of
G, and the other partite set consists of c-vertices which correspond to the cut vertices of G. A b-vertex
is adjacent to a c-vertex if and only if the block associated with the b-vertex contains the cut vertex
associated with the c-vertex. It is well known that the the block-cut vertex graph of G is a tree whose
leaves are b-vertices, and so it has a unique center. Moreover, it can be constructed in time linear in the
size of G [1].

Every block of G that is biconnected can similarly be represented by a tree via its triconnected
components and separating pairs. To do so, the definition of 3-connectedness and separating pairs have
to be extended to multigraphs. Our discussion closely follows the paper of Hopcroft and Tarjan [14]. Let
B be a biconnected multigraph, and {x, y} be a pair of vertices in B. The set {x, y} partitions the edge
set of B in the following way: two edges belong to the same class if and only if they lie in a path that
contains neither x nor y except possibly as endpoints. The classes are called the separation classes of B
with respect to {x, y}. If there are at least two separation classes then the pair {x, y} is a separating pair
of B except when (i) there are exactly two separation classes and one class consists of a single edge, or
(ii) there are exactly three classes, each consisting of a single edge. If B is a biconnected multigraph
and has no separating pairs then B is said to be triconnected.

Let {x, y} be a separating pair of B, and let the separation classes of B with respect to {x, y} be
E1, . . . , Em. An immediate consequence of the definition of separating pairs is that the classes can be
divided into two groups E′ = ∪k

i=1Ei and E′′ = ∪m
i=k+1Ei so that both E′ and E′′ have at least two

edges. Let B′ = (V (E′), E′ ∪ {(x, y)}) and B′′ = (V (E′′), E′′ ∪ {(x, y)}). The graphs B′ and B′′

are called split graphs of B with respect to (x, y) and the edges (x, y) added to both graphs are called
virtual edges . To split B is to replace B by two of its split graphs. Hopcroft and Tarjan suggest denoting
the ith splitting operation via the pair {x, y} by s(x, y, i) and labeling the (x, y) edges added to B′ and
B′′ by i to differentiate this split from other splits.

Suppose B is split, its split graphs are split and so on until there are no more splits possible. The
remaining graphs are called the split components of B. Clearly, they all must be triconnected; they
can be grouped together as follows: the triple bonds Bb3, the (simple) triangles Bt, and the rest of the
triconnected (simple) graphs Btg . Since there are many ways of splitting B, the split components of
B are not necessarily unique (e.g., consider a four-cycle). Nonetheless, this lack of uniqueness can
be fixed by an operation called merge which is the reverse of split. Let B1 = (V1, E1) and B2 =
(V2, E2) be two split components of B that contain virtual edge e = (x, y) labeled i. The graph
(V1 ∪ V2, E1 − {e} ∪ E2 − {e}) is called the merge graph of B1 and B2. To merge B1 and B2 is
to create their merge graph. As before, the operation is denoted by m(x, y, i) to differentiate it from
other merge operations. So suppose the split components of B are contained in Bb3 ∪ Bt ∪ Btg. Merge
the triple bonds in Bb3 as much as possible to obtain a set of bondsBb. Merge the triangles in Bt as much
as possible to obtain a set of cycles Bp. The set of graphs in Bb ∪ Bp ∪ Btg are called the triconnected
components of B. For example, a cycle has only one triconnected component – itself – because the
triangles obtained by splitting the cycle can be merged. The following has been proven in [14]:

1Unlike blocks, however, the triconnected components of a graph need not be one of its subgraphs.

4

n m

j

k l

f

g

h

i

f

g

h

i

ab

c d

j

e j

e j

e

ab

c d

k l

mn

e

Figure 2: A graph and its block-cut vertex graph.

Lemma 2.4. Let B be a biconnected multigraph with mB ≥ 3 edges. The total number of edges in the
split components of B is at most 3mB − 6. Additionally, the triconnected components of B are unique
and can be found in time linear in the size of B.

Lemma 2.4 implies that the order in which the split and merge operations are applied to decompose
B to its triconnected components is not important – the same components are obtained.

The biconnected multigraph B can now be represented by its triconnected component-separating
pair graph which is a bipartite graph where one partite set consists of t-vertices that correspond to
the triconnected components of B, and the other partite set consists of s-vertices that correspond to B’s
separating pairs which exist as virtual edges in B’s triconnected components. A t-vertex is adjacent to an
s-vertex if and only if the triconnected component associated with the t-vertex contains the separating
pair associated with the s-vertex. It is easy to verify that this bipartite graph must again be a tree,
all its leaves are t-vertices and consequently has a unique center. Moreover, because the triconnected
components of B can be found in linear time, the tree can also be constructed in linear time.

Building a tree-decomposition of G. Let G be a (simple) connected graph. Let us now build a tree
decomposition of G, TG, that incorporates the triconnected component-separating pair graph of each
block of G into the block-cut vertex graph of G. Initially set TG to be the block-cut vertex graph of
G. Then, for each b-vertex z whose associated block is B, replace z with B’s triconnected component-
separating pair graph TB . Attach TB to each neighbor y of z in the following manner. Let a be the cut
vertex associated with y. Node a is part of one or more triconnected components and separating pairs
of B. It is straightforward to check that the vertices in TB associated with these components and pairs
form a subtree which has a unique center because all the leaves of the subtree are t-vertices. Connect
the center of this subtree in TB to y. For example, in Figure 2, the center of the block-cut vertex graph
is a b-vertex who has two c-vertices as neighbors: one is associated with e, the other with j. When
this b-vertex was replaced with the associated triconnected component-separating pair graph, as shown
in Figure 3, nodes e and j are part of all the separated pairs and triconnected components. Thus, both
c-vertices associated with e and j are connected to the center of the triconnected component-separating
pair graph.

Next, let us assign a root, r(TG), to TG as follows. If the center of the block-cut vertex graph of
G is a c-vertex, this c-vertex is part of TG. Set r(TG) to be this c-vertex. Otherwise, the center of the
block-cut vertex is a b-vertex associated with some block B. Set r(TG) to be the center of TB. The tree
decomposition of the graph in Figure 2 is shown in Figure 3.

5

e j

e jv v v v

r

1 4
2

3

e b j l

b

e db

d

e b

b

d

a

e b

j

kl

j l

j

ln l

n
m

nl

l

n

b

c d

f

g
je e j

h

i

Figure 3: The tree decomposition TG of the graph in Figure 2 where r = r(TG). The virtual edges of the
triconnected components are drawn with dashed lines.

6

Claim 2.5. Every automorphism of G maps the structure associated with r(TG) – which may be a cut
vertex, a separating pair, or a triconnected component of G – to itself.

Proof: Let BCG denote the block-cut vertex graph of G. Recall that BCG has a unique center; denote
it as z∗. Every automorphism of G induces an automorphism on BCG.2 But every automorphism on
BCG fixes z∗; hence, every automorphism of G fixes the structure associated with z∗. If z∗ is a c-vertex,
r(TG) = z∗ and so the claim follows. Otherwise, z∗ is a b-vertex that is associated with some block
B. This means that the action of every automorphism of G on B corresponds to an automorphism of B.
Now, every automorphism of B induces an automorphism on TB. Applying the same argument above
to TB, we have that every automorphism of B fixes the structure associated with center of TB. Since
r(TG) is the center of TB , the claim follows.

From here onwards, we shall treat TG as a rooted tree. For each node v in TG, let Tv denote the
subtree of TG rooted at v. We define G(Tv) recursively as follows: when v is a leaf node of TG and,
hence, a t-vertex, let G(Tv) be the triconnected component of G associated with v. Otherwise, v is a
c-, s-, or a t-vertex and has at least one child. When v is a c-vertex, construct G(Tv) by taking the
union of the graphs in {G(Tw) : w a child of v}. When v is an s-vertex whose associated separating
pair is {x, y}, let wx and wy denote the children of v whose associated cut vertices are x and y re-
spectively. (Note that they may not exist.) Construct G(Tv) by first merging the graphs in {G(Tw) :
w is a child of v and is a t-vertex} via {x, y} and then appending G(Twx) and G(Twy) (if they exist) to
x and y respectively. Finally, when v is a t-vertex whose associated triconnected component is H , con-
struct G(Tv) by first merging the graphs in {G(Tw) : w is a child of v and is an s-vertex} to H and then
taking the union of the resulting graph with the graphs in {G(Tw) : w is a child of v and is a c-vertex}.

We make a few observations about G(Tv). First, if w1 and w2 are children of v in TG, the vertices
and edges that G(Tw1) and G(Tw2) have in common belong to G(Tv). Thus, G(Tv) consists of the
structure associated with v together with connected graphs “hanging” from it; these connected graphs
are exactly from the set {G(Tw) : w is a child of v}. Second, when v = r(TG) then G(Tv) = G.
Finally, some of the G(Tv)’s may not be subgraphs of G since some of them may contain one or more
copies of the edge (x, y) where {x, y} is a separating pair of G but (x, y) is not an edge of G.3

In our later discussions, we will mostly be interested in the automorphisms of G(Tv) that fix a cut
vertex, a separating pair, or a triconnected component, and so we use Aut(G(Tv); ∗) to denote the
set of automorphisms of G(Tv) that fix the structures in ∗. For example, let {x, y} be a separating
pair in G(Tv). The automorphisms of G(Tv) in Aut(G(Tv); x, y) fix the vertices x and y while those in
Aut(G(Tv); xy) fix the edge (x, y). When H is a triconnected component in G(Tv), the automorphisms
of G(Tv) in Aut(G(Tv); H) map H to itself (i.e., the set V (H) to itself) and the automorphisms in
Aut(G(Tv); H, x, y) map H to itself and, additionally, vertices x and y to themselves. From Claim 2.5,
we have the next lemma.

Lemma 2.6. Let G be a connected graph and TG its tree decomposition. Then Aut(G) = Aut(G; A)
where A is the structure associated with r(TG).

From the construction of TG, we also have the next two lemmas.

Lemma 2.7. Let v be a c-vertex in TG and a be its associated cut vertex. Let w be a child of v in TG.
The following are true:
(i) if w is an s-vertex, then it is associated with some separating pair {a, b} and Aut(G(Tw); a) =
Aut(G(Tw); a, b),
(ii) if w is a t-vertex and its associated triconnected component is H , then H contains a and Aut(G(Tw); a) =
Aut(G(Tw); H, a).

2That is, if π ∈ Aut(G), define fπ on the set of vertices of BCG so that fπ mimics the actions of π on G. Thus, for each
vertex z in BCG whose associated structure is A, let fπ(z) be the vertex in BCG associated with the structure π(A). It is easy to
verify that fπ is an automorphism of BCG.

3We note though that in computing for D(G, k), we can ignore the “other” copies of (x, y) as their multiplicity does not affect
any of our computations.

7

Proof: Since v and w are adjacent in TG and v is a c-vertex while w is an s- or a t-vertex, there is a block
B that contains cut vertex a and the structure associated with w. As we noted in the construction of
TB, a must be part of one or more separating pairs and triconnected components in B, and the vertices
associated with these pairs and components form a subtree in TB . Let us call this subtree TB,a. Since w
was chosen so that it is the center of TB,a, the structure associated with w contains a.

By the way the block-cut vertex graph of G is constructed, B must be the only block in G(Tw)
that contains a. Hence, every automorphism of G(Tw) that fixes a must map the separating pairs and
triconnected components of B that contain a to similar separating pairs and triconnected components.
That is, the actions of every automorphism in Aut(G(Tw); a) induces an automorphism on TB,a. But
TB,a has a unique center – w– which means that every automorphism in Aut(G(Tw); a) must map the
structure associated with w to itself. The lemma follows.

Lemma 2.8. Let v be an s-vertex in TG and {x, y} be its associated separating pair. Let w be a child
of v in TG. If w is a t-vertex whose associated triconnected component is H , then Aut(G(Tw); x, y) =
Aut(G(Tw); H, x, y) and Aut(G(Tw); xy) = Aut(G(Tw); H, xy).

Proof: Since v and w are adjacent in TG and v is an s-vertex while w is a t-vertex, there is again
a block B that contains the structures associated with both vertices. By the way the triconnected
component-separating pair graph of B is constructed, it must be the case that H is the only tricon-
nected component in G(Tw) that contains {x, y}. Hence, every automorphism in Aut(G(Tw); x, y)
must map H to itself and so Aut(G(Tw); x, y) = Aut(G(Tw); H, x, y). By the same reasoning,
Aut(G(Tw); xy) = Aut(G(Tw); H, xy).

The following lemmas will also be useful later.

Lemma 2.9. The tree TG can be constructed in O(n2 +nm) time where n is the number of vertices and
m the number of edges in G.

Proof: Constructing G’s block-cut vertex graph and rooting it at its center takes O(n+m) time. Creating
the separating pairs-triconnected components graph TB of block B takes O(nB + mB) time where nB

and mB are the number of nodes and edges in block B. Connecting TB to TG takes O(cB(nB + mB))
where cB is the number of cut vertices in block B. Thus, doing this for all blocks B takes O(n2 + nm)
time since

∑
B nB ≤ n + m and

∑
B mB = m.

Lemma 2.10. Let B be a block of G with nB vertices and mB ≥ 3 edges. Let H be the set that
contains all the triconnected components of B. For each H ∈ H, let SH denote the set containing
the separating pairs of G in H used in the construction of TG. Then,

∑
H∈H |SH | = O(mB) and∑

H∈H |V (H)| = O(mB).

Proof: Suppose the split operation was applied g times to B until no more splits are possible. Let
H′ contain the resulting split components. For each H ′ ∈ H′, define SH′ as in the lemma. We
note that when B is split into two components, the separating pair used to create the split becomes
part of both components. That is, each split operation contributes a value of 2 to

∑
H′∈H′ |SH′ |.

Hence,
∑

H′∈H′ |SH′ | = 2g. Now, according to Lemma 2.4, the total number of edges in the split
components in H′ is at most 3mB − 6. Since a split component in H′ has at least three edges,
g ≤ mB − 2 and so

∑
H′∈H′ |SH′ | = O(mB). Next, notice that |V (H ′)| ≤ |E(H ′)| for each

H ′ ∈ H′ so
∑

H′∈H′ |V (H ′)| ≤ 3mB − 6. Finally, because
∑

H∈H |SH | ≤
∑

H′∈H′ |SH′ | and∑
H∈H |V (H)| ≤∑

H′∈H′ |V (H ′)|, the lemma follows.

Finally, we note that we call TG a tree decomposition of G because it really is a tree decomposition
as defined by Robertson and Seymour (see Chapter 12 in [11] for an introduction). That is, if v is a node
of TG and Vv contains the vertices of the structure in G associated with v, it should be clear from our
construction that the following are true: (i) Vv ⊆ V (G) for each v, (ii) ∪vVv = V (G), (iii) every edge of
G has two of its endpoints in some Vv , and (iv) whenever y and z are neighbors of v then Vy ∩Vz ⊆ Vv .
In our discussion, however, it is important that we keep track of the actual structure associated with v
and not just the vertices in Vv .

8

3 Counting the distinguishing k-labelings of graphs via PIE

Given a graph G and its automorphisms, we begin by applying the principle of inclusion-exclusion (or
PIE) to count its distinguishing k-labelings. Unfortunately, the technique requires the computation of
Ω(2|Aut(G)|) terms and so becomes impractical when G has many automorphisms. We show how the
method can be modified when Aut(G) is isomorphic to certain groups. In particular, we prove that when
G is a triconnected planar graph, L(G, k), D(G, k), and D(G) can be computed in time polynomial in
log k and the size of G.

Suppose Aut(G) = {π0, π1, . . . , πg−1} where π0 is the identity automorphism. Let φ be some
k-labeling of G. We say that an automorphism πi of G preserves φ if φ(v) = φ(πi(v)) for each v of
G. Clearly, π0 preserves φ, and if no other automorphism of G preserves φ then φ is a distinguishing
k-labeling of G. Let P ⊆ Aut(G) and N≥(P) denote the number of k-labelings of G that are preserved
by all the automorphisms in P . Let N=(P) equal the number of k-labelings of G that are preserved by
all the automorphisms in P but no others. Thus, L(G, k) = N=({π0}). According to the PIE,

N=({π0}) =
∑

{π0}⊆P⊆Aut(G)

(−1)|P |−1N≥(P). (1)

Next, we describe a method for computing N≥(P), for each P ⊆ Aut(G). Suppose πi ∈ P . A
k-labeling φ is preserved by πi if and only if φ assigns the same label to v and to πi(v) for each vertex
v in G. In fact, if there is a sequence of vertices v1, v2, . . . , vr such that vj = πi(vj−1) for j = 2, . . . , r
then φ must assign all of these r vertices the same label. By extending this idea further, we arrive at the
following lemma.

Lemma 3.1. Let πi ∈ Aut(G) and φ be a k-labeling of G. Let Gπi be the graph whose node set is
V (G) and whose edge set consists of the pairs (v, πi(v)), v ∈ V (G). The automorphism πi preserves φ
if and only if, for each connected component in Gπi , φ assigns the same label to all the vertices in that
component. Consequently, let P ⊆ Aut(G). The automorphisms in P preserve φ if and only if, for each
connected component in ∪πi∈P Gπi , φ assigns the same label to all the vertices in that component.

An immediate implication of the lemma is if ∪πi∈P Gπi has t connected components and there are
k labels available then N≥(P) = kt. We are now ready to prove the next result.

Theorem 3.2. Let G be a graph on n vertices and k be a positive integer. Suppose all the automorphisms
of G are given. Then L(G, k) can be computed in O(n3 log2 k + 2|Aut(G)|(n × |Aut(G)| + n log k))
time.

Proof: Begin by computing and storing the values k, k2, k3, . . . , kn. Set L(G, k) to 0. For each subset
P such that {π0} ⊆ P ⊆ Aut(G), (i) construct ∪πi∈P Gπi and find the number of its connected
components t using breadth-first-search and (ii) add (−1)|P |−1kt to L(G, k). According to equation
(1), at the end of this algorithm the value of L(G, k) is the number of distinguishing k-labelings of
G. Computing the powers of k can be done in O(n3 log2 k) steps. Each iteration of the for loop
takes at most O(n × |Aut(G)| + n log k) time where the first term in the sum accounts for the time
it takes to construct ∪πi∈P Gπi and find its connected components, and the latter term accounts for
adding kt to L(G, k). Since there are 2|Aut(G)|−1 subsets P to consider, computing L(G, k) takes
O(n3 log2 k + 2|Aut(G)|(n× |Aut(G)|+ n log k)) time.

Corollary 3.3. Let G be a graph with n vertices and k be a positive integer. Suppose all the automor-
phisms of G are given. If |Aut(G)| = O(log n), then L(G, k) can be computed in time polynomial in n
and log k.

The reason why implementing the PIE formula for L(G, k) can take exponential time is because
there are Ω(2|Aut(G)|) N≥(P) terms in the formula. Below we demonstrate that the technique can be

9

modified when Aut(G) is isomorphic to certain groups. We consider the case when Aut(G) ∼= Γ where
(i) Γ = Zt, the cyclic group of order t, (ii) Γ = Dt, the dihedral group of order 2t, and (iii) Γ = Zt×Z2

or Dt × Z2. All will be useful when we discuss triconnected planar graphs in the next subsection. A
key feature of these results is that |Aut(G)| = O(t) and yet the number of N≥(P) terms that must be
computed to derive L(G, k) is polynomial in t, and not exponential in t. Before we proceed, we first
prove the following lemma.

Lemma 3.4. Let P ⊆ Aut(G) and 〈P 〉 be the subgroup generated by P . Every k-labeling of G
preserved by all the automorphisms in P is also preserved by all the automorphisms in 〈P 〉.
Proof: Let φ be a k-labeling of G preserved by all the automorphisms in P . Let π ∈ 〈P 〉. Since Aut(G)
is finite, we can write π as σr ∗ σr−1 ∗ . . . ∗ σ1 where r ∈ Z+ and each σi ∈ P . Since each σi preserves
φ, for each vertex u of G,

φ(u) = φ(σ1(u)) = φ(σ2(σ1(u))) = · · · = φ(σr(· · · (σ2(σ1(u))))).

That is, π = σr ∗ σr−1 ∗ . . . ∗ σ1 preserves φ as well.

In the subsequent discussion, when Aut(G) ∼= Γ, we shall denote the automorphisms of G as πσ

where σ ∈ Γ, and let πσ ∗ πσ′ = πσ∗σ′ .

When Aut(G) ∼= Zt. Let Zt be the cyclic group of order t and ρ be one of its generators. Its elements
are ρ0 (the identity), ρ, ρ2, . . . , ρt−1 where ρi ∗ ρj = ρi+j mod t.

Theorem 3.5. Let Aut(G) ∼= Zt, where the prime factorization of t is
∏s

i=1 pri

i . Suppose a generator
πρ of Aut(G) is given. Let P ∗ = {πρi : i ∈ {t/p1, t/p2, . . . , t/ps}}. Then

L(G, k) =
∑

P⊆P∗
(−1)|P |N≥(P).

Proof: To prove the theorem, we will show that a k-labeling φ of G is distinguishing if and only if
no automorphism in P ∗ preserves φ. One direction is obvious: if φ is distinguishing, all non-trivial
automorphisms of G do not preserve φ. Since P ∗ contains only non-trivial automorphisms of G, the
result follows. So suppose φ is not distinguishing. It must be preserved by some πρj , j �= 0. Let g =
gcd(t, j) =

∏s
i=1 pti

i , where 0 ≤ ti ≤ ri. We know that ρg ∈ 〈ρj〉. Since j < t, we also know that g
must divide one of the numbers in {t/p1, t/p2, . . . , t/ps}, say t/p1; i.e., ρt/p1 ∈ 〈ρg〉. By Lemma 3.4, it
follows that if πρj preserves φ then πρg also preserves φ, which implies that πρt/p1 does so as well. That
is, some automorphism in P ∗ preserves φ. Applying the PIE, L(G, k) =

∑
P⊆P∗(−1)|P |N≥(P).

When Aut(G) ∼= Dt. Let Dt be the dihedral group of order 2t. If we let the generators of Dt be the rota-
tion ρ and reflection τ , then the elements of Dt are ρ0 (the identity), ρ1, . . . , ρt−1, τρ0, τρ1, . . . , τρt−1,
where τ2 = ρ0, τρi = ρ−iτ and ρi ∗ ρj = ρi+j mod t.

Theorem 3.6. Let Aut(G) ∼= Dt, where the prime factorization of t is
∏s

i=1 pri

i . Suppose generators
πρ and πτ of Aut(G) are given. Let P ∗ = {πρi : i ∈ {t/p1, t/p2, . . . , t/ps}}. Then

N=({πρ0 , πτρi}) =
∑

{πτρi}⊆P⊆{πτρi}∪P∗
(−1)|P |−1N≥(P),

and

L(G, k) =
∑

P⊆P∗
(−1)|P |N≥(P)−

t−1∑
i=0

N=({πρ0 , πτρi}). (2)

10

Proof: We shall first prove that a k-labeling φ of G that is preserved by at least two non-trivial automor-
phisms of G is also preserved by some automorphism in the set P ∗ = {πρi : i ∈ {t/p1, t/p2, . . . , t/ps}}.
If one of the automorphisms that preserves φ is preserved by πρj , j �= 0, then by the proof of Theo-
rem 3.5 it must also be preserved by some automorphism in P ∗. If the two automorphisms that preserve
φ are πτρi and πτρj , where i < j, then πτρi ∗ πτρj = πρj−i also preserves φ. Once again, some
automorphism in P ∗ must preserve φ.

To prove equation (2), we now consider the set of all k-labelings of G. Let sets A, B, and C consist
of all k-labelings of G preserved by πρ0 only, by πρ0 and πτρi for some i ∈ {0, 1, . . . , t− 1} only, and
by some automorphism in P ∗ respectively. Any k-labeling of G must belong to exactly one of the three
sets because: (i) if it is distinguishing, it belongs to set A and if not to B ∪ C; (ii) if it is preserved by
exactly one non-trivial automorphism of G, and it is of the form πτρi , it belongs to set B; otherwise,
it belongs to set C; (iii) finally, if it is preserved by at least two non-trivial automorphisms of G, then
it belongs to set C. That is, A ∪ B ∪ C contains all the k-labelings of G and no two of them have a
k-labeling of G in common. Thus, L(G, k) = |A| = kn − |B| − |C|.

By the way we defined set B, |B| =
∑t−1

i=0 N=({πρ0 , πτρi}). Consider a k-labeling of G that
is preserved by πτρi . From our earlier argument, we can assume that such a k-labeling is preserved
by πτρi only or by πτρi and some other automorphism in P ∗, in addition to being preserved by πρ0 .
According to the PIE, this means that N=({πρ0 , πτρi}) =

∑
{πτρi}⊆P⊆{πτρi}∪P∗(−1)|P |−1N≥(P).

Finally, C consists of all the k-labelings of G preserved by at least one of the automorphisms in P ∗. So,
according to the PIE, kn−|C| = ∑

P⊆P∗(−1)|P |N≥(P). Hence, L(G, k) =
∑

P⊆P∗(−1)|P |N≥(P)−∑t−1
i=0 N=({πρ0 , πτρi}), which proves equation (2).

Example. Consider the cycle on n vertices Cn, where n is a prime number. Then Aut(Cn) = Dn and
P ∗ = {πρ}. To solve for L(Cn, k), we need the following values: N≥(∅), N≥(πρ), N≥({πτρi , πρ})
and N≥({πτρi}). Every k-labeling of Cn should be counted in N≥(∅) so N≥(∅) = kn. To solve
for N≥(πρ), recall that we considered Gπρ which is a graph that has only one component. Hence,
N≥(πρ) = k. Similarly, N≥({πτρi , πρ}) = k. Finally, Gπτρi consists of (n + 1)/2 components since
any reflection of Cn fixes one vertex v and maps the equidistant vertices from v to each other. Thus,
N≥({πτρi}) = k(n+1)/2. From equation (2),

L(Cn, k) = N≥(∅)−N≥({πρ})−
n−1∑
i=0

(
N≥({πτρi})−N≥({πτρi , πρ})

)
= kn − k − nk(n+1)/2 + nk

= kn − nk(n+1)/2 + (n− 1)k
= k(k(n−1)/2 − 1)(k(n−1)/2 − (n− 1)).

Consequently, D(Cn, k) = k(k(n−1)/2 − 1)(k(n−1)/2 − (n − 1))/2n. When n = 5, for example,
D(C5, 1) = D(C5, 2) = 0 but D(C5, 3) = 12 so D(C5) = 3.

When Aut(G) ∼= Zt × Z2 or Dt × Z2. We state the following theorem without proof because the
arguments are just extensions of those in Theorems 3.5 and 3.6.

Theorem 3.7. Suppose the prime factorization of t is
∏s

i=1 pri

i , the group Zt × Z2 = {(ρi, σj), i ∈
{0, 1, . . . , t− 1}, j ∈ {0, 1}} and the group Dt ×Z2 = {(ρi, σj), (τρi, σj), i ∈ {0, 1, . . . , m− 1}, j ∈
{0, 1}}. When t is odd, set P ∗

0 = {π(ρ0,σ)}; otherwise, set P ∗
0 = {π(ρ0,σ), π(ρt/2,σ)}. Let P ∗ =

P ∗
0 ∪ {π(ρi,σ0) : i ∈ {t/p1, t/p2, . . . , t/ps}}.

(i) When Aut(G) ∼= Zt × Z2,

L(G, k) =
∑

P⊆P∗
(−1)|P |N≥(P).

11

(ii) When Aut(G) ∼= Dt × Z2, and for b = 0 or 1,

N=({π(ρ0,σ0), π(τρi,σb)}) =
∑

{π(τρi,σb)}⊆P⊆{π(τρi,σb)}∪P∗
(−1)|P |−1N≥(P)

and

L(G, k) =
∑

P⊆P∗
(−1)|P |N≥(P)−

1∑
b=0

t−1∑
i=0

N=({π(ρ0,σ0), π(τρi,σb)}).

Remark: Since the number of prime factors of t is O(log t), the number of N≥(P) terms in the formula
for computing L(G, k) is O(t) when Aut(G) ∼= Zt or Zt × Z2, and O(t2) when Aut(G) ∼= Dt or
Dt × Z2.

3.1 When G is a triconnected planar graph

What is interesting about the family of triconnected planar graphs is that the automorphism groups of
the graphs are only of limited kinds.

Fact 3.8. [18] Let G be a triconnected planar graph. The automorphism group of G is isomorphic to a
subgroup of one of the following groups: A4, A5, S4, A4 × Z2, A5 × Z2, S4 × Z2, Zt, Dt, Zt × Z2,
Dt × Z2, for some integer t.

Since a subgroup of a dihedral group is a cyclic group or a dihedral group, clearly the subgroups of
Dt × Z2 are cylic, dihedral or isomorphic to Zt′ × Z2 or Dt′ × Z2 where t′ ≤ t. In other words, the
automorphism group of a triconnected planar graph is either bounded by a constant or it is isomorphic
to one of four groups only.

Additionally, because triconnected planar graphs have only unique embeddings on the plane up to
equivalence 4, finding all their automorphisms can also be done efficiently. We sketch one such method
next. Let G be a triconnected planar graph with n vertices and m edges. Let e = (u, v) be an edge of
G. Let us designate its direction as being from u to v and one of the faces F that it borders as its right
face. Create a copy of G, Ge,F , which specially marks e and its direction, and face F . For any edge
e′ = (u′, v′) whose direction and right face F ′ is fixed, create an analogous graph Ge′,F ′ , and using
a planar graph isomorphism testing algorithm determine if Ge,F and Ge′,F ′ are isomorphic (where the
marked edge and face of Ge,F are mapped to the marked edge and face of Ge′,F ′). If so, then there
is an automorphism of G that maps e to e′ and F to F ′; moreover, by visiting the faces of Ge,F and
Ge′,F ′ in the same order, the rest of π can be determined in time linear in the size of G. Since there is
a linear time isomorphism testing algorithm for planar graphs [15], each iteration of the for loop takes
O(n) time. And since there are O(m) iterations then in O(nm) = O(n2) time all the automorphisms
of G can be determined. Furthermore, because each edge has two directions and two faces bordering it,
the algorithm above also shows that |Aut(G)| ≤ 4m = O(n) when G is a triconnected planar graph.

To solve for L(G, k) for triconnected planar graphs, we do the following: if |Aut(G)| ≤ 5!, use
Theorem 3.2. Otherwise, determine if Aut(G) is cyclic, dihedral, isomorphic to a direct product of a
cyclic group and Z2, or to a direct product of a dihedral group and Z2. If Aut(G) is cyclic or dihedral,
apply Theorems 3.5 or 3.6 respectively; otherwise, apply Theorem 3.7.

Theorem 3.9. Let G be an n-vertex triconnected planar graph. Computing L(G, k) and D(G, k) can
be done in O(n3 log2 k +n3 log n+n3 log k) time. Consequently, computing D(G) takes O(n3 log3 n)
time.

4A triconnected planar graph can have two planar embeddings one of which is a mirror image of the other.

12

Proof: As we stated earlier, if G has at most 5! automorphisms, we use Theorem 3.2 to solve for L(G, k)
and D(G, k). Otherwise, we need to determine which of the four groups Aut(G) is isomorphic to. In
particular, Aut(G) falls into CASE i where i = 1 if the group is cyclic, i = 2 if the group is isomorphic
to Zt × Z2 for some t, i = 3 if the group is dihedral, and i = 4 if the group is isomorphic to Dt × Z2

for some t. We note that there is some overlap in the four cases because if t is odd, Zt × Z2
∼= Z2t and

D2t × Z2
∼= D4t. Thus, when we say that Aut(G) belongs to CASE 2 or 4, we shall assume that t is

even. We describe our algorithm TriconnectCount(G, k) in Figure 3.1.
In the first part of our algorithm, we determine the case which Aut(G) belongs to by considering

the order of each element in Aut(G). It is easy to verify the following facts: (i) if Aut(G) has an
element with order |Aut(G)| it must be cyclic, (ii) if Aut(G) has only three elements with order 2 (and
3 < |Aut(G)|/2) then it belongs to case 2, (iii) if Aut(G) has between |Aut(G)|/2 and |Aut(G)|/2+1
of its elements with order 2, it belongs to case 3. Once the appropriate case for Aut(G) is determined,
we set the value of t.

The second part of the algorithm begins by computing the prime factors of t, finding an element
π ∈ Aut(G) such that the order of π is t, and then computing P ∗ = {πi : i ∈ {t/p1, t/p2, . . . , t/ps}}.
If Aut(G) is cyclic or dihedral, P ∗ is indeed the one needed in Theorems 3.5 and 3.6 respectively to
compute L(G, k). In cases 2 and 4, two more elements are missing in P ∗. To understand what they
are, we note that since t is even π would be of the form π(ρ,σb) where b = 0 or 1, and ρ and σ are
generators of Zt and Z2 respectively. If we set p1 = 2, then (π(ρ,σb))t/2 = π(ρt/2,σ0) or π(ρt/2,σ1), and

(π(ρ,σb))t/pi = π(ρt/pi ,σ0) for i = 2, . . . , s. At this point, the two missing elements in P ∗ have order 2;
they can be distinguished from the other elements of Aut(G) with order 2 because they commute with
every other element of Aut(G) (i.e., they belong to the center of Aut(G)), whereas the others do not.
By updating P ∗, we now obtain the appropriate P ∗ in Theorem 3.7. Finally, for cases 3 and 4, we place
all elements of Aut(G) with order 2 not in P ∗ into set T . It is easy to check that the rest of the algorithm
computes L(G, k) correctly since they follow directly from the theorems we have established.

Computing and storing the powers of k takes O(n3 log2 k) time. Finding all the automorphisms of
G take O(n2) time. It is easy to verify that in the rest of the algorithm, the bottleneck is in computing
the value of L(G, k) when |Aut(G)| > 5!. Applying the same analysis we used in Theorem 3.2, and
noting that |P ∗| = O(log t) and |T | = O(t), computing L(G, k) takes O(t2(n log t + n log k)) time.
Finally, because G is a triconnected graph |Aut(G)| = O(n) so t = O(n). Hence, the total runtime of
TriconnectCount(G, k) is O(n3 log2 k + n3 log n + n3 log k). Once we have the value for L(G, k),
we simply divide it by |Aut(G)| to determine D(G, k). To find D(G), do a binary search over the range
[1, n] to determine the smallest k for which D(G, k) > 0 to find D(G). This adds an extra log n factor
to the runtime of TriconnectCount(G, k).

4 Computing D(G, k) via recursion

In this section, we shall generalize the recursive technique (discovered independently by Arvind and
Devanur[4] and by Cheng[9]) that was used to compute the distinguishing numbers of trees. The main
idea behind the technique is quite simple. Let T be a tree rooted at r. Let Tv denote the subtree of T
rooted at vertex v. Start by setting D(Tv, k) = k for each leaf v since a single node has k distinguishing
k-labelings. Then, for i = height(T)− 1 to 0, do the following: for all nodes v at depth i, compute
D(Tv, k) based on the values computed for D(Tw, k), w a child of v in T . Thus, at the end of the
algorithm D(Tr, k), which equals D(T, k), is determined. To apply the above technique to a connected
graph G, we will view G as a rooted tree using the tree decomposition TG described in Section 2.1.
Additionally, we will also consider a generalized version of the distinguishing k-labelings of a graph
which we shall define shortly. Finally, we will develop recursive formulas that relate the number of
(generalized) inequivalent distinguishing k-labelings of G(Tv) with those of G(Tw), w a child of v in
TG.

Let Γ be a subgroup of Aut(G). We say that a labeling φ of G is Γ-distinguishing if no non-trivial

13

TriconnectCount(G, k)
Input: A triconnected planar graph G with n vertices, a positive integer k.
Output: The value of L(G, k).

Compute and store the values k, k2, k3, . . . , kn.
Find all the automorphisms of G.
If |Aut(G)| ≤ 5!

L(G, k)←∑
{π0}⊆P⊆Aut(G)(−1)|P |−1N≥(P)

return(L(G, k))
else

compute the order of each automorphism π ∈ Aut(G)
if there is an automorphism whose order is |Aut(G)|

CASE← 1, t← |Aut(G)|,
else

if there are only 3 automorphisms with order 2
CASE← 2, t← |Aut(G)|/2,

else
if there are between |Aut(G)|/2 and |Aut(G)|/2 + 1 elements with order 2

CASE← 3, t← |Aut(G)|/2,
else

CASE← 4, t← |Aut(G)|/4.
Compute the prime factors of t: p1, p2, . . . , ps.
Find an automorphism π ∈ Aut(G) whose order is t.
Compute P ∗ = {πi : i ∈ {t/p1, t/p2, . . . , t/ps}}.
If CASE = 2 or 4

add to P ∗ the two automorphisms of G which belong to the center of Aut(G) not yet in P ∗.
If CASE = 3 or 4

let T consist of all automorphisms in Aut(G) that is not in P ∗ whose order is 2.
L(G, k)←∑

P⊆P ∗(−1)|P |N≥(P).
If CASE = 1 or 2

return(L(G, k))
else

while T �= ∅
pick π′ ∈ T and delete π′ from T
L(G, k)← L(G, k) −∑

{π′}⊆P⊆{π′}∪P ∗(−1)|P |−1N≥(P)
return (L(G, k)).

Figure 4: The algorithm for computing the number of distinguishing k-labelings of a triconnected planar
graph.

14

automorphism in Γ preserves φ, and that two labelings φ and φ′ of G are equivalent with respect to
Γ if some automorphism in Γ maps (G, φ) to (G, φ′). Let L(G, k; Γ) be the set consisting of the Γ-
distinguishing k-labelings of G, L(G, k; Γ) be the size of L(G, k; Γ), and D(G, k; Γ) be the number of
equivalence classes of L(G, k; Γ) with respect to Γ. When Γ = Aut(G; ∗) as defined in Section 2.1,
we shall refer to L(G, k; Γ), L(G, k; Γ) and D(G, k; Γ) as L(G, k; ∗), L(G, k; ∗), and D(G, k; ∗) re-
spectively. Finally, when (x, y) is an edge of G, we will at times differentiate between the case when a
k-labeling of G assigns x and y the same or different colors. When we do so, we will place a subscript
next to L, L, and D; the subscript is 1 if x and y are assigned the same color and is 2 otherwise. Thus,
L1(G, k; xy) consists of all k-labelings of G in L(G, k; xy) that assigned x and y the same color, etc. It
is easy to verify that the following version of Lemma 2.1 remains true:

Lemma 4.1. Let G be a graph and Γ be a subgroup of Aut(G). Then D(G, k; Γ) = L(G, k; Γ)/|Γ|.
Given a connected graph G, we showed in Section 2.1 how to construct a tree decomposition of G,

TG. The construction started with G’s block-cut vertex graph. Each b-vertex whose associated block
is B is then replaced with B’s triconnected component-separating pair graph TB and then connected to
the rest of block-cut vertex graph. Thus, TG is made up of c-, s-, and t-vertices which represent the cut
vertices, separating pairs and triconnected components of G. We shall now describe recursive formulas
for D(G(Tv), k; ∗) based on the type of vertex v is in TG.

Theorem 4.2. Let v be a c-vertex in TG and a be the cut vertex in G associated with v. Suppose when
all the graphs in G = {G(Tw) : w is a child of v in TG} are fixed at a, there are g isomorphic classes
and the ith isomorphic class contains mi copies of the connected graph Gi; i.e., G = m1G1 ∪m2G2 ∪
. . . ∪mgGg . Then

D(G(Tv), k; a) = k

g∏
i=1

(
D(Gi, k; a)/k

mi

)
.

Proof: By the way TG was constructed, if G = m1G1 ∪m2G2 ∪ . . . ∪mgGg then G(Tv) is made up
of

∑g
i=1 mi connected components all hanging from vertex a. It is easy to verify that φ is a labeling

in L(G(Tv), k; a) if and only if φ assigns inequivalent labelings from L(Gi, k; a) to the mi copies of
Gi, i = 1, . . . , g and the labels assigned to vertex a by all the labelings are the same. This means that
an equivalence class of L(G(Tv), k; a) is defined by (i) the label assigned to a and (ii) the set of mi

equivalence classes from L(Gi, k; a) that contain the labelings of the mi copies of Gi, i = 1, . . . , g.
There are k possible labels for a. Once the label for a is chosen say l, there are D(Gi, k; a)/k different
equivalence classes of L(Gi, k; a) which assign vertex a the same label. This is so because the number
of equivalence classes of L(Gi, k; a) where a is assigned the label l must be the same for every possible
value of l. It follows that there are

(
D(Gi,k;a)/k

mi

)
different sets of mi equivalence classes that can contain

the labelings assigned to the mi copies of Gi for i = 1, . . . , g. By the product rule of counting, the
theorem is established.

The next two theorems deal with the case when v is an s-vertex.

Theorem 4.3. Let v be an s-vertex in TG and {x, y} be the separating pair associated with v. If it
exists, let wx denote the child of v that is a c-vertex associated with x. Similarly, if it exists, let wy

denote the child of v that is a c-vertex associated with y. Suppose when all the graphs in G = {G(Tw) :
w is a t-vertex and a child of v in TG} are fixed at x and y, there are g isomorphic classes and the ith
isomorphic class has mi copies of the connected graph Gi; i.e. G = m1G1 ∪m2G2 ∪ . . . ∪ mgGg .
Then D(G(Tv), k; x, y) equals

k2 max{D(G(Twx), k; x)/k, 1}max{D(G(Twy), k; y)/k, 1}
g∏

i=1

(
D(Gi, k; x, y)/k2

mi

)
.

Proof: Once again, it is easy to verify that φ ∈ L(G(Tv), k; x, y) if and only if φ assigns inequivalent
labelings from L(Gi, k; x, y) to the mi copies of Gi, i = 1, . . . , g and the labels assigned to x and to

15

x

2

1

1

1

2

1

1

1

y

Figure 5: In this graph, (x, y) is a separating pair. Notice that the labeling of the 5-cycle on the left does not
destroy the automorphism of the 5-cycle that flips the graph along the edge (x, y) but the labeling for the
entire graph is distinguishing.

y by all the labelings are the same. Thus, an equivalence class of L(G(Tv), k; x, y) is defined by (i)
the labels assigned to x and y, (ii) the equivalence classes of L(G(Twx), k; x) and L(G(Twy), k; y) that
contain the labelings of G(Twx) and G(Twy) respectively, and (iii) the set of mi equivalence classes
of L(Gi, k; x, y) that contain the labelings of the mi copies of Gi, i = 1, . . . , g. There are k2 labels
available for x and y. Once the labels are chosen say lx and ly , the number of equivalence classes
of L(Gi, k; x, y) where x and y are assigned the said labels is D(Gi, k; x, y)/k2. This is so because
in any labeling in L(Gi, k; x, y), the labels of the vertices in Gi other than x and y are the ones that
actually destroy the non-trivial automorphisms of Aut(Gi; x, y). Consequently, the number of labelings
and the number of equivalence classes of L(Gi, k; x, y) with x and y assigned lx and ly must be the
same regardless of the pair (lx, ly). Of the D(Gi, k; x, y)/k2 equivalence classes of L(Gi, k; x, y) that
are being considered, mi must be chosen to contain the labelings of the mi copies of Gi. Similarly,
the number of equivalence classes of L(G(Twx), k; x) where x is assigned the label lx and the number
of equivalence classes of L(G(Twy), k; y) where y is assigned the label ly are D(G(Twx), k; x)/k and
D(G(Twy), k; y)/k respectively. By the product rule of counting, the theorem is established.

We will also need to compute D(G(Tv), k; xy). Unlike our previous characterizations, however, it
is not necessarily the case that when φ ∈ L(G(Tv), k; xy) then φ assigned inequivalent labelings from
L(Gi, k; xy) to each copy of Gi. Figure 4 shows one such exception. Our approach this time is to con-
sider the equivalence classes ofL(G(Tv), k; x, y) and count those that do not belong to L(G(Tv), k; xy).

Consider an arbitrary graph H with an edge (x, y) and suppose Aut(H ; xy) �= Aut(H ; x, y). Let
Aut(H ; x → y, y → x) denote the set of automorphisms of H that map x to y and y to x. Notice that
Aut(H ; xy) is the disjoint union of Aut(H ; x, y) and Aut(H ; x→ y, y → x). Moreover, Aut(H ; x, y)
is a subgroup of Aut(H ; xy) and Aut(H ; x→ y, y → x) is a coset of Aut(H ; x, y).

Suppose φ1 and φ2 belong to the same equivalence class in L(H, k; x, y). If some automorphism in
Aut(H ; x→ y, y → x) preserves φ1, then it is easy to verify that another automorphism in Aut(H ; x→
y, y → x) also preserves φ2. That is, for each equivalence class in L(H, k; x, y), either all the labelings
do not destroy some automorphism of Aut(H ; x→ y, y → x) (and so do not belong to L(H, k; xy)), or
all do (and so belong to L(H, k; xy)). Let B(H, k; x, y) be the set that contains all equivalence classes
of L(H, k; x, y) whose labelings do not belong to L(H, k; xy), and denote its size as B(H, k; x, y).
Our discussion will focus on computing B(H, k; x, y) because this is the number of “bad” equivalence
classes of L(H, k; x, y) in that they do not carry over as equivalence classes of L(H, k; xy).

Suppose π ∈ Aut(H ; x → y, y → x). It is easy to verify that (i) when all the labelings in an
equivalence class of L(H, k; x, y) destroy all the automorphisms in Aut(H ; xy) then π maps these la-
belings to the labelings of another equivalence class of L(H, k; x, y); (ii) on the other hand, when all the
labelings in an equivalence class of L(H, k; x, y) do not destroy the automorphisms in Aut(H ; xy) then
π maps these labelings to themselves. In other words, under the action of Aut(H ; xy) the equivalence
classes of L(H, k; x, y) either get paired up or stay singleton. The ones that get paired up are precisely
the equivalence classes of L(H, k; xy); i.e., each equivalence class of L(H, k; xy) is made up of two

16

equivalence classes of L(H, k; x, y). We shall say that such a pair of equivalence classes are partners in
L(H, k; x, y). The ones the stay single are the equivalence classes in B(H, k; x, y). We have proved the
following lemma.

Lemma 4.4. Let H be a graph with edge (x, y) and Aut(H ; xy) �= Aut(H ; x, y). Then D(H, k; x, y) =
2D(H, k; xy) + B(H, k; x, y).

We also need the following lemma.

Lemma 4.5. Let H be a graph with edge (x, y) and Aut(H ; xy) �= Aut(H ; x, y). Then D2(H, k; xy) =(
k
2

)
D(H, k; x, y)/k2 so D1(H, k; xy) = D(H, k; xy)− (

k
2

)
D(H, k; x, y)/k2.

Proof: Consider the labelings in L2(H, k; xy). Since x and y are assigned different labels, they imme-
diately destroy all the automorphisms in Aut(H ; x → y, y → x). Thus, we can construct a labeling
in L2(H, k; xy) by first choosing distinct labels for x and y, then choosing the equivalence classes of
L(H, k; x, y) that will contain the labeling of H , and finally picking the labeling of H from the equiva-
lence class. Hence, L2(H, k; xy) = k(k − 1)×D(H, k; x, y)/k2 × |Aut(H, k; x, y)| so

D2(H, k; xy) = L2(H, k; xy)/|Aut(H, k; xy)|
= k(k − 1)D(H, k; x, y)/k2 |Aut(H, k; x, y)|

|Aut(H, k; xy)|
= k(k − 1)D(H, k; x, y)/2k2

where the last equation follows from the fact that |Aut(H ; x, y)| = |Aut(H ; x → y, y → x)| because
Aut(H ; x → y, y → x) is a coset of Aut(H ; x, y) and so |Aut(H ; xy)| = 2|Aut(H ; x, y)|. Finally,
since D(H, k; xy) = D1(H, k; xy)+D2(H, k; xy) the formula for D1(H, k; xy) in the lemma follows.

Theorem 4.6. Let v be an s-vertex in TG and {x, y} be the separating pair associated with v. If
it exists, let wx denote the child of v that is a c-vertex associated with x. Similarly, if it exists, let
wy denote the child of v that is a c-vertex associated with y. Suppose when all the graphs in G =
{G(Tw) : w is a t-vertex and a child of v in TG} are fixed at x and y, there are g isomorphic classes
and the ith isomorphic class has mi copies of the connected graph Gi; i.e. G = m1G1 ∪m2G2 ∪ . . .∪
mgGg . If Aut(G(Tv); xy) = Aut(G(Tv); x, y) then D(G(Tv), k; xy) = D(G(Tv), k; x, y). Otherwise,
Aut(G(Tv); x→ y, y → x) �= ∅ so G(Twx) ∼= G(Twy), and

D(G(Tv), k; xy) = [D(G(Tv), k; x, y)−B(G(Tv), k; x, y)]/2

where B(G(Tv), k; x, y) equals

k max{D(G(Twx), k; x)/k, 1}
g∏

i=1

�mi/2	∑
l=0

(
D1(Gi, k; xy)/k

l

)(
[D(Gi, k; x, y)− 2D(Gi, k; xy)]/k

mi − 2l

)
.

Proof: When Aut(G(Tv); xy) = Aut(G(Tv); x, y), L(G(Tv), k; xy) = L(G(Tv), k; x, y) and so it
follows that D(G(Tv), k; xy) = D(G(Tv), k; x, y). Otherwise, Aut(G(Tv); x → y, y → x) �= ∅.
Hence, if they exist, G(Twx) ∼= G(Twy) and Aut(Gi; xy) �= Aut(Gi; x, y) for i = 1, . . . , g. In
computing D(G(Tv), k; x, y), we noted that there are three sets of parameters that describe the equiv-
alence classes of L(G(Tv), k; x, y): (i) the labels assigned to x and y, (ii) the equivalence classes of
L(G(Twx), k; x) that contain the labelings of G(Twx) and G(Twy), and (iii) the set of mi equivalence
classes of L(Gi, k; x, y) that contain the labelings of the mi copies of Gi for i = 1, . . . , g. We shall ex-
tend them to characterize the equivalence classes in B(G(Tv), k; x, y) – i.e., the equivalences classes of
L(G(Tv), k; x, y) whose labelings are preserved by some automorphism in Aut(G(Tv); x→ y, y → x).

17

Claim 4.7. An equivalence class of L(G(Tv), k; x, y) belongs to B(G(Tv), k; x, y) if and only if
(i) the labels assigned to x and y are the same for every labeling in the class,
(ii) the equivalence classes that contain the labelings of G(Twx) and G(Twy) are the same, and
(iii) for i = 1, . . . , g, the set of mi equivalence classes of L(Gi, k; x, y) that contain the labelings of
the mi copies of Gi can be partitioned into li groups of size 2 and mi − 2li groups of size 1 for some
0 ≤ li ≤ �mi/2� so that the pairs of equivalence classes that belong to a group of size 2 are partners in
L(Gi, k; x, y) and the equivalence classes that belong to a group of size 1 are in B(Gi, k; x, y).

Proof of claim: Let φ ∈ L(G(Tv), k; x, y) belong to an equivalence class that satisfies conditions (i),
(ii) and (iii) above. For i = 1, . . . , g, denote the mi copies of Gi as Gi,1, . . . , Gi,mi . Without loss
of generality, assume that the equivalence classes that contain the labelings of Gi,2j−1 and Gi,2j are
partners in L(Gi, k; x, y) for j = 1, . . . , li and the equivalence classes that contain the labelings of
each of the remaining copies of Gi belong to B(Gi, k; x, y). Thus, condition (iii) implies that there
are automorphisms5 in Aut(Gi; x → y, y → x) that map (Gi,2j−1, φ) to (Gi,2j , φ) and vice versa for
j = 1, . . . , li; similarly, there is also some automorphism in Aut(Gi; x → y, y → x) that preserves
(Gi,j , φ) for j = 2li + 1, . . . , mi. Furthermore, condition (ii) implies that there are some automor-
phisms in Aut(G(Twx); x) that map (G(Twx), φ) to (G(Twy), φ) and vice versa. Combining these
automorphisms, we conclude that some automorphism in Aut(G(Tv); x→ y, y → x) preserves φ; that
is, the equivalence class that contains φ belongs to B(G(Tv), k; x, y).

On the other hand, suppose φ ∈ L(G(Tv), k; x, y) and some automorphism π ∈ Aut(G(Tv); x →
y, y → x) preserves φ. Clearly, π maps x to y and vice versa, and so condition (i) is true. It also
maps G(Twx) to G(Twy) and vice versa, and so condition (ii) is true. For i = 1, . . . , g, if π maps Gi,j

to itself then φ must have assigned Gi,j a labeling that destroys all automorphisms in Aut(Gi; x, y)
since φ ∈ L(G(Tv), k; x, y) but is still preserved by some automorphism in Aut(Gi; x → y, y → x)
since π ∈ Aut(G(Tv); x → y, y → x). That is, the equivalence class that contains the labeling of
Gi,j belongs to B(Gi, k; x, y). If π maps Gi,j to Gi,j′ , j �= j′ then there is some automorphism in
Aut(Gi; x→ y, y → x) that maps (Gi,j , φ) to (Gi,j′ , φ) so that the equivalence classes that contain the
labelings assigned by φ to Gi,j and Gi,j′ are partners in L(Gi, k; x, y). Finally, if π maps Gi,j to Gi,j′

and Gi,j′ to Gi,j′′ where j, j′ and j′′ are distinct, then the equivalence classes that contain the labelings
assigned by φ to Gi,j and Gi,j′ are partners and those of Gi,j′ and Gi,j′′ are partners as well. But
this implies that the equivalence classes that contain the labelings assigned by φ to Gi,j and Gi,j′′ are
exactly the same, contradicting the assumption that φ assigned inequivalent labelings to the mi copies
of Gi since φ ∈ L(G(Tv), k; x, y). Thus, condition (iii) must be true.

Combining conditions (i) and (iii), we note that each group of size 2 in condition (iii) corresponds
to an equivalence class of L1(Gi, k; xy). Moreover, because no two of the equivalence classes that
contain the labelings of the mi copies of Gi are identical, distinct groups of size 2 correspond to distinct
equivalence classes of L1(Gi, k; xy). Using the claim, we can now compute B(G(Tv), k; x, y). An
equivalence class in B(G(Tv), k; x, y) is defined by (i) the label assigned to x and y, (ii) the equivalence
class of L(G(Twx), k; x) that contain the labelings of G(Twx) and G(Twy), (iii) the set of li equivalence
classes of L1(Gi, k; xy) and the set of mi − 2li equivalence classes in B(Gi, k; x, y) which together
contain the labelings of the mi copies of Gi for i = 1, . . . , g. There are k ways of assigning the same
labels to x and y, say l. Once l is fixed, there are D(G(Twx), k; x)/k choices for the equivalence class
of (ii),

(
D1(Gi,k;xy)/k

li

)
choices for the set of li equivalence classes and

(
B(Gi,k;x,y)/k

mi−2li

)
choices for the

set of mi − 2li equivalence classes of (iii). Thus, B(G(Tv), k; x, y) equals

k

(
D(G(Twx), k; x)/k

1

) g∏
i=1

�mi/2	∑
l=0

(
D1(Gi, k; xy)/k

l

)(
[D(Gi, k; x, y)− 2D(Gi, k; xy)]/k

mi − 2l

)
.

5Technically, we are referring to the automorphisms implicitly defined by the isomorphisms that maps (Gi,2j−1, φ) to (Gi,2j , φ)
and vice versa since Gi,2j−1 and Gi,2j are copies of Gi. We shall keep this usage throughout the proof for ease of discussion.

18

a

a

5

1

a

a

4

5

a
a

aa

a
1

2

34

5

a

a

a

a

a

a

1

2

2

3

3

4

r

v v v v v1 2 3 4 5

H

a2 a3 3 4 4 5 5 1a a a aa aa a1 2

a a1 2 a a2 3 a a3 4 a a4 5 a a5 1

a
a

aa

a
1

2

34

5

Figure 6: Graph G and its tree decomposition. Again, r = r(TG). Note that D(G(Tr), k;H) = D(G, k).

Once B(G(Tv), k; x, y) has been computed, we can determine D(G(Tv), k; xy) using Lemma 4.4.

An important implication of Theorems 4.3 and 4.6 and Lemma 4.5 is that both D(G(Tv), k; x, y) and
D(G(Tv), k; xy) can be computed once the values of D(G(Twx), k; x), D(G(Twy), k; y), D(Gi, k; x, y),
and D(Gi, k; xy) for i = 1, . . . , g are known.

Let us now consider the case when v is a t-vertex. Let H be the triconnected component associated
with v. We need to solve for D(G(Tv), k; H, A) where A is the structure associated with the parent of v
in TG (if the parent exists). Our goal is to create a formula for D(G(Tv), k; H, A) that is dependent on
H and the values of D(G(Tw), k; ∗) only, where w is a child of v in TG and ∗ is the structure associated
with w, so that the formula can be computed efficiently. Our approach follows Section 3 closely; the
difference is that in our current setting G(Tv) is made up of H together with components hanging off
of the cut vertices and separating pairs of G in H whereas in Section 3 we only dealt with the graph H .
We demonstrate our approach by solving for D(G(Tv), k; H); others can be solved similarly. To aid us
in our discussion, we shall use the graph in Figure 6 for illustration. In particular, we will compute for
D(G(Tr), k; H), which equals D(G, k).

Let CH contain the cut vertices of G in H whose corresponding vertices in TG are children of v.
Let SH contain the separating pairs of G in H used in creating TG whose corresponding vertices in TG

are children of v. When a ∈ CH and w is the child of v that is associated with a, we shall refer to
G(Tw) as Ga for ease of notation. We do the same for each pair {x, y} ∈ SH . We begin by considering
L∗(G(Tv), k), the set that contains all the k-labelings φ of G(Tv) so that φ when restricted to Ga belongs
to L(Ga, k; a) for every cut vertex a ∈ CH , and φ when restricted to Gx,y belongs to L(Gx,y, k; x, y)
for every separating pair {x, y} ∈ SH . For instance, a labeling that assigns all the nodes of G in Figure
6 the same label belongs to L∗(G(Tr), k) because every Gai,ai+1 fixed at ai and ai+1 has no non-trivial
automorphisms. Clearly, every labeling in L(G(Tv), k; H) also belongs to L∗(G(Tv), k); otherwise,
some nontrivial automorphism in Aut(G(Tv); H) is not destroyed. We shall use PIE to weed out the
labelings in L∗(G(Tv), k) that are not part of L(G(Tv), k; H).

Let Autv(H) consist of all the automorphisms in Aut(G(Tv); H) when restricted to H . Suppose
P ⊆ Autv(H). Let N≥(P) denote the number of labelings φ in L∗(G(Tv), k) so that, for every σ ∈ P ,

19

some extension of σ in Aut(G(Tv); H) preserves φ. Define N=(P) similarly except that aside from the
automorphisms in P no other automorphism in Autv(H) has extensions that preserve φ. We now state
the formulas for L(G(Tv), k; H) and D(G(Tv), k; H).

Theorem 4.8. Let v be a t-vertex in TG and H be the triconnected component associated with v. Let
Autv(H) consist of the automorphisms in Aut(G(Tv); H) when restricted to H , and σ0 be the identity
automorphism in Autv(H). Then

L(G(Tv), k; H) = N=({σ0}) =
∑

{σ0}⊆P⊆Autv(H)

(−1)|P |−1N≥(P)

and

D(G(Tv), k; H) =
1

|Autv(H)|
∑

{σ0}⊆P⊆Autv(H)

(−1)|P |−1N≥(P)∏
a∈CH

|Aut(Ga; a)|∏{x,y}∈SH
|Aut(Gx,y; x, y)| .

Proof: It is straightforward to verify that N=({σ0}) =
∑

{σ0}⊆P⊆Autv(H)(−1)|P |−1N≥(P) is the
number of labelings in L∗(G(Tv), k) that is preserved by some extension of σ0 and by no other au-
tomorphism in Autv(H). But by the way we defined L∗(G(Tv), k), if some extension of σ0 pre-
serves a labeling of L∗(G(Tv), k), that extension must be the identity automorphism of G(Tv). The
first equation of the theorem follows. Now, |Aut(G(Tv); H)| = |Autv(H)| ×∏

a∈CH
|Aut(Ga; a)| ×∏

{x,y}∈SH
|Aut(Gx,y; x, y)| since every automorphism in Aut(G(Tv); H) can be decomposed into an

automorphism in Autv(H) and automorphisms of the connected components that hang off of H fixed
at the cut vertices or separating pairs that connect them to H . Hence, dividing L(G(Tv), k; H) by
|Aut(G(Tv); H)| gives us the second equation of the theorem.

Corollary 4.9. When Autv(H) is cyclic, dihedral, or isomorphic to Zt×Z2 or Dt×Z2 for some integer
t, the formulas in Theorems 3.5, 3.6 and 3.7 for N=({σ0}) where σ0 is the identity automorphism still
apply.

Suppose, instead of D(G(Tv), k; H), we wish to compute D(G(Tv), k; H, a) (or D(G(Tv), k; H, x, y)
or D(G(Tv), k; H, xy)). Let Γ denote the subgroup of Autv(H) that fixes a (or x and y, or xy). By
replacing Autv(H) with Γ, the formula in Theorem 4.8 still holds.

Next, we describe a method for computing N≥(P), P ⊆ Autv(H). For each σ ∈ P , let Hσ

be the graph whose vertex set is V (H) and edge set is {(v, σ(v)) : v ∈ V (H)}. Let SPσ be
the graph whose vertex set consists of xy and yx whenever {x, y} ∈ SH and whose edge set is
{(xy, σ(x)σ(y)), (yx, σ(y)σ(x)) : {x, y} ∈ SH}. In ∪σ∈P SPσ, let SPP (xy) denote the compo-
nent that contains the vertex xy. Notice that if a and a′ are part of the same component in ∪σ∈P Hσ ,
then both a and a′ are cut vertices or both are not; and when both of them are, then Ga

∼= Ga′ . Sim-
ilarly, when xy and x′y′ are part of the same component in ∪σ∈P SPσ , Gx,y

∼= Gx′,y′ . Finally, when
yx ∈ SPP (xy) then for every x′y′ ∈ SPP (xy), y′x′ ∈ SPP (xy) as well. The following can easily be
verified: φ ∈ L∗(G(Tv), k) is counted in N≥(P) if and only if (i) whenever two vertices are part of the
same component in ∪σ∈P Hσ , φ assigns them the same label; (ii) whenever two cut vertices a and a′ are
part of the same component in ∪σ∈P Hσ, φ when restricted to Ga and Ga′ belong to the same equiva-
lence class of L(Ga, k; a); and (iii) when xy and x′y′ are part of the same component in ∪σ∈P SPσ , φ
when restricted to Gx,y and Gx′,y′ belong to the same equivalence class of L(Gx,y, k; x, y).

In SPσ , we have chosen to represent the separating pair {x, y} as two vertices xy and yx to capture
situations in which an automorphism in Autv(H) maps x to y and y to x. However, such a representation
can introduce redundancies in the sense that two different components in SPσ may be capturing the
same relationships between the same sets of separating pairs. As such, we shall say that a collection
of components {SPP (xiyi), i = 1, . . . , g} forms a partition of ∪σ∈P SPσ if for every separating pair
{x, y} ∈ SH exactly one component in the collection contains xy or yx or both. In Figure 6, let

20

πρ ∈ Autr(H) be the rotation that maps ai to ai+1, i = 1, . . . , 5, and πτ ∈ Autr(H) be the reflection
that fixes a1. A partition for SPπρ contains only one component while a partition for SPπτ contains
three components – e.g., SP (a1a5), SP (a5a4), SP (a4a3) where a3a4 ∈ SP (a4a3).

Theorem 4.10. Let {σ0} ⊆ P ⊆ Autv(H). Suppose ∪σ∈P Hσ has t components where the ith
component contains the vertex ai, and the collection {SPP (xiyi), i = 1, . . . , g} forms a partition of
∪σ∈P SPσ. Let κ(ai) = D(Gai , k; ai) if ai is a cut vertex and is equal to k otherwise. Let κ(xi, yi) =
[D(Gxi,yi , k; xi, yi)−2D(Gxi,yi , k; xiyi)]/k if yixi ∈ SPP (xiyi) and is equal to D(Gxi,yi , k; xi, yi)/k2

otherwise. Then

N≥(P) =
t∏

i=1

κ(ai)×
g∏

i=1

κ(xi, yi)×
∏

a∈CH

|Aut(Ga; a)| ×
∏

{x,y}∈SH

|Aut(Gx,y; x, y)|.

Proof: To create a labeling φ that is counted in N≥(P), we do the following. (1) If ai is not a cut vertex,
pick a label that will be assigned to it and all the vertices in the same component as ai in ∪σ∈P Hσ . (2) If
ai is a cut vertex, pick an equivalence class of L(Gai , k; ai) that will contain the labelings of Gai and all
the Gu’s where u and ai are in the same component of ∪σ∈P Hσ . Then for ai and each of the vertices u,
pick a labeling from the equivalence class just chosen. (3) For each {xi, yi}, pick an equivalence class
of L(Gxi,yi , k; xi, yi) that will contain the labelings of Gxi,yi and all Gu,w’s where uw and xiyi are in
the same component of ∪σ∈P SPσ . Additionally, this equivalence class must respect the labels that have
already been assigned to xi and yi in step (2). Then for {xi, yi} and each {u, w}, pick a labeling from
the equivalence class just chosen.

There are k ways of doing step (1) and D(Gai , k; ai)×|Aut(Gai ; ai)|ji ways of doing step (2) where
ji is the number of vertices in the same component as ai. Thus, there are

∏t
i=1 κ(ai)

∏
a∈CH

|Aut(Ga; a)|
ways of doing steps (1) and (2) since whenever the ai and u are in the same component of ∪σ∈P Hσ ,
both vertices are cut vertices or both are not and Aut(Gai ; ai) ∼= Aut(Gu; u).

To do step (3), we need to differentiate between the case when yixi also belongs to SPP (xiyi)
and when it doesn’t. In the former case, φ when restricted to Gxi,yi must destroy all the automor-
phisms of Gxi,yi when xi and yi are fixed but is preserved by some automorphism of the graph that
maps xi to yi and vice versa. In other words, the equivalence class containing the labeling belongs to
B(Gxi,yi , k; xi, yi). Since the labels of x and y have already been chosen in steps (1) or (2) (note that
they had to be the same), from Lemma 4.4 there are exactly [D(Gxi,yi , k; xi, yi)−2D(Gxi,yi , k; xiyi)]/k
equivalence classes to choose from in step (3). On the other hand, when yixi does not belong to
SPP (xiyi), φ when restricted to Gxi,yi must simply belong to L(Gxi,yi , k; xi, yi) and so once the labels
of xi and yi have been chosen in steps (1) and (2), there are exactly D(Gxi,yi, k; xi, yi)/k2 equivalence
classes to choose from in step (3). Finally, when the equivalence classes have been selected, then there
are |Aut(Gxi,yi ; xi, yi)|ji labelings that can be assigned to the Gu,w’s, uw ∈ SPP (xiyi) where ji is the
number of distinct separating pairs in SP (xiyi). There are

∏g
i=1 κ(xi, yi)

∏
{x,y}∈SH

|Aut(Gx,y; x, y)|
ways of doing step (3) because again whenever xiyi and uw are in the same component in ∪σ∈P SPσ ,
Aut(Gxi,yi ; xi, yi) ∼= Aut(Gu,w; u, w). The theorem follows.

Using the formula for N≥(P) above, we can now simplify the second formula in Theorem 4.8 as

D(G(Tv), k; H) =
1

|Autv(H)|
∑

{σ0}⊆P⊆Autv(H)

(−1)|P |−1
t∏

i=1

κ(ai)
g∏

i=1

κ(xi, yi).

Hence, D(G(Tv), k; H) (and D(G(Tv), k; H, a), D(G(Tv), k; H, x, y), D(G(Tv), k; H, xy)) can
be computed once the automorphisms in Autv(H) and the values of D(G(Tw), k; ∗) are known, where
w is a child of v in TG and ∗ is the structure associated with w.

FindDist(G, k). Let us now describe our algorithm FindDist(G, k) for computing D(G, k). First, con-
struct TG and root it at r(TG). Then, for i = height(TG) to 0, do the following for each vertex v at

21

depth i. When v is a c-vertex, compute D(G(Tv), k; a) where a is the cut vertex associated with v using
Theorem 4.2. When v is an s-vertex, compute D(G(Tv), k; x, y) and D(G(Tv), k; xy) where {x, y} is
the separating pair associated with v using Theorems 4.3 and 4.6. When v is a t-vertex and H is the
triconnected component associated with v, compute D(G(Tv), k; H, ∗) where ∗ is the structure associ-
ated with p(v), the parent of v, if it exists. (That is, if p(v) is a c-vertex, compute D(G(Tv), k; H, a)
where a is the cut vertex associated with p(v); if p(v) is an s-vertex, compute D(G(Tv), k; H, x, y) and
D(G(Tv), k; H, xy) where {x, y} is the separating pair associated with p(v); if v has no parent, compute
D(G(Tv), k; H).) Do all computations according to Theorem 4.8, Corollary 4.9 and Theorem 4.10. Fi-
nally, if the root node r(TG) is a c-vertex or a t-vertex, return the value computed at depth 0; otherwise,
r(TG) is an s-vertex, return D(G(Tv), k; xy).

It is not obvious that at every iteration the algorithm can compute D(G(Tv), k; ∗) based on the values
obtained for v’s children in the previous iterations. We shall now show that this, in fact, is the case.
• When v is a c-vertex. Let a be the cut vertex associated with v. From Theorem 4.2, D(G(Tw), k; a)
is needed. If w is an s-vertex and associated with some separating pair {a, b}, D(G(Tw), k; a, b) was
computed in the previous iterations. But from Lemma 2.7, Aut(G(Tw); a, b) = Aut(G(Tw); a); i.e.,
a labeling of G(Tw) destroys all automorphisms in Aut(G(Tw); a, b) if and only if it destroys all au-
tomorphisms in Aut(G(Tw); a). Hence, D(G(Tw), k; a, b) = D(G(Tw), k; a). If w is a t-vertex,
w is associated with some triconnected component H , and so D(G(Tw), k; H, a) was computed in
the previous iteration. From Lemma 2.7, Aut(G(Tw); H, a) = Aut(G(Tw); a) and, consequently,
D(G(Tw), k; H, a) = D(G(Tw), k; a).
• When v is an s-vertex. Let {x, y} be the separating pair associated with v. This time, according to
Theorems 4.3 and 4.6, if w is a c-vertex associated with x (or y), D(G(Tw), k; x) (or D(G(Tw), k; y))
is needed, and was clearly computed in the previous iterations by the algorithm. On the other hand, if w
is a t-vertex whose associated triconnected component is H , D(G(Tw), k; x, y) and D(G(Tw), k; xy)
are needed. Now, D(G(Tw), k; H, x, y) and D(G(Tw), k; H, xy) were computed in the previous it-
erations. But from Lemma 2.8, Aut(G(Tw); H, x, y) = Aut(G(Tw); x, y) and Aut(G(Tw); H, xy) =
Aut(G(Tw); xy). It follows that D(G(Tw), k; H, x, y) = D(G(Tw), k; x, y) and D(G(Tw), k; H, xy) =
D(G(Tw), k; xy).
• When v is a t-vertex. Let H be the triconnected component associated with v. According to Theo-
rem 4.10, if w is a c-vertex associated with a, D(G(Tw), k; a) is needed and if w is an s-vertex associated
with the separating pair {x, y}, D(G(Tw), k; x, y) and D(G(Tw), k; xy) are needed. All these values
were computed in the previous iterations.

From Theorems 4.2, 4.3, 4.6, 4.8, 4.10, we know that all the D(G(Tv), k; ∗) values computed by
the algorithm are correct. Now, the algorithm returned the value D(G(Tv), k; A) where v = r(TG)
and A is the structure associated with r(TG). But G(Tr(TG)) = G, and, according to Lemma 2.6,
Aut(G; A) = Aut(G). It follows that the algorithm returned D(G, k).

Theorem 4.11. When G is a connected graph, FindDist(G, k) returns the value D(G, k).

Example 1. Consider the graph and its tree decomposition in Figures 2 and 3. Using the formulas given in
this section, it is easy to verify the following: D(G(Tv3), k; e) = k5, D(G(Tv1), k; e, j) = k3(k− 1)/2
and D(G(Tv1), k; ej) = k2(k − 1)2/4. According to Theorem 4.3,

D(G(Tr), k; e, j) = k2[D(G(Tv3), k; e)/k]2
(

D(G(Tv1), k; e, j)/k2

2

)

= k2(k4)2
(

k(k − 1)/2
2

)
= (k + 1)k11(k − 1)(k − 2)/8.

Next, let us compute B(G(Tr), k; e, j). We have B(G(Tv1), k; e, j) = D(G(Tv1), k; e, j)−2D(G(Tv1), k; ej) =
k2(k − 1)/2. Notice that D1(G(Tv1), k; ej) = 0 because any labeling that assigns e and j the same

22

label cannot destroy the automorphism that maps e to j, j to e, f to itself, and g to itself. According to
Theorem 4.6

B(G(Tr), k; e, j) = k D(G(Tv3), k; e)/k
1∑

l=0

(
D1(G(Tv1), k; e, j)/k

l

)(
B(G(Tv1), k; e, j)/k

2− 2l

)

= k k4
1∑

l=0

(
0
l

)(
k(k − 1)/2

2− 2l

)

= k5

[(
0
0

)(
k(k − 1)/2

2

)
+

(
0
1

)(
k(k − 1)/2

0

)]
= (k + 1)k6(k − 1)(k − 2)/8.

Consequently, D(G, k) = D(G(Tr), k; ej) = [D(G(Tr), k; e, j) − B(G(Tr), k; e, j)]/2 = (k +
1)k6(k − 1)(k − 2)(k5 − 1)/16. Since D(G, 1) = D(G, 2) = 0 and D(G, 3) > 0, D(G) = 3.

Example 2. This time, consider the graph in Figure 6 and let us determine D(G(Tr), k; H). Since
Autr(H) ∼= D5, we can make use of the computations we made in the example after Theorem 3.6.
It is easy to verify that D(Gai,ai+1 , k; ai, ai+1) = k4 and D(Gai,ai+1 , k; aiai+1) = (k4 − k2)/2 for
i = 1, . . . , 5. Let α =

∏5
i=1 |Aut(Gai,ai+1 ; ai, ai+1)|. From Theorem 4.10, we have N≥(∅)/α = k5 ×

(k2)5 = k15, N≥({πρ})/α = k× k2 = k3, N≥({πτρi})/α = k3× (k2)2(k4 − 2(k4− k2)/2)/k = k8

and N≥({πτρi , πρ})/α = k × (k4 − 2(k4 − k2)/2)/k = k2. Thus,

D(G(Tr), k; H) =
1
10

[
N≥(∅)/α−N≥({πρ})/α−

4∑
i=0

(
N≥({πτρi})/α−N≥({πτρi , πρ})/α

)]

=
1
10

[
k15 − k3 −

4∑
i=0

(k8 − k2)

]

=
1
10

[
k15 − 5k8 − k3 + 5k2

]
.

Since D(G, 1) = 0 and D(G, 2) > 0, we conclude that D(G) = 2.

In order for FindDist((G, k)) to run efficiently for a family of graphs, we note that a few ingredients
are necessary. It must have an efficient graph isomorphism testing algorithm to determine the isomor-
phism classes of G in Theorems 4.2, 4.3, and 4.6. There must also be an efficient algorithm that can
determine the automorphisms of its triconnected components which are needed in Theorem 4.8. Finally,
there must be a way to apply the PIE formula in Theorem 4.8 to its triconnected components in an ef-
ficient manner. Since the family of planar graphs satisfy these criteria, we can now proceed to prove
the main result of the paper. We first show that D(G(Tv), k; ∗), when v is a t-vertex, can be computed
efficiently when the appropriate values are known.

Lemma 4.12. Let G be a connected planar graph on n vertices and k be a positive integer. Let v be
a t-vertex in TG, H be the triconnected component on nH vertices associated with v, and SH contain
the separating pairs of G in H used in the construction of TG. Suppose all the automorphisms in
Autv(H) and the values of D(G(Tw), k; ∗), w a child of v in TG, are known. Then D(G(Tv), k; ∗) can
be computed in O(n2

Hn2 log2 k(nH + |SH |)) time.

Proof: As in Theorems 4.8 and 4.10, we will prove the theorem for D(G(Tv), k; H); others can be
argued similarly. Let α =

∏
a∈CH

|Aut(Ga; a)| ×∏
{x,y}∈SH

|Aut(Gx,y; x, y)|. First, let us consider
the time it takes to compute N≥(P)/α. Constructing ∪σ∈P Hσ and finding its t connected components
can be done in O(|P |×nH). Similarly, constructing∪σ∈P SPσ and finding a collection {SPP (xiyi), i =
1, . . . , g} that forms a partition of ∪σ∈P SPσ takes O(|P | × |SH |) time. Finally, since N≥(P) ≤ kn,

23

every multiplication in
∏t

i=1 κ(ai) ×
∏g

i=1 κ(xiyi) takes at most O(n2 log2 k) time; that is, finding
the said product takes O((t + g)n2 log2 k) = O((nH + |SH |)n2 log2 k) time. Therefore, computing
N≥(P)/α takes O((nH + |SH |)(|P |+ n2 log2 k)) time.

Since G is a connected planar graph, each of its blocks B are as well. It is easy to verify that when
the split operation is applied to B, the resulting split graphs remain planar. Hence, the triconnected
component associated with v is either a bond, a cycle or a triconnected planar graph, and Autv(H)
belongs to one of the groups mentioned in Fact 3.8. From Corollary 4.9, we noted we can apply the
formulas in Theorems 3.5, 3.6 and 3.7 for N=({σ0}). Consequently, we can use TriconnectCount(H, k)
to compute D(G(Tv), k; H) by doing two modifications – we replace every occurrence of N≥(P) with
N≥(P)/α (keeping in mind that the k-labelings counted in N≥(P) belong to L∗(G(Tv), k) and is
computed using Theorem 4.10), and return the value L(H, k)/|Autv(H)| instead of L(H, k). It is
easy to check that the value returned is D(G(Tv), k; H). Applying the same analysis in Theorem 3.9,
the bottleneck of the algorithm is in computing the O(n2

H) N≥(P)/α terms. Using the result from
the previous paragraph and the fact that |P | ≤ log nH , the runtime of the algorithm is O(n2

H(nH +
|SH |)(log nH + n2 log2 k)) time.

Finding D(G(Tv), k; ∗) can take significantly more time than finding D(H, k) because N≥(P) in
the former case has to be explicitly computed from the D(G(Tw), k : ∗) values whereas, in the latter
case, N≥(P) is always some power of k which we precomputed ahead of time.

Theorem 4.13. Let G be an n-vertex connected planar graph and k be a positive integer. FindDist(G, k)
can be implemented in O(n5 log2 k) time. Consequently, computing D(G) takes O(n5 log3 n) time.

Proof: To implement FindDist(G, k), we need to do some preprocessing steps.
1. Isomorphism testing. For each c- and s-vertex, determine the isomorphism classes of the graphs in
G fixed at the appropriate vertices as described in Theorems 4.2, 4.3, and 4.6. Additionally, for each
s-vertex whose associated separating pair is {x, y}, determine if G(Twx) fixed at x is isomorphic to
G(Twy) fixed at y. For each t-vertex, group together its children based on their type – i.e., if they
are c-vertices or s-vertices – and then for each group determine the isomorphism classes of {G(Tw) :
w is a child of v and a c-vertex (or an s-vertex)} fixed at the appropriate vertices. Using the linear-time
planar graph isomorphism testing algorithm, the isomorphism testing tasks at each v can be done in
O(deg(v)2n) time where deg(v) is the degree of vertex v in TG. The total time to do all the isomorphism
testing then takes O(n3) time since the size of TG is O(n).
2. Finding automorphisms. For each t-vertex v whose associated triconnected component is H , find
all the automorphisms in Aut(H) using the algorithm described in Section 3.1. Apply the informa-
tion obtained from the first preprocessing step to determine which of the automorphisms also belong to
Autv(H) (or Autv(H ; ∗) where ∗ depends on p(v)). That is, for each π ∈ Aut(H), verify that π maps
cut vertices and separating pairs to cut vertices and separating pairs respectively; moreover, π also maps
the subgraphs hanging from these vertices and pairs to isomorphic structures. Finding Aut(H) takes
O(n2

H) time where nH is the number of vertices in H . Determining if π ∈ Aut(H) also belongs to
Autv(H) takes O(nH + |SH |) time so finding Autv(H) takes O(n2

H + |Aut(H)|(nH + |SH |)) =
O(n2

H + nH |SH |) time. Finding Autv(H) for all t-vertices v then takes O(n2) time since from
Lemma 2.10

∑
H nH = O(n) and

∑
H |SH | = O(n).

Let us now consider FindDist(G, k). Constructing TG takes O(n2) time. The number of arith-
metic operations for computing D(G(Tv), k; ∗) when v is a c-vertex and an s-vertex is O(deg(v)) and
O(deg2(v)) respectively. And since the values involved in each operation is at most kn, the total amount
of work at v takes O(deg2(v)n2 log2 k) time. Summing this up for all c- and s-vertices in TG, the to-
tal work takes O(n4 log2 k) time because the size of TG is O(n). When v is a t-vertex, according
to Lemma 4.12, computing D(G(Tv), k; ∗) takes O(n2

Hn2 log2 k(nH + |SH |)) time. Thus, for all t-
vertices, the total work is O(n5 log2 k) time. From our analysis, the bottleneck of FindDist(G, k) is in
processing the t-vertices. The runtime in the theorem follows.

Corollary 4.14. Let G be an n-vertex planar graph. Then D(G) can be computed in O(n5 log3 n) time.

24

Proof: Using the linear time planar graph isomorphism testing algorithm, group together isomorphic
connected components of G. So suppose G = m1G1 ∪ m2G2 ∪ . . . ∪ mgGg where each Gi has
ni vertices. For each Gi, find ki so that ki = min{k : D(Gi, k) ≥ mi}. This can be done by
implementing FindDist(Gi, k) O(log n) times. Finally, D(G) = maxi{ki} so D(G) can be found in
O(

∑g
i=1 n5

i log2 ni log n) = O(n5 log3 n) time.

5 Final Comments

In this paper, we considered D(G, k), the number of inequivalent distinguishing k-labelings of graph G.
We have applied the principle of inclusion/exclusion and developed recursive formulas to compute its
value for a fixed k. When a graph G is planar, we showed that these techniques led to an algorithm for
computing D(G) that runs in time polynomial in the size of G. There are other interesting aspects about
D(G, k) as well as noted in the next theorem.

Theorem 5.1. Let G be a graph on n vertices. Then D(G, k) is a polynomial in k whose degree is n
and whose constant term is 0. If G has no non-trivial automorphisms then D(G, k) = kn; otherwise,
the sum of the coefficients of D(G, k) is 0.

Proof: In formula 3.2, N≥(P) equals kn when P = {π0} and kt, t < n, otherwise, so D(G, k) must
be a polynomial in k whose degree is n. Furthermore, D(G, 0) = 0, so the constant term in D(G, k)
must be 0. When G has no non-trivial automorphism, every k-labeling of G is distinguishing and no
two are equivalent; hence, D(G, k) = kn. When G has some non-trivial automorphisms, D(G, 1) = 0
so it must be the case that the sum of the coefficients of D(G, k) is 0.

We now call D(G, k) the distinguishing polynomial of G. An interesting research direction would
be to study this polynomial along the lines of the more famous chromatic polynomial of G.

Next, consider Lemma 3.4 and its implications. According to the lemma, if S is the largest subset
of Aut(G) that preserves a k-labeling φ of G then S must be a subgroup of Aut(G). This suggests that
instead of considering all the subsets of Aut(G) as we do in PIE, we should just consider the subgroup
lattice (S,≤) of Aut(G) where S is the set that contains all the subgroups of Aut(G). For each S ∈ S,
define N≥(S) and N=(S) as we did in the PIE formulation. Since N≥(S) =

∑
S′≥S N=(S′) for every

S ∈ S, according to the principle of Möbius inversion, the following must be true.

Theorem 5.2. Let (S,≤) be the subgroup lattice of Aut(G) and μ(∗, ∗) be the Möbius function of
(S,≤). Let S0 be the subgroup of Aut(G) consisting of the identity automorphism of G. Then

L(G, k) = N=(S0) =
∑

S∈S:S≥S0

μ(S0, S)N≥(S).

Using the formula above, the number of N≥(S) terms we have to compute to determine L(G, k)
is |S| as opposed to Ω(2|Aut(G)|) in the PIE formulation. This of course comes at a price – we must
now find all the subgroups of Aut(G), determine the structure of (S,≤), and then compute the μ(S0, S)
values. We leave it up to the reader to apply Theorem 5.2 when Aut(G) ∼= Zt, Dt, Zt×Z2 or Dt×Z2.

Another direction in which we use Lemma 3.4 is a generalization of Theorem 3.5.

Theorem 5.3. Let S∗ be a subset of Aut(G) that does not contain the identity automorphism. Suppose
every non-trivial subgroup of G contains at least one element of S∗. Then

L(G, k) =
∑

S⊆S∗
(−1)|S|N≥(S).

In the above theorem, the number of N≥(S) terms to compute is 2|S
∗| so the smaller |S∗| is, the

better. Finding the smallest S∗, however, is non-trivial; it is the hitting set problem and is known to be

25

NP-hard in general [13]. Again, we leave it up to the reader to formulate a generalization of Theorem 3.6
similar to Theorem 5.3. Finally, we pose the following open problem.

Open Problem: Let G be a family of graphs for which there is an efficient algorithm for testing graph
isomorphism. Can the distinguishing number of graphs in G be computed efficiently? More specifically,
is there a polynomial-time algorithm for computing D(G) if G is a bounded degree graph or a bounded
genus graph?

Acknowledgments

The second author would like to thank Jeb Willenbring for discussions she had with him on Section 3 of
the paper. The authors are also grateful to the anonymous referees for their comments which improved
the presentation of the paper.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Algorithms. Addison-Wesley,
1974.

[2] M. Albertson. Distinguishing cartesian powers of graphs. Electronic Journal of Combinatorics,
12:N17, 2005.

[3] M. Albertson and K. Collins. Symmetry breaking in graphs. Electronic Journal of Combinatorics,
3:R18, 1996.

[4] V. Arvind and N. Devanur. Symmetry breaking in trees and planar graphs by vertex coloring. In
Proceedings of the Nordic Combinatorial Conference, 2004.

[5] W. Bogstad and L. Cowen. The distinguishing number of the hypercube. Discrete Mathematics,
283:29–35, 2004.

[6] M. Chan. The distinguishing number of the direct product and wreath product action. Journal of
Algebraic Combinatorics, 24:331–345, 2006.

[7] M. Chan. The maximum distinguishing number of a group. Electronic Journal of Combinatorics,
13:R70, 2006.

[8] M. Chan. The distinguishing number of the augmented cube and hypercube powers. Discrete
Mathematics, 2007. Available online.

[9] C. Cheng. On computing the distinguishing numbers of trees and forests. Electronic Journal of
Combinatorics, 13:R11, 2006.

[10] K. Collins and A. Trenk. The distinguishing chromatic number. Electronic Journal of Combina-
torics, 13:R16, 2006.

[11] R. Diestel. Graph Theory. Springer-Verlag, 3rd edition, 2006.

[12] T. Fukuda, S. Negami, and T. Tucker. 3-connected planar graphs are 2-distinguishable with few
exceptions. Preprint.

[13] M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[14] J. Hopcroft and R. Tarjan. Dividing a graph into triconnected components. SIAM Journal of
Computing, 2:135–158, 1973.

[15] J. Hopcroft and J. Wong. Linear time algorithm for isomorphism of planar graphs. In Proceedings
of 6th ACM Symposium on Theory of Computing, pages 172–184, 1974.

26

[16] W. Imrich and S. Klavz̆ar. Distinguishing cartesian powers of graphs. Journal of Graph Theory,
53:250–260, 2006.

[17] S. Klavz̆ar, T.-L. Wong, and X. Zhu. Distinguishing labelings of group action on vector spaces and
graphs. Journal of Algebra, 303:626–641, 2006.

[18] P. Mani. Automorphismen von polyedrischen graphen. Math. Ann., pages 279–303, 1971.

[19] A. Russell and R. Sundaram. A note on the asymptotics and computational complexity of graph
distinguishability. Electronic Journal of Combinatorics, 5:R23, 1998.

[20] T. Tucker. Distinguishability of maps. Preprint.

[21] J. Tymoczko. Distinguishing numbers for graphs and groups. Electronic Journal of Combinatorics,
11(1):R63, 2004.

27

