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Abstract

We give a simple proof that the ranking algorithm
of Karp, Vazirani and Vazirani [KVV90] is 1-1/e com-
petitive for the online bipartite matching problem.
The proof is via a randomized primal-dual argument.
Primal-dual algorithms have been successfully used for
many online algorithm problems, but the dual con-
straints are always satisfied deterministically. This is
the first instance of a non-trivial randomized primal-
dual algorithm in which the dual constraints only hold
in expectation. The approach also generalizes easily
to the vertex-weighted version considered by Agarwal
et al. [AGKM11]. Further we show that the proof is
very similar to the deterministic primal-dual argument
for the online budgeted allocation problem with small
bids (also called the AdWords problem) of Mehta et
al. [MSVV05].

1 Introduction

The online bipartite matching problem is as follows.
An instance of the problem is a bipartite graph G =
(L,R,E) and the objective is to find a matching of
greatest cardinality in the graph. The “online” nature
of the problem is that the graph is revealed over time:
in each step a vertex j in R arrives and all the edges
incident to it are revealed. The algorithm has to make
decisions online as well; that is, the algorithm must
decide the neighbor that j is matched to (if any) before
the next vertex in R arrives. Matches once made cannot
be revoked.

An obvious greedy algorithm for this problem
matches each vertex with an arbitrary unmatched
neighbor whenever such a choice is possible. This al-
gorithm always succeeds in choosing a matching which
is set-wise maximal, and therefore has at least half as
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many edges as the maximum matching. In a seminal
paper in 1990, Karp, Vazirani, and Vazirani [KVV90]
presented a randomized algorithm known as ranking
that improves this guarantee, ensuring that in expec-
tation the algorithm chooses at least 1 − 1

e fraction of
the edges in the maximum matching. An easy lower
bound construction in [KVV90] shows that no random-
ized online algorithm can achieve a better worst-case
approximation ratio.

The ranking algorithm is extremely simple — it
simply selects a random total ordering of the elements
of L, and when matching a newly arrived vertex j ∈ R
to an unmatched neighbor, it selects the one that occurs
earliest in this ordering — but the analysis in the
original paper by Karp, Vazirani, and Vazirani was
surprisingly complicated. Subsequent papers by Goel
and Mehta [GM08] and Birnbaum and Mathieu [BM08]
simplified the analysis considerably.

In this short paper, we provide what we believe to
be the simplest analysis yet of the ranking algorithm,
interpreting it as a randomized online primal-dual algo-
rithm. By laying bare the primal-dual foundations of
the ranking algorithm, our analysis unifies and syn-
thesizes two fundamental strands of research on online
matching algorithms, one originating from the analysis
of the integral version of the problem and the other from
the online fractional matching problem.

1.1 Overview of online matching algorithms
Essentially two kinds of online matching problems stud-
ied in the prior literature are within the scope1 of this
paper. The first kind is online integral matching and
the second kind is online fractional matching. The al-
gorithm of Karp, Vazirani, and Vazirani [KVV90] is de-
signed for unweighted online integral matching. Here we
already know that any deterministic algorithm cannot
be better than 1

2 -competitive in the worst case. Sim-
ple examples show that for the integral version of the
problem, randomization is essential for any competitive
ratio above 1

2 . The randomized algorithm of [KVV90],

1For example, online matching with stochastic assumptions is
widely studied but lies outside our paper’s scope.



also known as ranking, is essentially the only known
randomized approach attaining optimal worst-case per-
formance. The same approach ranking is also used in
[AGKM11] for online vertex-weighted integral match-
ing; that paper essentially summarizes all progress to
date on the integral version of the problem, since it en-
compasses [KVV90] as a special case. The algorithm
we analyze in this paper is also exactly the same rank-
ing algorithm when applied to both the unweighted and
vertex-weighted integral matching problems. Thus, the
novelty of our approach lies in the analysis alone, not in
the algorithm or performance guarantee.

The other type of algorithm, which is more suit-
able for online fractional matching, was introduced by
Kalyanasundaram and Pruhs [KP00]. They framed
their problem as the online b-matching problem, in
which each node can be matched up to b times, where
b is typically large. As b → ∞, their scenario becomes
equivalent to online fractional matching. Since the frac-
tional version of the problem can only be easier than
the integral version, far more progress has been made
for this set of problems. The primary approach for this
set of problems, known as waterlevel, is a determin-
istic approach; for fractional matching problems, ran-
domization does not offer any additional power. The
waterlevel algorithms maintain a level (or potential,
or time, the choice of terminology is immaterial) for each
node on the offline side, L. When a new node on the
online side, R, arrives, it is brought into the algorithm
in small pieces (either as an assumption or within the
flexibility of fractional assignment). The waterlevel
algorithms then apply an appropriate function of two
inputs on each node of the offline side. One input is
the existing level of the node and the other input is the
weight of the edge between the node and the arriving
node. The arriving node is assigned to whichever neigh-
bor maximizes the value of this function. The essential
difficulty in this set of problems thus lies in constructing
the functions that combine the level of the node and the
weight of the edge.

The algorithms of [MSVV05] and [BJN07] follow
the same pattern, as does the algorithm of [KP00].
When the algorithms of [MSVV05] and [BJN07] are re-
stricted to the unweighted version, they become equiv-
alent to [KP00] (and not [KVV90]). The algorithm of
[BJN07] showed how to systematically obtain the requi-
site two-variable function using the primal-dual schema.
This systematic approach then turned out to be useful
in the algorithm of [DJ12], which is currently the state
of the art for online fractional matching problems.

As discussed, there are two streams of problems,
integral and fractional. There are likewise two sets of
approaches: ranking for the integral version and wa-

terlevel (= primal-dual) for the fractional version.
So far these two problems and the two approaches have
been mostly disconnected, despite their similarity and
the intriguing coincidence that the optimal competitive
ratio for both problems is 1− 1

e . A big open problem in
the area which generalizes both [KVV90] and [MSVV05]
is the online (integral) budgeted allocation problem. We
make concrete progress in this paper by unifying the two
approaches, which we believe will be useful in attacking
the general problem.

1.2 Our contribution in a nutshell We provide
a reinterpretation of the ranking algorithm as a ran-
domized Primal-Dual algorithm. Under this interpreta-
tion, the algorithm combines the Primal-Dual fractional
matching schema of [BJN07, DJ12] with a novel dual-
based online randomized rounding step.2 The technique
for constructing primal and dual solutions bears a strong
resemblance to the fractional matching algorithms in
[BJN07, DJ12], with a crucial twist: our randomized
algorithm does not construct a feasible dual solution;
instead it outputs a random dual vector that is feasible
in expectation. Relaxing dual feasibility to hold only in
expectation is vital to the goal of constructing the in-
teger primal and fractional dual solutions jointly in an
online fashion.

To describe the algorithm in a bit more detail, it
is necessary to recall the basic Primal-Dual fractional
matching framework of [BJN07]. That algorithm keeps
track, for each vertex i ∈ L on the offline side, of the
total fractional weight yi that has been assigned to i.
One can visualize yi as a “water level” associated to
i, initially set to zero. The fractional allocation of
vertex j is computed by continuously “filling water”
into the neighboring vertices with the lowest water level,
until either one unit has been allocated in total or
the water level in every neighboring vertex reaches 1.
While computing this fractional primal solution, the
algorithm also associates a dual value to each vertex
which depends on its own water level (if the vertex
belongs to the offline side) or the water level of the
neighboring vertices (if it belongs to the online side).
The function g that relates water levels to dual values is
obtained by solving an integral equation that is carefully
chosen to ensure dual feasibility.

Our randomized Primal-Dual interpretation of the
ranking algorithm can also be visualized as a water-
filling process, but with a different stopping condition.
Instead of stopping the process deterministically when
one unit has been assigned, each vertex i has a uniformly

2It is worth mentioning that, unlike many other randomized
rounding procedures, ours does not output a solution whose

expected value is a scaled copy of the given fractional solution.



random threshold Yi and the water-filling process for
node j stops the first time the water level reaches
the threshold of an unmatched neighbor i. At that
time, the edge (i, j) is added to the matching and the
dual variables corresponding to vertices i and j are
set according to the water level at i, using the same
function g as in the fractional matching algorithm. The
dual variables of the other unmatched neighbors of j
remain at zero, potentially leading to dual infeasibility.
We are able to prove, however, that the expected
values of the dual variables constitute a feasible dual
solution, by appealing to the same integral equation
that underpins the Primal-Dual analysis of the online
fractional matching algorithm.

It is worth pointing out that in our Primal-Dual
interpretation of the ranking algorithm, the random-
ized procedure for computing the edge-set of the match-
ing is integrated into the online Primal-Dual algorithm
that computes the fractional primal and dual solutions.
This is in contrast to simpler approaches that treat the
fractional matching algorithm as a black box and ap-
ply online randomized rounding to the output of the
fractional algorithm. Since the online fractional match-
ing algorithms of [KP00, BJN07, DJ12] are (1 − 1

e )-
competitive, and since the fractional matching that they
output can be represented as a convex combination of
integral matchings, it is tempting to hope that there
is an online randomized rounding procedure that con-
structs an integral matching whose expected size equals
the weight of the fractional matching computed by the
waterlevel algorithm. In fact, there are simple ex-
amples3 that demonstrate that this is impossible, for in-
stance an 8-cycle in which the fractional solution places
a value of 1

2 on each edge and the first two arriving
vertices are diametrically opposite one another.

Our equivalent formulation of ranking opens it-
self up to potential generalizations, e.g., the gener-
alization to the vertex-weighted matching algorithm
of [AGKM11] is quite easy and natural. Our Dom-
inance and Monotonicity Lemmas — Lemmas 2.2
and 2.3 — are stated within the framework of du-
als, but the essence of these lemmas is also present
in [KVV90] (though not the lemmas themselves as
stated).4 Much closer versions of these lemmas are also
present in [GM08] and [BM08], both of which give al-
ternate proofs of [KVV90]. Finally, we note that a blog
post [Mat11] by Claire Mathieu, who is also the sec-
ond author of [BM08], gives an (informal but complete)
explanation of our framework.

3The earliest such example that was presented to us is due to

Nick Harvey [Har06].
4The [KVV90] analysis was based on showing that the upper

triangular graph is the worst case graph.

2 Algorithm and Analysis

We begin with a reinterpretation of the ranking al-
gorithm, in a way that is conducive to our analysis.
Instead of picking a random total ordering of the ver-
tices in L, each vertex in L picks a random number in
[0, 1] and a vertex j ∈ R, upon its arrival, is assigned to
the unmatched neighbor who picked the lowest number.
The algorithm is presented as Algorithm 1 below.

Algorithm 1: The ranking algorithm.

foreach i ∈ L do
Pick Yi ∈ [0, 1] uniformly at random

foreach j ∈ R do
When j arrives, let N(j) denote the set of
unmatched neighbors of j;
if N(j) = ∅ then

j remains unmatched
else

Match j to arg min{Yi : i ∈ N(j)}

To analyze the algorithm, we note the standard LP
relaxation for matching and its dual.

maximize
∑

(i,j)∈E

xij s.t.

∀ i ∈ V,
∑

j:(i,j)∈E

xij ≤ 1.

∀ (i, j) ∈ E, xij ≥ 0.

minimize
∑
i∈L

αi +
∑
j∈R

βj

s.t. ∀ (i, j) ∈ E,αi + βj ≥ 1.

∀ i, j, αi, βj ≥ 0.

Our analysis constructs a dual solution which is also
randomized. The duals we construct may not always
be feasible. The competitive ratio of F ∈ [0, 1] will
follow from the fact that the value of the dual solution
is always a factor 1/F of the size of the matching found,
and that the expectation of the duals is feasible. This
is summarized in the following lemma.

Lemma 2.1. Suppose that a randomized primal-dual
algorithm has a primal feasible solution with value P
(which is a random variable) and a dual solution which
is not necessarily feasible, with value D (which is also a
random variable) such that

1. for some universal constant F , P ≥ FD, always,
and



2. the expectations of the randomized dual variables
form a feasible dual solution.

The expectation of P is then at least F · OPT where
OPT is the value of the optimum solution.

Proof. Since P ≥ FD always, taking expectations,
E[P ] ≥ F ·E[D]. The cost of the dual solution obtained
by taking the expectations of the randomized dual
variables is E[D] and they form a feasible dual solution,
therefore E[D] ≥ OPT. Hence E[P ] ≥ F ·OPT.

Our construction of the duals depends on a mono-
tone non-decreasing function g : [0, 1]→ [0, 1]. We later
identify other properties of g that we need in order to
prove a competitive ratio of F . Whenever i is matched
to j, let

αi = g(Yi)/F, βj = (1− g(Yi))/F.

For all unmatched i and j, set αi = βj = 0. It
will be useful to interpret the algorithm as follows: on
matching i to j, we generate a value of 1 for the primal,
which translates to a value of 1/F for the dual. Each
unmatched vertex i ∈ L that is a neighbor of j offers
(1 − g(Yi))/F of this value to j (to be assigned to βj),
while keeping the rest to itself (to be assigned to αi).
Then j is matched to the vertex that makes the highest
offer.

Before we show that the expectation of the duals
is feasible, we need certain properties of the algorithm
specified by the following two lemmas. These properties
are well-known and form the basis of all the earlier
proofs. Let (i, j) ∈ E be any edge in the graph.
Consider an instance of the algorithm on G \ {i}, with
the same choice of Yi′ for all other i′ ∈ L. Let yc be
the value of Yi′ for the i′ that is matched to j. Define
yc to be 1 if j is not matched. Let βcj be the value of
βj in this run. We further impose that g(1) = 1, which
implies βcj = (1− g(yc))/F .

Lemma 2.2. (Dominance Lemma) Given Yi′ for all
other i′ ∈ L, i gets matched if Yi < yc.

Proof. Suppose i is not matched when j arrives. This
means that the run of the algorithm until then is
identical to the run without i. From the definition of
yc, in the run without i, j is matched to i′ such that
Yi′ = yc. Since Yi < yc, j is matched to i.

Lemma 2.3. (Monotonicity Lemma) Given Yi′ for
all other i′ ∈ L, for all choices of Yi, βj ≥ βcj .

Proof. Consider executing the algorithm on graphs G
and G \ {i} in parallel. At the start of every step of the

two parallel executions, the unmatched vertices in L for
the G execution constitute a superset of the unmatched
vertices in L for the G \ {i} execution. This statement
is easily proven by induction: given that it holds at the
start of one step, the only way it could be violated at
the start of the next step is if the G execution chooses
a vertex i′ ∈ L that is also unmatched, but is not
chosen, in the G \ {i} execution. Instead the G \ {i}
execution must choose some other vertex i′′ such that
Yi′′ < Yi′ . By our induction hypothesis i′′ was also
unmatched in the G execution, contradicting the fact
that the algorithm chose i′ instead.

When node j arrives, its unmatched neighbors in
the G execution form a superset of its unmatched
neighbors in the G \ {i} execution, so in both the
executions j has an unmatched neighbor whose Y -value
is yc. If the algorithm instead chooses another neighbor
of j, its Y -value can be at most yc and hence, by the
monotonicity of g, we have βj ≥ βcj .

We now show that for any g that satisfies a certain
integral equation, the above properties imply a compet-
itive ratio of F for ranking. This integral equation is
also at the heart of the deterministic primal-dual anal-
ysis for the fractional matching problem. We will later
give a short proof of this as well, in Section 3.2.

Lemma 2.4. If g and F are such that

(2.1) ∀ θ ∈ [0, 1]

∫ θ

0

g(y) dy + 1− g(θ) ≥ F,

then the duals constructed are feasible in expectation.

Proof. We show that for all (i, j) ∈ E,

EYi
[αi + βj ] ≥ 1

for all choices of Yi′ for all i′ 6= i ∈ L. By the Dominance
Lemma (Lemma 2.2) i is matched whenever Yi ≤ yc.
Hence

EYi
[αi] ≥

∫ yc

0

g(y) dy/F.

By the Monotonicity Lemma (Lemma 2.3), βj ≥ βcj =
(1 − g(yc))/F for all choices of Yi. The lemma now
follows from condition (2.1) in the hypothesis.

It is easy to solve the integral equation (2.1) along
with the boundary condition g(1) = 1 to get an explicit
function g. (2.1) does not have a solution satisfying
g(1) = 1 for all values of F ; one can also calculate the
largest value of F for which it does have a solution,
which turns out to be 1− 1/e.

Theorem 2.1. ranking is 1− 1/e competitive.



Proof. Whenever i is matched to j, αi + βj = 1/F .
Therefore the ratio of the primal solution to the dual is
always F . One may verify that the function g(y) = ey−1

and F = 1 − 1
e satisfy the condition in Lemma 2.4,

therefore the lemma implies that the duals are feasible
in expectation. The hypothesis in Lemma 2.1 is hence
satisfied with F = 1− 1

e and the theorem follows.

3 Extensions

In this section we show how our approach easily gen-
eralizes to the vertex-weighted version of the problem.
We also give an analysis of the deterministic primal-dual
algorithm for the fractional matching problem (and its
generalization, the online budgeted allocation problem)
that highlights the similarity to the foregoing analysis
of the ranking algorithm.

3.1 The Vertex-Weighted Case In the vertex-
weighted version of the problem, each vertex i ∈ L
has a weight vi and the objective function is the
sum of weights of matched vertices in L. Agarwal et
al. [AGKM11] gave a 1 − 1

e competitive algorithm for
this problem, generalizing the ranking algorithm. The
analysis presented in the previous section extends easily
to their algorithm as well, as we shall see in this section.

Algorithm 2: Vertex-weighted version of the
ranking algorithm.

foreach i ∈ L do
Pick Yi ∈ [0, 1] uniformly at random

foreach j ∈ R do
When j arrives, let N(j) denote the set of
unmatched neighbors of j;
if N(j) = ∅ then

j remains unmatched
else

Match j to
arg max{vi(1− g(Yi)) : i ∈ N(j)}

Algorithm 2 presents the modification of the rank-
ing algorithm for the vertex-weighted case. The only
change is that we now select the neighbor of j that max-
imizes vi(1 − g(Yi)), rather than minimizing Yi. The
function g is defined by g(y) = ey−1 as in the previ-
ous section. (When the weights vi are identical, maxi-
mizing vi(1 − g(Yi)) is identical to minimizing Yi since
g is monotone increasing.) As before, we analyze the
algorithm using the LP relaxation for vertex-weighted

matching and its dual, which are respectively as follows.

maximize
∑

(i,j)∈E

vixij

s.t. ∀ i ∈ V,
∑

j:(i,j)∈E

xij ≤ 1.

∀ (i, j) ∈ E, xij ≥ 0.

minimize
∑
i∈L

αi +
∑
j∈R

βj

s.t. ∀ (i, j) ∈ E,αi + βj ≥ vi.
∀ i, j, αi, βj ≥ 0.

Our random dual solution is constructed as follows. For
a vertex i ∈ L define functions

ai(y) = vig(y)/F, bi(y) = vi(1− g(y))/F.

Whenever i is matched to j, let αi = ai(Yi), βj = bi(Yi).
For all unmatched i and j, set αi = βj = 0. As before,
one can interpret the duals by envisioning that i makes
an offer of bi(Yi) to j, and j accepts the highest offer.

In every iteration of the algorithm, the change in
the dual objective is always 1/F times the change in the
primal objective. To finish the analysis of the algorithm,
we must prove that the expectation of the dual solution
is feasible, i.e. that for all (i, j) ∈ E, E[αi + βj ] ≥ vi.

For an edge (i, j) and for a fixed choice of (Yi′ :
i′ ∈ L \ {i}), we may ask: for what values y is it the
case that running the algorithm with Yi = y results in
matching i either to j or to an earlier vertex? As before,
the answer is that there is a critical value yc ≤ 1 such
that this happens if y < yc and not if y > yc. (At
y = yc the answer may depend on tie-breaking.) In the
vertex-weighted case, the value of yc may be determined
by running the algorithm on the graph G \ {i} with the
same values of Yi′ (i′ 6= i). Denoting by i′ the vertex
that is matched to j in this execution, yc is the unique
value in [0, 1] such that bi(y

c) = bi′(Yi′), if such a value
exists. If the equation bi(y) = bi′(Yi′) has no solution in
[0, 1], we let yc = 0. If j remains unmatched when the
algorithm is run on G \ {i}, we let yc = 1.

Under this definition of yc, the Dominance and
Monotonicity Lemmas (Lemmas 2.2 and 2.3) remain
true, with only the following modifications to the proofs.
Anywhere that a relation such as Yi′ = yc or Yi′′ < Yi′

appears, it should instead be rewritten by applying
the relevant functions bi, bi′ , etc., and reversing the
sign of the inequality. Thus, for example, Yi′′ < Yi′

becomes bi′′(Yi′′) > bi′(Yi′), and Yi′ = yc becomes
bi′(Yi′) = bi(y

c). When reasoning about the case when



yc = 0 because bi(y) = bi′(Yi′) has no solution in
[0, 1] — equivalently, because bi(0) < bi′(Yi′) — the
argument is also slightly different. Lemma 2.2 now
holds vacuously because the hypothesis Yi < yc is
never satisfied. Lemma 2.3 holds because in that case
βcj = bi(0) < bi′(Yi′), and the proof of the Lemma shows
that βj ≥ bi′(Yi′).

By the Dominance Lemma, i is matched whenever
Yi ≤ yc, hence

E[αi] ≥
∫ yc

0

vig(y) dy/F.

By the Monotonicity Lemma, βj ≥ βcj = vi(1−g(yc))/F
for all choices of Yi. Hence, making use of integral
equation (2.1),

E[αi + βj ] ≥
vi
F

[∫ yc

0

g(y) dy + 1− g(yc)

]
≥ vi,

which verifies dual feasibility in expectation.

3.2 Fractional Matching and Online Budgeted
Allocation (AdWords) The online budgeted alloca-
tion problem with small bids (also called the AdWords
problem) of Mehta et. al. [MSVV05] is as follows. The
weights are on the edges, edge (i, j) has weight vij . The
vertices in L have budget constraints instead of match-
ing constraints, that is, for every i ∈ L, the sum of the
weights of the edges matched to it cannot exceed Bi,
which is given in the beginning. Notice that this prob-
lem generalizes vertex-weighted fractional matching, be-
cause the special case of online budgeted allocation in
which all edges incident to i ∈ L have weight vi, and
the budget Bi equals Bvi for some large integer B, ap-
proximates fractional vertex-weighted matching in the
limit as B →∞.

[BJN07] gave a deterministic algorithm with primal-
dual analysis proving a competitive ratio approaching
1− 1/e for this problem, as the ratio of edge weights to
budgets tends to zero. We now give a short version of
this proof, which highlights its similarity to the analysis
of the ranking algorithm in the previous section. The
primal and dual linear programs are as follows.

maximize
∑

(i,j)∈E

vijxij

s.t. ∀ i ∈ L,
∑

j:(i,j)∈E

vijxij ≤ Bi.

∀ j ∈ R,
∑

i:(i,j)∈E

xij ≤ 1.

∀ (i, j) ∈ E, xij ≥ 0.

minimize
∑
i∈L

αiBi +
∑
j∈R

βj

s.t. ∀ (i, j) ∈ E, vijαi + βj ≥ vij .
∀ i, j, αi, βj ≥ 0.

The algorithm is as before, except that a vertex i ∈ L
now offers vij(1 − g(yi))/F where yi is the fraction of
i’s budget consumed at that point. Vertex j is matched
to the highest bidder, βj is set to vij(1− g(yi))/F , and
αi is incremented by vijg(yi)/(BiF ). Thus when j is
matched to i the total increment in the primal is vij and
that in the dual is vij/F . We only need that the dual is
feasible. Since the bid to budget ratio is small, vij/Bi
can be thought of as an infinitesimal increase in yi, and
αi can be approximated as

∫ yi
0
g(y) dy/F . It is now easy

to see that dual feasibility follows from equation (2.1) in
Lemma 2.4. (We need g(1) = 1 to ensure that we don’t
match to a vertex whose budget is already exhausted.)

Finally, it has been brought to our notice by Aman
Dhesi [Dhe12] that the competitive analysis of the
greedy algorithm for the (fractional) online budgeted
allocation problem when the vertices in R arrive in a
random order (giving a competitive ratio of 1 − 1/e)
presented in [GM08] can also be simplified and analyzed
in our framework. The difference is that it is the vertices
in R that draw a number uniformly at random from
[0, 1]. These numbers are then used to set the duals in
a similar way, such that the ratio of primal to dual is
always F . The proof is completed by showing that once
again the duals are feasible in expectation.
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