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Abstract. Recently, Jain, Mahdian and Saberi [5] had given a FPTAS
for the problem of computing a market equilibrium in the Arrow-Debreu
setting, when the utilities are linear functions. Their running time de-
pended on the size of the numbers representing the utilities and endow-
ments of the buyers. In this paper, we give a strongly polynomial time
approximation scheme for this problem. Our algorithm builds upon the
main ideas behind the algorithm in [3].

1 Introduction

General Equilibrium Theory, pioneered by Leon Walras [7], deals with the com-
plex interaction between agents in a market, each willing to trade the goods he
possesses for ones he desires. The demand for each good is determined as follows:
Each good is assigned a price, the buyers sell their endowments at these prices,
and buy the optimal bundle of goods they can afford. A market equilibrium cor-
responds to a situation when the demand and supply for each good are exactly
balanced. The prices are called equilibrium prices, or market clearing prices. The
goods are assumed to be divisible. The desirability of each bundle of goods is
expressed by a utility function. In their seminal work, Arrow and Debreu [1]
proved the existence of equilibrium prices in this model of a market, when the
utilities are concave functions. However, their proof appeals to fixed point theo-
rems and is non constructive. The ultimate goal of equilibrium theory as a tool
for predicting and evaluating economic policies can only be achieved if one can
actually find an equilibrium. There have been some impressive algorithms for
this problem, most notably by Scarf [6], but no polynomial time algorithm is
known.

Of special interest, from a computational point of view, is the case when
the utilities are linear functions. Deng, Papadimitriou and Safra [2] stated this
particular case as open. [5] gave a FPTAS for it. Here, we improve their result to
give a strongly polynomial time approximation scheme. We now formally define
the model:

1.1 Formal Setting

First, a note about notation. We will use bold face Roman letters to denote
vectors. If x is a vector, then the ith component of x will be denoted by xi.



| · | and ‖ · ‖ denote the l1 and the l2-norms of a vector, respectively. A market
consists of:

1. A set of divisible goods, say A and a set of buyers, say B. W.l.o.g., we
may assume that A = {1, 2, . . . , n}, B = {1, 2, . . . , n′} and that the amount
available of each good is unity.

2. The desirability of a bundle of goods, measured by the total order defined
by a utility function, Ui(x) =

∑
j∈A uijxj , for each buyer i ∈ B. A bundle

x ∈ [0, 1]A is more desirable to i than x′ if and only if Ui(x) > Ui(x′).
3. The endowments of the buyers, which they want to trade for the goods. In

the Fisher setting, the endowment of buyer i is mi units of money. In the
AD setting the endowment of each agent i is a bundle of goods ei ∈ [0, 1]A

(instead of money, as before). ei’s satisfy: ∀ j ∈ A,
∑
i∈B eij = 1.

Therefore, an instance of a market consists of the 4-tuple

{n, n′, (U1, U2, . . . , Un′) , (e1, e2, . . . , en′)} .

An allocation is a distribution of goods among the buyers. It is represented
by the vectors xi ∈ [0, 1]A, ∀ i ∈ B. Trade in the market is facilitated by the
introduction of prices. Let p = (p1, p2, . . . , pn) ∈ Rn denote the price vector (pj
is the price of good j). Given these prices, an allocation is said to be a market
clearing allocation if it satisfies:

Budget constraint: The buyer cannot spend more than what he has. In the
Fisher setting, this translates to: xi ·p ≤ mi,∀ i ∈ B. In the AD setting the
amount of money with a buyer, mi = ei · p, depends on the prices.

Optimality: For each buyer, no other bundle of goods that satisfies the budget
constraint is more desirable than the one allocated.

Market clearing: There is neither deficiency nor surplus of any goods: ∀ j ∈
A,
∑
i∈B xij = 1.

A price vector for which a market clearing allocation exists is called a market
clearing price or equilibrium price. Given an instance of a market, the goal is
to compute a market clearing price and a market clearing allocation, together
which we call as a market equilibrium.

Approximate Market Equilibrium As defined earlier, an allocation is mar-
ket clearing if it satisfies the 3 conditions: Budget constraint, Optimality and
Market clearing. We define 2 different notions of approximate market equilibrium
by relaxing the Optimality and the Market Clearing conditions.

Definition 1 (Approximate Market clearing). An allocation satisfies the ε-
approximate market clearing condition if neither deficiency nor surplus of goods
is too high in value:

|ξ(p)− p| ≤ ε, |p‖ = 1

where ξ() is the demand in terms of money, i.e., ξj(p) =
∑
i∈B xijpj.



An allocation (and hence the price) is said to be ε-approximate market clear-
ing if it satisfies the Budget constraint, Optimality and ε-approximate Market
clearing conditions.

The main result of the paper is:

Theorem 1. For all ε > 0 there is an algorithm that for any instance of the
Market in the AD setting, gives an ε-approximate market equilibrium and needs
O
(
n4

ε log n
ε

)
max-flow computations.

In the Fisher setting, there is a demarcation between the buyers and the
sellers. Each buyer come with a specified amount of money. As a result, the
equilibrium prices are unique. The algorithm in [3] (DPSV algorithm) starts with
prices so low that the buyers have an excess of money. It iteratively increases
the prices so that the surplus money with the buyers keeps decreasing. When
the surplus vanishes, equilibrium is attained.

In the AD setting, the equilibrium prices are not unique. So we start with
arbitrary prices and compute the buyers’ budgets from their initial endowments.
Let P be the total prices of all goods, also equal to the total budget of all buyers.
Let f be the maximum sales possible, such that each buyer buys only the goods
that give him the maximum “bang per buck” while not exceeding his budget.
The algorithm modifies the prices so that the ratio f/P approaches 1.

1.2 Related Work

Deng, Papadimitriou and Safra[2] gave a polynomial time algorithm for the AD
setting when the number of goods is bounded. They also stated the problem,
as open, of doing the same for unbounded number of goods. A partial answer
was given to this by Devanur, et al [3]. They gave a polynomial time algo-
rithm for the Fisher setting, with linear utilities and no constraint on number
of goods. However, no polynomial time algorithm is known for the AD setting,
even when the utilities are linear. Jain, Mahdian and Saberi [5] gave a FPTAS
for this case. In particular they get an ε-approximate approximation that re-
quires O

(
n4

ε (log n+ n logU + logM)
)

max-flow computations, where M and
U depend on the endowments and utility functions Their algorithm depends on
the size of the numbers giving the utility rates and endowments of the buyers. In
this paper we give a strongly polynomial time approximation scheme that runs
in time O

(
n4

ε log n
ε

)
, where n is the number of buyers. Note that the running

time of our algorithm does not depend on the size of the utility rates and en-
dowments of the buyers. This is analogous to the standard notion of strongly
polynomial time algorithms where the running time is independent of the size of
the numbers occurring in the instance. The improvement comes about because
[5] use the algorithm in [3] as a black box, whereas we open it up and build upon
the main ideas in [3].



1.3 Organization

The paper is organized as follows: In Section 2, the basic definitions and results
of [3] are summarized. The algorithm is stated in Section 3 and analyzed in
Section 4. Conclusion and Open Problems are in Section 5.

2 Preliminaries

This section summarizes the basic definitions and algorithm of [3] that we need
here. Some of the results that we state here appear only in the full version [4].
Let p = (p1, . . . , pn) be any price vector. αi = maxj∈A{uij/pj} is the maximum
bang per buck that buyer i can get from any good. He is equally happy with any
combination of goods attaining this maximum. Define the bipartite graph G with
bipartition (A,B) and for i ∈ B, j ∈ A, (i, j) is an edge in G iff αi = uij/pj . Call
this the equality subgraph and its edges the equality edges. Consider the following
network: Direct edges of G from A to B and assign a capacity of infinity to all
these edges. Introduce source vertex s and a directed edge from s to each vertex
j ∈ A with a capacity of pj . Introduce sink vertex t and a directed edge from
each vertex i ∈ B to t with a capacity of ei. This network will be denoted N(p).

W.r.t. prices p, for T ⊆ B, define its money M(T ) :=
∑
i∈T mi. Similarly,

for set S ⊆ A, define its money P (S) :=
∑
j∈S pj and f(S) = the maximum

flow through S; the context will clarify the price vector p. For S ⊆ A, define its
neighborhood in N(p)

Γ (S) = {i ∈ B | ∃j ∈ S with(i, j) ∈ G}.

By the assumption that each good has a potential buyer, Γ (A) = B. Let M =
M(B), P = P (A) and f = f(A).

For a given flow f in the network N(p), define the surplus of buyer i, γi(p, f),
to be the residual capacity of the edge (i, t) with respect to f , which is equal
to mi minus the flow sent through the edge (i, t). Define the surplus vector
γ(p, f) := (γ1(p, f), γ2(p, f), . . . , γn(p, f)).

Definition 2. Balanced flow for any given p, A max flow that minimizes
‖γ(p, f)‖ over all choices of f is called a balanced flow.

If ‖γ(p, f)‖ < ‖γ(p, f ′)‖, then we say f is more balanced than f ′.

For a given p and a flow f in N(p), let R(p, f) be the residual network of
N(p) with respect to the flow f . The following theorem characterizes all balanced
flows:

Lemma 1. ([4]) A max flow f is balanced if and only if the residual network
w.r.t the flow, R(p, f) is such that if there is a path from a buyer j to another
buyer i in R(p, f) \ {s, t}, then γi(p, f) ≤ γj(p, f).

Lemma 2. ([4]) For any given p, if f, f ′ are balanced flows, then γ(p, f) =
γ(p, f ′).



As a result, one can define the surplus vector for a given price as γ(p) :=
γ(p, f) where f is the balanced flow in N(p).

Lemma 3. ([4]) A balanced flow in N(p) can be found using O(n) max-flow
computations.

3 The Algorithm

Here we describe what we call as one phase of the algorithm. At the beginning of
each phase, assume that a price vector p and a vector of incomes, m are given.
So construct the network N(p) and find a balanced flow in it. The graph G is
then partitioned into an active and a frozen subgraph. The algorithm proceeds
by raising the prices of goods in the active subgraph. Let H ⊂ B be the set
of buyers whose surplus is equal to the maximum surplus in B, say δ. H ′ ⊂ A
is the set of goods adjacent to at least one buyer in H. The active graph is
initialized to (H,H ′). Let (F, F ′) denote the frozen part, that is F := B \H and
F ′ := A \H ′. Prices of goods in H ′ are raised in such a way that the equality
edges in it are retained. This is ensured by multiplying prices of all these goods
by x and gradually increasing x, starting with x = 1. Note that there are no
edges from H to F ′. This ensures that the edges from H to H ′ remain in the
equality graph. Also, all edges from F to H ′ are deleted, since they go out of
the equality graph as soon as the prices in H ′ are raised.

Each phase is divided into iterations in which the prices of goods in H ′ are
increased until one of the two following events happen:

1. A new edge (i, j) appears: This happens because for buyers in H, the goods
in F ′ are getting relatively less expensive and hence more desirable. First
compute a balanced flow f for the new equality subgraph. If some buyer in
H has a surplus less than δ/2 then that is the end of the phase. If all the
buyers in H have surplus at least δ/2 then add to H all the vertices that
can reach any vertex in H in the residual network corresponding to f in G.
Continue the next iteration

2. A set goes tight: That is, for some S ⊆ H ′, P (S) = M(Γ (S)). The surplus of
some of the buyers in H is dropped to zero and that terminates the phase.

Note that finding which edge appears next is easy. Also, [3] prove that finding
the first set to go tight can be done using O(n) max-flow computations.

Lemma 4. ([4]) The number of iterations executed in a phase is at most n.
Hence each phase requires O(n2) max-flow computations.

In each phase, the l2 norm of the surplus vector is reduced by a polynomial
fraction.

Lemma 5. ([4]) If p0 and p∗ are price vectors before and after a phase, ‖γ(p∗)‖2 ≤
‖γ(p0)‖2(1− 1

4n2 ).



An epoch of the algorithm involves running several phases, with a fixed m.
Typically, an epoch ends when |γ(p)| drops to a specified fraction of its initial
value.

Lemma 6. If p0 and p∗ are price vectors before and after an epoch, then the
number of phases in the epoch is O

(
n2 log

(
|γ(p0)|
|γ(p∗)|n

))
.

The main difference between the Fisher setting and the AD setting is that the
incomes of the buyers are fixed in the Fisher setting, whereas they are dependent
on the prices in the AD setting. In order to avoid having to change the incomes
continuously, the algorithm only updates them at the end of each epoch.

The main algorithm is as follows: Start with the price vector p = 1n and
compute the incomes. Run an epoch until |γ(p)| ≤ nε. If at this point either
P −M ≤ nε or P ≥ n

ε , then end the algorithm. Otherwise update the incomes
and run the next epoch.

4 Analysis of the Algorithm

Lemma 7. A price p is 2ε-approximate market clearing if w.r.t. p,
P−f
P ≤ ε.

Proof. It follows from the observation that |ξ(p)− p| ≤ 2(P − f).

Proof (of Theorem 1). Correctness: Note that P ≥ n and P ≥ f . |γ(p)| =
M − f . Since the algorithm always increases the prices of goods in H ′, any
increase in P always results in an equal increase in f . Each subsequent run
starts with the prices and flow obtained in the previous run. Hence P − f never
increases. P − f ≤ n. If when the algorithm ends, P −M ≤ nε, then

P − f = (P −M) + (M − f) ≤ 2nε⇒ P − f
P

≤ 2ε.

On the other hand, if P ≥ n
ε , then again

P − f
P

≤ n

(n/ε)
= ε.

Running time: Since at the beginning of each epoch |γ(p)| ≤ P − f ≤ n
and the epoch ends if |γ(p)| ≤ nε, there are O(n2 log n

ε ) phases in each epoch. If
in each epoch P −M > nε, then after 1

ε2 epochs P ≥ n
ε . Moreover, from Lemma

4, each phase needs O(n2) max-flow computations. Hence the algorithm needs
O
(
n4

ε2 log n
ε

)
max-flow computations.

The running time can be brought down by a more complicated rule to end
epochs (and update incomes): During the running of the algorithm, we maintain
a variable α such that P − f ≤ nα. Initially, α = 1. Run an epoch until |γ(p)| =
M − f ≤ nα/4. If at this stage P ≥ nα

ε then end the algorithm. If P −M ≤ nα
4



then α← α/2. If α ≤ ε then end the algorithm. Otherwise, update the incomes
and continue with the next epoch.

It is clear that the algorithm is correct. At the end of each epoch either
α← α/2 or P increases by at least nα

4 . The former can happen O(log 1
ε ) times,

and the latter O( 1
ε ) times. The theorem follows.

5 Conclusion and Open Problems

In this paper, we give a strongly polynomial time approximation scheme for
the problem of computing market equilibrium with linear utilities. We leave
open the problem of finding an exact equilibrium in polynomial time. The AD
setting appears to be computationally harder than the Fisher setting (for which a
polynomial time exact algorithm is known [3]). For one, the incomes of the buyers
are changing with the prices. Hence any algorithm that iteratively improves the
prices (like the DPSV algorithm) is chasing a moving target. Moreover, it does
not support unique equilibrium prices. Consider two agents, each coming to the
market with a unit amount of distinct goods. Suppose that the utility of each
agent for her good far outweighs the utility for the other good. Then, for a whole
continuum of prices we have market equilibria in which each agent buys only
what she has. This example may also be pointing out the difficulty of obtaining a
polynomial time algorithm for this model, even when restricted to linear utilities.
The difficulty is: which equilibrium price should the algorithm shoot for? Note
that even when a discrete algorithm is faced with multiple, though discrete,
solutions, uniqueness is arbitrarily imposed – by breaking ties arbitrarily, and
asking for the lexicographically first solution under the imposed ordering.
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