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Abstract. In this paper, we study competitive markets - a market is
competitive if increasing the endowment of any one buyer does not in-
crease the equilibrium utility of any other buyer. In the Fisher setting,
competitive markets contain all markets with weak gross substitutabil-
ity (WGS), a property which enable efficient algorithms for equilibrium
computation.

We show that every uniform utility allocation (UUA) market which is
competitive, is a submodular utility allocation (SUA) market. Our result
provides evidence for the existence of efficient algoritheorems for the class
of competitive markets.

1 Introduction

In the past few years, there has been a surge of activity to design efficient algo-
rithms for computation of market equilibrium. These include the linear utilities
case in the Fisher model [9, 11] and the Arrow-Debreu model [13], the spending
constraint model [10], Leontief utility functions in the Fisher model [8] and so on.
Interestingly, almost all of these markets for which efficient equilibrium compu-
tation algorithms are known, satisfy the property of weak gross substitutability
(WGS). A market is WGS if raising the price of any good does not lead to
the decrease in the demand of some other good. This property has extensively
been studied in mathematical economics, [1, 16, 2] and recently Codenotti et.al.
[7] gave polytime algorithms to compute equilibriums in WGS markets, under
fairly general assumptions.

WGS relates how one good’s price influences the demands for other goods.
Analogously, competitiveness relates how one person’s assets influence the re-
turns to others. A market is called competitive if increasing the money of one
agent cannot lead to increase in the equilibrium utility of some other agent. This
notion was introduced by Jain and Vazirani [14] 1, who showed that in the Fisher
setting any WGS market is competitive. In this paper, we provide a characteri-
zation of competitive markets in a class of Eisenberg-Gale markets, introduced
by [14]. Combined with results of [14], our result provides some evidence that
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competitive markets, like WGS markets, might also be amenable to efficient al-
gorithms. In particular, [12, 14] gave combinatorial polynomial time algorithms
for some markets that were not WGS; our result shows that these markets are
competitive.

Recently, Jain and Vazirani [14] proposed a new class of markets called
Eisenberg-Gale markets or simply EG markets. In 1959, Eisenberg and Gale
[11] gave a convex program for obtaining the equilibrium in the linear utilities
case of the Fisher model. An EG market is any market whose equilibrium is cap-
tured by a similar convex program. Thus, the linear utilities case of Fisher is an
example of an EG market. [14] showed that this class captured many other inter-
esting markets including several variants of resource allocation markets defined
by Kelly [15] to model TCP congestion control.

The convex program capturing equilibria of EG markets maximizes the money
weighted geometric mean of the utilities of buyers over all feasible utilities, which
form a convex set. For instance, in the program of Eisenberg and Gale [11], the
set of feasible utilities are those implied by the condition that no good is over-
sold. Thus EG markets do away with the concept of goods and deal only with
allocations of utility and one can think of EG markets as utility allocation mar-
kets.

If the constraints on feasible utilities are just those which limit the total
utility obtainable by any set of agents, the EG market so obtained is called an
uniform utility allocation (UUA) market. The linear utilities case of Fisher with
the utility of each unit of good for each agent being either 0 or 1 is a UUA
market. UUA markets can be represented via a set-function called the valuation
function, where the value of any subset of agents denotes the maximum utility
obtainable by that set. If the valuation function is submodular, the market is
called a submodular utility allocation (SUA) market. In fact, the Fisher example
above turns out to be a SUA market.

[14] define the notion of competition monotonicity which we call competitive-
ness in this paper. In their paper, [14] prove that every SUA market is compet-
itive. They also give an algorithm for computing equilibrium in SUA markets.
The paper also asks if there exist competitive UUA markets which are not SUA.

Our results:
Our main result, proved in Section 3, answers the question asked in [14].

We show that any UUA market which is competitive must be an SUA market.
Our characterization of competitive markets in UUA markets shows that the
algorithm of [14] works for all competitive UUA markets. A natural question is
whether there are efficient algorithms for all competitive markets. [14] showed
that all WGS markets are competitive and [7] gave efficient algorithms for all
WGS markets; this probably gives evidence in favor of existence of algorithms
for competitive markets. Competitiveness seems to be a natural property for
markets, but a lot remains to understand it clearly. A first step might be in-
vestigating competitiveness in EG markets alone. We do not know of any EG
markets which are competitive and have irrational equilibria. Apart from SUA



markets, the other large class of competitive markets are EG[2] markets [6]: EG
markets with only two agents. [6] showed recently that these markets also have
rational equilibria. Are all competitive EG markets rational? Settling these ques-
tions seems to be an important avenue for research.

Our techniques: We prove all competitive UUA markets are SUA by prov-
ing the contrapositive: For every UUA market which is not an SUA market, we
construct money vectors such that on increasing the money of one particular
buyer, the equilibrium utility of some other buyer increases. The main difficulty
in constructing these money vectors is that the equilibrium utilities are obtained
via solving a convex program with the money as parameters. A change in the
money of even one buyer, in general, can change the utilities of all agents.

To argue about the equilibrium utilities, as we see in Section 2, we deal with
dual variables, the prices for various subsets of agents, which act as a certificates
to equilibrium utility allocations. We use the non-submodularity of the valuation
function to identify the precise set of agents having money, and the precise
amount of money to be given to them. As we see, this construction is delicate, and
in particular requires proving the following fact about non-submodular functions
which might be of independent interest. This is the most technical part of the
paper and is proved in Section 4

Given an allocation, call a set of agents tight (w.r.t the allocation) if the
total utility of agents in that set equals the maximum allowed by the valuation
function. If a valuation function v is not submodular, then there exists a set of
agents T ,agents i, j /∈ T , and a feasible utility allocation so that

1. T, T ∪ i, T ∪ j are tight.

2. No set containing both i and j are tight.

3. All tight sets containing i or j also contain a common agent l.

The correctness of the algorithm of [14] for finding equilibria in SUA markets
and thus our proof that SUA markets are competitive, use crucially the fact that
if v is submodular, tight sets formed are closed under taking unions or intersec-
tions. Note that this implies if v is submodular, conditions 1 and 2 cannot hold
simultaneously

Relation to combinatorial auctions: A result similar to ours is in the set-
ting of combinatorial auctions: Ausubel and Milgrom [3, 4] show that if goods
are WGS, then the coalitional value function (the maximum value a set of buyers
can obtain by forming a coalition) is submodular. A coalitional value function
can be used to define a UUA market in a natural way. Further, all WGS markets
are competitive. So both the concepts of UUA markets and competitiveness, and
in turn our results are more general than the aforementioned.



2 Preliminaries

Definition 1. An EG market M with agents [n] is one where the feasible util-
ities u ∈ Rn

+ of the agents can be captured by a polytope

P = {∀j ∈ J :
∑
i∈[n]

aiju(i) ≤ bj u(i) ≥ 0}

with the following free disposal property: If u is a feasible utility allocation, then
so is any u′ dominated by u.

Remark: The definitions in [14, 6] also include auxiliary variables in the defi-
nition, but the above is an equivalent definition which will be sufficient for the
purposes of this paper.

Example: By definition and the result of Eisenberg and Gale [11], the Fisher
market with linear utilities is an EG market. Another example is the follow-
ing resource allocation market defined by Kelly. Given a network, agents own
source-sink pairs and wish to buy capacities on edges so as to send flows from
source to sink. The utility u(i) of each agent is the amount of flow it sends. The
various flow vectors are constrained via capacity constraints on each edge, which
form the convex flow polytope P above.

An instance of an EG market M is given by the money of the agents m ∈ Rn
+.

The equilibrium utility allocation of an EG market is captured by the following
convex program similar to the one considered by Eisenberg and Gale [11] for the
Fisher market with linear utilities.

max
n∑

i=1

mi log u(i) s.t. u ∈ P

Since the objective function is strictly concave and P is non-empty, the equi-
librium always exists and is unique. Applying the Karash-Kuhn-Tucker (KKT)
conditions (see e.g. [5]) characterizing optima of convex programs, for each con-
straint we have a Lagrangean variable pj which we think of as price of the con-
straint, and we have the following equivalent definition of equilibrium allocations
in EG markets.

Definition 2. Given a market instance m ∈ Rn
+ of an EG marketM, a feasible

utility allocation u ∈ Rn
+ is an equilibrium allocation if there exists prices p ∈

R|J|+ satisfying

– For all agents i ∈ [n], mi = u(i) · rate(i) where rate(i) = (
∑

j∈J aijp(j)),
the money spent by agent i to get unit utility.

– ∀j ∈ J : p(j) > 0,
∑

i∈[n] aiju(i) = bj



Thus, in the equilibrium allocation, only those constraints are priced which
are satisfied with equality (these constraints are called tight constraints), and
each agent exhausts his or her money paying for the utility he obtains.

Example In the case of the Fisher setting with linear utilities, there is a con-
straint for each good and the prices exactly correspond to the unit price of the
good. In the resource allocation market described above, there is a price for each
edge. Price of an edge is non-zero only if it is saturated by the various flows and
each agent exhausts his or her money buying the capacities on edges.

We now consider the case when each aij above is either 0 or 1.

Definition 3. An EG market M is a UUA market if the feasible region P of
utilities can be encoded via a valuation function v : 2[n] → R as follows

P = {∀S ⊆ [n]
∑
i∈S

u(i) ≤ v(S)}

Such an EG market will be denoted as M(v), as the market constraints is com-
pletely described by v.

Definition 4. If the valuation function v in Definition 3 is a submodular func-
tion, then the market is called a Submodular Utility Allocation (SUA) market.
To remind, a function v : 2[n] → R is submodular if for all sets S, T ⊆ [n],
v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ).

Example It is not hard to see if in the resource allocation market above, all the
agents have the same source, then the coefficients in the flow polytope description
are all 0 or 1, implying the market is UUA. In fact, [14] show that this market
is SUA as well.

For UUA (and SUA) markets, as in Definition 2 the following gives a char-
acterization of the equilibrium allocation. Given a feasible utility allocation u, a
set S is called tight if u(S) ≡

∑
i∈S u(i) = v(S).

Definition 5. For a UUA market, an utility allocation u is the equilibrium al-
location iff there exists prices for each subset S ⊆ [n] such that

– ∀S ⊆ [n], p(S) > 0⇒ S is tight.
– For all i ∈ [n], mi = u(i) · rate(i) where rate(i) =

∑
i∈S p(S).

Given a UUA market, the following observation of [14] shows assumptions
we can make on the valuation function. For completeness, we give a proof of the
lemma below in the appendix.

Lemma 1. The valuation function v of UUA markets can be assumed to have
the following properties

– Non degeneracy: v(∅) = 0
– Monotonicity: S ⊆ T ⇒ v(S) ≤ v(T )



– Non redundancy of sets: For any subset of agents T ⊆ [n], there exists a
feasible utility allocation u such that

∑
i∈T u(i) = v(T ).

– Complement free: v(S ∪ T ) ≤ v(S) + v(T ).

Proof. Given the valuation function v define the covering closure v∗ of v as the
follows. For a set S ⊆ [n],

v∗(S) = {min
∑

T⊆[n]

v(T )xT s.t ∀i ∈ S
∑

T :i∈T

xT ≥ 1 xT ≥ 0}

We prove v∗ satisfies all the properties above and v∗ is feasible iff v is feasible.
It is easy to see from definition that v∗ is non degenerate and monotone. By

LP duality we have the following characterization of v∗. For any set S ⊆ [n],

v∗(S) = {max
∑
i∈S

u(i) s.t ∀T ⊆ [n]
∑
i∈T

u(i) ≤ v(T ) ∀i, u(i) ≥ 0}

We deliberately use the variable u(i) in the dual. Note that any feasible allocation
for v is a feasible solution to the above. This shows that if u is feasible for v,
then it is also feasible for v∗.

Non redundancy follows from the fact that for each set S, the dual vari-
ables corresponding to the above program gives a feasible allocation with the
property v∗(S) =

∑
i∈S u(i). Complement free follows from non redundancy as

follows: there exists feasible allocation u such that v∗(S ∪ T ) =
∑

i∈S∪T u(i) ≤∑
i∈S u(i) +

∑
i∈T u(i) ≤ v∗(S) + v∗(T ), where the last inequality follows via

feasibility.

Note that the non-redundancy condition above implies for every set S, there
exists a feasible allocation which makes it tight. We now define competitiveness.

Definition 6. ([14])
An EG market M is competitive (competition monotone in [14]) if for any

money vector m, any agent i ∈ [n] and all ε > 0, let u, u′ be the equilibrium
allocations with money m and m′, where m′(j) = m(j) for all j 6= i and m′(i) =
m(i) + ε, we have u′(j) ≤ u(j) for all j 6= i.

In Section 3, we prove the main result of this paper.

Theorem 1. If a UUA market is competitive, then it is an SUA market.

3 Competitive UUA markets are SUA markets

In this section we prove Theorem 1. First we state a property we need for non-
submodular functions, which we prove in Section 4.

Theorem 2. Given any valuation function v satisfying the conditions of Lemma
1 which is not submodular, there exists set T, i, j and a feasible utility allocation
u such that



1. T, T ∪ i, T ∪ j are tight.
2. No set containing both i and j is tight
3. All tight sets containing either i or j contain a common element l with

u(l) > 0.

Proof of Theorem 1 : Let M be any UUA market which is not an SUA
market. We construct money vectors m1 and m2 along with the respective equi-
librium utility allocations u1 and u2, with the following properties:

– m2(i) ≥ m1(i) for all i ∈ [n]
– There exists j with m2(j) = m1(j) and u2(j) > u1(j)

We first show the above contradicts competitiveness. Since m2 is greater than
m1 in each coordinate, we can construct vectors m′1,m

′
2, · · · ,m′k for some k, such

that m′1 = m1, m′k = m2 and each consecutive m′i,m
′
i+1 differ in exactly one

coordinate j′ with m′i+1(j′) > m′i(j
′). Note that m′i(j) = m1(j) = m2(j).

Let u′1, u
′
2, · · · , u′k be the equilibrium allocations corresponding to the money

vectors. We have u1 = u′1 and u2 = u′k. u2(j) > u1(j) implies for some consecu-
tive i, i+1 also u′i+1(j) > u′i(j). Since m′i+1(j) = m′i(j), we get the contradiction.

To construct the vectors m1,m2, we need the structural theorem 2. Let
T, i, j, l, u be as in the theorem. To construct both the instances, we first con-
struct feasible utilities and then derive the money vectors such that the allocation
are indeed equilibrium utility allocations.

Let u1 := u except u1(i) = 0. Define m1(k) = u1(k) for all k. By condition
1 in Theorem 2, we get T ∪ j is tight. Pricing p(T ∪ j) = 1 shows u1 is the
equilibrium allocation with respect to m1.

Let u2 := u except u2(i) = u(i) + ε, u2(j) = u(j) + ε and u2(l) = u(l) − ε
for some ε > 0. ε is picked to satisfy two properties: (a)ε ≤ u(l)/2 and (b)u2

is feasible. We show later how to pick ε. Construct m2 as follows. Define p′ :=
u1(j)/u2(j). m2(j) = m1(j), m2(k) = (2 + p′)u2(k) for all k ∈ T , and m2(i) =
u2(i). Check that m2 dominates m1 in each coordinate and m2(j) = m1(j).

To see u2 is an equilibrium allocation w.r.t m2, note that T ∪ i, T ∪ j remain
tight. Let p(T ∪ i) = 2, p(T ∪ j) = p′. Check all the conditions of Definition 5
are satisfied.

The proof is complete via the definition of ε. Note that in the allocation u2,
the sets which have more utility than in u are ones which contain i or j. By
conditions of Theorem 2, one can choose ε small enough so that u2 doesn’t make
any new set tight and is smaller than u(l)/2. To be precise, let

εi := min
Z⊆T :Z∪i not tight

(v(Z ∪ i)− u(Z ∪ i))

εj := min
Z⊆T :Z∪j not tight

(v(Z ∪ j)− u(Z ∪ j))

εij := min
Z⊆T

v(Z ∪ i ∪ j)− u(Z ∪ i ∪ j)
2

Note by definition εi, εj > 0, and by condition 3 above, εij > 0. Choose ε :=
min(εi, εj , εij , u(l)/2). Again ε > 0 which completes the proof of Theorem 1. 2



4 A property of non-submodular set functions

In this section we prove the technical theorem 2 about non-submodular functions.
Proof of Theorem 2 : Since v is not submodular, there exists a set S ∪ j

contradicting submodularity. That is, there is a set S, an agent j /∈ S and a
strict subset T ( S, such that the marginal value of j for S is greater than that
for T . That is, v(S ∪ j)− v(S) > v(T ∪ j)− v(T )

Choose S ∪ j to be the smallest set contradicting submodularity. Choose T
to be the subset of S for which v(T ∪ j)− v(T ) is minimum. T, j are that of the
theorem.

Since S is the smallest, the restriction of v to every subset of S ∪ j, in par-
ticular T is submodular. Since T is chosen to make marginal of j the minimum,
T would have cardinality exactly 1 less than that of S. That is S = T ∪ i. This
is the i in the theorem. Note, we have

v(T ∪ i ∪ j)− v(T ∪ i) > v(T ∪ j)− v(T ) (1)

Since v satisfies the non-redundancy condition, there exists a feasible alloca-
tion u which tightens T . For any u, define the family of tight subsets of T as
F = {Z ⊆ T : u(Z) = v(Z)}. Note that F is nonempty since T ∈ F . Choose u so
that |F| is minimum. Define u(j) := v(T ∪ j)− v(T ) and u(i) := v(T ∪ i)− v(T ).
This completes the definition of u of the theorem.

We now prove feasibility of u and the properties 1,2,3 in the statement of the
theorem. We need the following structural facts which we prove later.

Lemma 2. F is closed under taking complements, that is, if Z ∈ F , so is T \Z

Lemma 3. Let v restricted to a set X be submodular. The set of tight subsets
of X are closed under taking unions and intersections.

Lemma 4. Union of disjoint tight sets is tight.

We first show that u is feasible. Lemma 5 shows the feasibility for sets con-
taining either i or j. Lemma 6 shows the feasibility for sets containing both,
and in fact proves Property 2. This is sufficient byb definition. Property 1 of the
theorem follows directly from definition of u. We prove property 3 after these
two lemmas.

Lemma 5. u is feasible over T ∪ i and T ∪ j. In fact, if Z ∪ i or Z ∪ j is tight,
then so is Z.

Proof. Pick any subset Z ⊆ T . We get u(Z ∪ i) = u(Z) + v(T ∪ i)− v(T ). Since
v restricted to T ∪ i is submodular, we get u(Z ∪ i) ≤ u(Z) + v(Z ∪ i)− v(Z) ≤
v(Z ∪ i). Thus u is feasible over T ∪ i. Also, if Z ∪ i were tight, we would have
u(Z) = v(Z) implying Z were tight.

Lemma 6. For all subsets Z ⊆ T , u(Z ∪ i ∪ j) < v(Z ∪ i ∪ j).



Proof. Pick any set Z. Note that

u(Z ∪ i ∪ j) = u(Z) + v(T ∪ i)− v(T ) + v(T ∪ j)− v(T ) (2)

Note that the union of sets (Z∪i∪j)∪(T \Z) = T∪i∪j. Thus by the complement
free condition of v, we get

v(Z ∪ i ∪ j) ≥ v(T ∪ i ∪ j)− v(T \ Z)

Two cases arise. Suppose Z ∈ F , that is, Z is tight. We take care of the other
case later. Then, by Lemma 2, T \Z is also tight. Thus, v(Z) + v(T \Z) = v(T )
since all the sets are tight. Putting this in above equation and applying Equation
1 we get v(Z ∪ i∪ j) ≥ v(T ∪ i∪ j)− v(T ) + v(Z) > v(T ∪ i) + v(T ∪ j)− v(T )−
v(T ) + v(Z) ≥ u(Z ∪ i ∪ j) from equation 2.

Now suppose Z /∈ F , that is, u(Z) < v(Z). Thus Equation 2 implies

u(Z ∪ i ∪ j) < v(Z) + v(T ∪ i)− v(T ) + v(T ∪ j)− v(T )

By submodularity of T ∪ i, we get v(T ∪ i)− v(T ) ≤ v(Z ∪ i)− v(Z). Also,
by choice of T to be the subset of T ∪ i minimizing v(T ∪ j) − v(T ), we get
v(T ∪ j) − v(T ) ≤ v(Z ∪ i ∪ j) − v(Z ∪ i). Plugging this in the equation above
proves the lemma.

To prove property 3, we make a few definitions. Analogous to F , define
Fi := {Z ⊆ T : u(Z ∪ i) = v(Z ∪ i)}. Similarly define Fj . By Lemma 5, all sets
in Fi and Fj are tight. Property 3 is implied by

⋂
Z∈Fi,Fj

Z contains an element
l with u(l) > 0.

Lemma 7 shows no two sets in Fi or Fj are disjoint. By Lemma 3, this implies
the tight sets Ti :=

⋂
Z∈Fi

Z (similarly Tj) are non-empty. Lemma 8 shows that
Ti and Tj are not disjoint and in fact v(Ti∩Tj) > 0 which by tightness of Ti∩Tj

proves implies existence of l.

Lemma 7. No two sets in Fi or Fj are disjoint.

Proof. We prove for Fj , that for Fi is similar. Suppose there existed A,B ∈ Fj

disjoint. Since A∪ j and B ∪ j are tight, and v is submodular when restricted to
T ∪ j, we get the intersection of A∪ j and B ∪ j, the set j, is tight. Since T ∪ i is
tight by Condition 1, we get T ∪ i ∪ j is tight, contradicting Condition 2, which
is already proven.

Lemma 8. v(Ti ∩ Tj) > 0

Proof. Since Ti and Tj are tight, so is Ti∪Tj and by Lemma 2, so is T \(Ti∪Tj).
If Ti and Tj were disjoint, then T ∪ i ∪ j is the disjoint union of the tight sets
(Ti ∪ i), (Tj ∪ j) and T \ (Ti ∪ Tj). By lemma 4, T ∪ i ∪ j is tight contradicting
Condition 2. Note that we cannot use Lemma 3 as v is not submodular when
restricted to T ∪ i ∪ j, and need disjoint condition.

2



4.1 Proofs of facts used in Theorem 2

Proof of Lemma 3 : Let A,B ⊂ X be two tight subsets of X. Since u is a
feasible allocation, Thus we get

u(A) + u(B) = u(A ∪B) + u(A ∩B)

≤ v(A ∪B) + v(A ∩B) ≤ v(A) + v(B) = u(A) + u(B)

implying equality throughout. In particular, u(A∩B) = v(A∩B) and u(A∪
B) = v(A ∪B). 2

Proof of Lemma 4 : For any disjoint sets A,B, u(A ∪ B) = u(A) + u(B)
and thus v(A∪B) ≤ v(A) + v(B) = u(A) + u(B) = u(A∪B) ≤ v(A∪B) where
the first inequality follows from complement-free condition on v. 2

Proof of Lemma 2 : Suppose T \Z is not tight. We modify u so that no new
set becomes tight and Z also becomes untight. This contradicts the minimality
of F . Call T \ z as X.

Pick an element x ∈ X. Let A be the smallest tight set containing x. This is
defined since T contains x. We might assume x is picked so that A intersects Z.
If no such x existed, then X is a union of tight sets and we are done by Lemma
3.

Denote A ∩ Z by Y . Let y ∈ Y be with u(z) > 0. We prove such a y exists
shortly. Since A was the smallest tight set containing x, all tight sets containing
x also contains A. Therefore, modifying u to give suitable small more utility to
x and exactly that less to y renders it feasible and leaves both Z and T \ Z
untight.

To see the existence of y ∈ Y with u(y) > 0, note that if not then we
get u(Y ) = 0. Thus v(A) = u(A) = u(A ∩ X) ≤ v(A ∩ X) ≤ v(A), implying
A ∩X ( A is also tight. Thus contradicts the minimality of A. 2
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