
Price of Anarchy, Locality Gap, and
a Network Service Provider Game

Nikhil Devanur1 and Naveen Garg2 and Rohit Khandekar2 and Vinayaka
Pandit3 and Amin Saberi4 and Vijay Vazirani1

1 College of Computing, Georgia Institute of Technology, USA. email: {nikhil,
vazirani}@cc.gatech.edu

2 Department of Computer Science, Indian Institute of Technology, Delhi, India.
email: naveen@cse.iitd.ernet.in, rkhandekar@gmail.com

3 IBM India Research Laboratory, New Delhi, India. email:pvinayak@in.ibm.com
4 Stanford University, USA. email:saberi@stanford.edu

Abstract. In this paper, we define a network service provider game. We
show that the price of anarchy of the defined game can be bounded by
analyzing a local search heuristic for a related facility location problem
called the k-facility location problem. As a result, we show that the k-
facility location problem has a locality gap of 5. This result is of interest
on its own. Our result gives evidence to the belief that the price of
anarchy of certain games are related to analysis of local search heuristics.

1 Introduction

It is important to analyse the outcome of games involving multiple, selfish, non-
cooperative agents which have a corresponding social cost. Koutsoupias and
Papadimitriou [5] formulated the problem in terms of the Nash equilibrium at-
tained by a set of independent, non-cooperative agents with rational behavior.
In an environment in which each agent is aware of all the alternatives facing
all the other agents, Nash equilibrium is a combination of choices (determinis-
tic or randomized), one for each agent, in which, no agent has an incentive to
unilaterally move away. The Nash equilibrium is known to deviate from overall
optimum in many optimization scenarios. They defined worst case equilibria as
the maximum value that the ratio of the overall optimum to the cost of a Nash
Equilibrium can take over the set of all Nash equilibriums. Papadimitriou [6]
called it as the price of anarchy. Since then, this notion has been used to analyse
the efficiency of many games [7–9].

We define a network service provider game and consider the problem of
bounding its price of anarchy. We first show that the price of anarchy of the
game considered is the same as locality gap [1] of the k-facility location prob-
lem [4]. We then show that the k-facility location has a locality gap of 5. This
result is of independent interest on its own. Our result gives evidence to the
belief that price of anarchy and local search analysis are interrelated.

We consider a game on a network with a distinguished node called the root.
Some of the nodes in the network are called clients, denoted by C. The clients

seek to obtain the root’s service via a set of k service providers(SP) who may
occupy one of the remaining nodes in the network, denoted by F . In a configu-
ration each SP either decided to not occupy any of the nodes in F or occupies a
node in F which is not occupied by any other SP. In a given configuration, each
client is served by the closest SP. A client j pays to its closest SP i, an amount
equal to its distance from the second closest SP (VCG cost). The revenue of
an SP i is total amount paid to it by all the clients connected to i. The cost
incurred by i to provide the service to its clients is the cost of connecting i to the
root. The difference of the revenue and the cost incurred is the net profit of i.
In order to maximize individual profits, the SPs may adopt strategies which are
specified when we define the game later in the paper. A configuration of SPs is
said to be in Nash equilibrium if none of the SPs can improve their profit using
the strategies available to them. The cost of this Nash equilibrium is the total
cost incurred by the SPs. The optimal cost is the minimum cost incurred by at
most k SPs in serving all clients. The price of anarchy is supremum, over all
Nash equilibria, the ratio of the cost of a Nash equilibrium to the optimal cost.

In the k-facility location problem, the input consists of a set of clients, C,
and a set of facilities, F . Associated with each facility in F is a cost of opening
a facility there. An integer k specifies the maximum number of open facilities.
The goal is to determine the set of facilities to be opened such that the sum
of opening costs and the costs of connecting each city to its closest facility is
minimized. Charikar et.al. [3] gave 9.8-approximation for this problem and it
was later improved to 6 in [4]. The k-facility location problem inherits features
of both, the k-median and the uncapacitated facility location (UFL) problems.

In the k median problem we are permitted to open at most k facilities but
there is no cost associated with opening a facility. A simple local search algorithm
which swaps facilities as long as the cost of the solution reduces, has a locality
gap of 5 [1]. The first constant factor approximation algorithm for the k-median
problem was a (6 + 2

3)-approximation and was given by Charikar et.al. [3]. This
ratio was improved to 6 in [4] and then to 4 in [2].

The UFL problem is a special case of the k-facility location problem when
no limit is placed on the number of open facilities. Once again, a local search
algorithm which at each step can add, delete or swap facilities has a locality gap
of 3 [1, 2]. We show that local search with the same operations has a locality
gap of 5 for the k-facility location problem. In Section 5, we exaplain why the
analyses for the UFL and the k-median problem presented in [1] can not be
directly adapted for the k-facility location problem.

Vetta [9] considers the social utility value of Nash Equilibrium of similar
games. In this setting, the social utility value of the outcome of a game is given
by a non-decreasing, submodular function and the decisions are controlled by a
set of non-cooperative agents who seek to maximize their own private utility. He
showed that the social utility value of a Nash Equilibrium is atleast half of the
optimal social utility value. No such multiplicative bound is possible when the
utility function is only submodular.

2 The k-facility location problem

We are given a set of facility locations F and a set of clients C. For a facility
i ∈ F , its facility cost fi ≥ 0 is the cost of opening that facility. We are also
given distances cij between i, j ∈ F ∪C that satisfy metric properties. The cost
of connecting the client j ∈ C to a facility i ∈ F is given by cij . An integer k
specifies the limit on the number of open facilities. The objective is to open at
most k facilities in F such that the sum of the facility costs of the open facilities
and the cost of serving each client by the nearest open facility is minimized.

For a subset S ⊆ F of at most k facilities, let fac(S) =
∑
i∈S fi denote

its facility cost, let serv(S) =
∑
j∈C mini∈S cij denote its service cost, and let

cost(S) = fac(S) + serv(S) denote its total cost. We define cost(∅) = ∞.
Consider the following local search algorithm for the k-facility location problem.
We start by opening any subset S ⊆ F of at most k facilities. We then try to
reduce cost(S) iteratively by employing three local operations. For i ∈ F , we use
S−i and S+i to denote S\{i} and S∪{i} respectively. The three local operations
are, delete a facility: if there is an i ∈ S such that cost(S − i) < cost(S), then
S ← S − i; add a facility: if |S| < k and there is an i ∈ F \ S such that
cost(S + i) < cost(S), then S ← S + i; swap facilities: if there is an i ∈ S and
an i′ ∈ F \ S such that cost((S − i) + i′) < cost(S), then S ← (S − i) + i′.

We call this a delete-add-swap local search algorithm. We call S ⊆ F with
|S| ≤ k a local optimum solution if cost(S) cannot be reduced by doing any of
the above operations. The maximum ratio of the cost of a local optimum solution
to the cost of a global optimum solution is called the locality gap of the local
search algorithm. In Section 5, we prove the following theorem.

Theorem 1. The locality gap of the above local search algorithm is at most 5.

3 Service provider game

We are given a network with a distinguished node r called root. Remaining nodes
in the network are partitioned into a set of clients C, and a set of service locations
F . The distances cij between i, j ∈ F ∪C∪{r} satisfy metric properties. Suppose
that there are k SPs. Each SP is allowed to occupy at most one service location.
Two SPs cannot occupy the same service location. The assignment of SPs to
the service locations, say S ⊆ F , defines a configuration. It is not necessary that
every provider is assigned to a location.

Consider a configuration S ⊆ F with |S| ≤ k. For an SP i ∈ S, let NS(i)
be the set of clients for which i is the closest of all the SPs in S. To serve
the clients in NS(i) and connect to the root r, provider i incurs an expense of
expenseS(i) = cir +

∑
j∈NS(i) cij . Let expense(S) =

∑
i∈S expenseS(i) be the

total expense of all the SPs in S. For a client j ∈ C, let Sj = mini∈S cij be the
distance of j to the closest SP in S. Then expense(S) =

∑
i∈S cir +

∑
j∈C Sj .

Each client connects to the SP closest to it, but is charged the VCG payment,
which is the distance to the second closest SP. The revenue of an SP i ∈ S is

the total payment it receives from all the clients it serves, i.e., revenueS(i) =∑
j∈NS(i) Tj where T = S−i. The profit of an SP i is profitS(i) = revenueS(i)−

expenseS(i). Note that expenseS(i), revenueS(i) and profitS(i) are with re-
spect to a particular configuration S.

Lemma 1. The profit of a provider s in the configuration S is given by profitS(s) =
expense(S − s)− expense(S).

Proof. Let T = S − s.

expense(T)− expense(S) =

∑
i∈T

cir +
∑
j∈C

Tj

−
∑
i∈S

cir +
∑
j∈C

Sj

=
∑
j∈C

(Tj − Sj)− csr

=
∑

j∈NS(s)

Tj −

 ∑
j∈NS(s)

Sj + csr

= revenueS(s)− expenseS(s) = profitS(s).

Each SP behaves selfishly and tries to maximize individual profit. This defines
a game in which we allow only pure strategies and no two SPs can occupy the
same location. The strategies of all the SPs defines a configuration. The payoff
of a particular SP is equal to his profit in that configuration. A Nash equilibrium
is a configuration so that no SP can unilaterally change his strategy and get a
higher profit. The price of anarchy is the supremum, over all Nash equilibria, of
the ratio between the cost of a Nash equilibrium and the optimum cost.

4 Connection between Price of Anarchy and Locality
Gap

There is a natural correspondence between instances of the service provider
game and the k-facility location problem. The set of service locations in the
game corresponds to the set of facilities in the k-facility location problem. The
expense cir that an SP i incurs in connecting to the root corresponds to the
facility cost fi. The expense cij incurred in connecting to the client j is just the
cost of servicing client j by facility i. So, expense(S) which is the total expense
incurred by the SPs in a configuration S is the same as cost(S) which is the
cost of solution S in the k-facility location problem. We now show that a Nash
equilibrium in the service provider game corresponds to a local optimum solution
in the k-facility location instance with the delete-add-swap operations.

Theorem 2. A configuration S ⊆ F is a Nash equilibrium of an instance of the
service provider game if and only if S is a local optimum solution of the cor-
responding instance of the k-facility location problem with respect to the delete-
add-swap local search.

Proof. Let S ⊆ F be a Nash equilibrium. From the definition, profitS(s) =
cost(S − s)− cost(S) ≥ 0 for all s ∈ S. Therefore cost(S) cannot be reduced
by deleting a facility s ∈ S. Let |S| < k and S′ = S + s for some s 6∈ S. Since
any provider not in S did not occupy the location s, we have profitS′(s) ≤ 0.
Therefore, from Lemma 1, we have cost(S′−s)−cost(S′) ≤ 0. Thus cost(S) ≤
cost(S + s). Therefore cost(S) cannot be reduced by adding a facility s 6∈ S.
Now let S′ = S − s + s′ for some s ∈ S and s′ 6∈ S. Since the provider s
does not move from location s to s′, we have profitS′(s

′) ≤ profitS(s). Let
T = S − s = S′ − s′. Then we have

cost(S′)− cost(S) = (cost(T)− cost(S))− (cost(T)− cost(S′))
= profitS(s)− profitS′(s

′) ≥ 0.

Therefore cost(S) cannot be reduced by swapping a pair of facilities. Thus the
solution S ⊆ F is indeed a local optimum solution with respect to the delete-
add-swap local search. Similarly, we can show that a local optimum solution is
a Nash equilibrium in our game.

Theorem 3. The price of anarchy for the service provider game is at most 5.

Proof. The proof follows from Theorems 1 and 2.

5 Proof of Theorem 1

The analysis uses some ideas from the analyses of local search for the k-median
and the UFL problems by Arya et al. [1]. They proved that the 1-swap local
search has a locality gap of 5 for the k-median problem and the delete-add-swap
local search has a locality gap of 3 for the UFL problem. The k-median proof
crucially uses the fact that the global optimum solution has exactly k facilities.
However, for the k-facility location instance derived from the network service
provider game, the global optimum may have much less than k facilities. The
analysis for the UFL considers add operations irrespective of the number of
facilities in the current solutions. If the k-facility location solution has exactly
k facilities, we cannot add a facility to reduce its cost. Due to these reasons we
cannot adapt the analyses in [1] to the k-facility location problem.

Let S denote a local optimum solution to the k-facility location problem and
let O denote a global optimum solution. If |S| < k, then S is local optimum with
respect to the addition operation as well. So the analysis for the UFL in [1] is
directly applicable and we have the following lemma.

Lemma 2. If |S| < k, then cost(S) ≤ 3 · cost(O).

So, in the rest of the analysis we assume that S, the local optimum has exactly
k facilities implying that we can only consider swap and delete operations on S.

5.1 Notation and preliminaries

We use s to denote a facility in S and o to denote a facility in O. The other
notation is as introduced in Section 2. For a client j ∈ C, let Sj = mins∈S csj
and Oj = mino∈O coj denote its service costs in solutions S and O respectively.
For a facility s ∈ S, let NS(s) denote the set of clients served by s in the solution
S and for a facility o ∈ O, let NO(o) denote the set of clients served by o in the
solution O. Let No

s = NS(s) ∩ NO(o). A facility s ∈ S is said to “capture” a
facility o ∈ O if |No

s | > |NO(o)|/2. A facility s ∈ S is called “good” if it does not
capture any facility in O. It is called “1-bad”, if it captures exactly one facility
in O. It is called “2+bad” if it captures at least 2 facilities in O. These notions
were introduced in [1].

We now define a 1-1 onto function π : NO(o) → NO(o) for each o ∈ O
as follows. First consider a facility o ∈ O that is not captured by any facility
in S. Let M = |NO(o)|. Order the clients in NO(o) as c0, . . . , cM−1 such that
for every s ∈ S, the clients in No

s are consecutive, that is, there exists p, q,
0 ≤ p ≤ q ≤ M such that No

s = {cp, . . . , cq−1}. Now, define π(ci) = cj where
j = (i+ bM/2c) modulo M .

Lemma 3. For each s ∈ S, we have π(No
s) ∩No

s = ∅.

Proof. Suppose both ci, π(ci) = cj ∈ No
s for some s ∈ S. As s does not capture o,

we have |No
s | ≤M/2. If j = i+bM/2c, then |No

s | ≥ j−i+1 = bM/2c+1 > M/2.
If j = i+ bM/2c −M , then |No

s | ≥ i− j + 1 = M − bM/2c+ 1 > M/2. In both
cases we have a contradiction.

Now consider a facility o ∈ O that is captured by a facility s ∈ S. Note that
|No

s | > |NO(o) \ No
s |. We pair each client j ∈ NO(o) \ No

s with a unique client
j′ ∈ No

s and define π(j) = j′ and π(j′) = j. Let N ⊆ No
s be the subset of clients

which are not paired in the above step; note that |N | = 2|No
s | − |NO(o)|. For

each j ∈ N , we define π(j) = j.
The function π : NO(o) → NO(o) satisfies the following properties for all

o ∈ O.

P1. If s ∈ S does not capture o ∈ O, then π(No
s) ∩No

s = ∅.
P2. If s ∈ S captures o ∈ O and if ((j ∈ No

s) ∧ (π(j) ∈ No
s)), then π(j) = j.

P3. We have {j ∈ NO(o) | π(j) 6= j} = {π(j) ∈ NO(o) | π(j) 6= j}, ∀o ∈ O.

5.2 Deletes and Swaps considered

Since S is a local optimum solution, its cost cannot be reduced by doing any
deletions and swaps. Since |S| = k, we cannot add a facility to reduce the cost.
For any s ∈ S, we have cost(S − s) ≥ cost(S). For any s ∈ S and o ∈ O, we
have cost(S−s+o) ≥ cost(S). We now carefully consider some delete and swap
operations. If we delete s ∈ S, we reroute the clients in NS(s) to other facilities
in S − s. If we swap s ∈ S and o ∈ O, we reroute the clients in NS(s) and a
subset of clients in NO(o) to the facilities in S − s + o. The assignment of the
other clients is not changed. For each of the operations considered, we obtain an

upper bound on cost(S′)− cost(S) ≥ 0 where S′ is the solution obtained after
the operation. We then add these inequalities to prove Theorem 1. We consider
the following operations.

1. Each 1-bad facility s ∈ S is swapped with the facility o ∈ O that it captures.
The clients j ∈ NO(o) are rerouted to o. The clients j ∈ NS(s) \NO(o) are
rerouted to s′ ∈ S that serves π(j) in S. Since s does not capture any o′ 6= o,
P1 implies that s′ 6= s and the rerouting is feasible. We call these swaps,
Type 1 operations.

2. Each 2+bad facility s ∈ S is swapped with the nearest facility o ∈ O that it
captures. All the clients in NO(o) are rerouted to o. Consider a facility o′ 6= o
captured by s. Such a facility o′ is called a far facility. The clients j ∈ No′

s

such that π(j) = j are rerouted to o. The remaining clients j ∈ NS(s) are
rerouted to s′ ∈ S that serves π(j) in S. From P1 and P2, such rerouting is
feasible. We call these swaps, Type 2 operations.

3. Let G ⊆ S be the subset of facilities in S that are not swapped out in
the Type 1 or Type 2 operations. Note that G is precisely the set of good
facilities. Let R ⊆ O be the subset of facilities in O that are not swapped-in
in the Type 1 or Type 2 operations. Since |S| = k ≥ |O| and |S\G| = |O\R|,
we have |G| ≥ |R|. Let G = {s1, . . . , s|G|} and R = {o1, . . . , o|R|}. We swap
si with oi for 1 ≤ i ≤ |R|. For each of these swaps, we reroute the clients
in NS(si) ∪ NO(oi) as follows. All the clients in NO(oi) are rerouted to oi.
The clients j ∈ NS(si) \ NO(oi) are rerouted to s′ ∈ S that serves π(j) in
S. Since si is a good facility, P1 implies s′ 6= si and hence this rerouting is
feasible.
We consider |G| − |R| more operations as follows. For each i such that |R|+
1 ≤ i ≤ |G|, we delete si. After such a deletion, we reroute the clients
j ∈ NS(si) to s′ ∈ S that serves π(j) in S. Again from P1, we have s′ 6= s
and hence this rerouting is feasible.
We call these |R| swaps and |G| − |R| deletions, Type 3 operations.

4. Let R′ ⊆ O be the subset of far facilities in O. Since no far facility is swapped-
in in Type 1 or 2 operations, we have R′ ⊆ R. It is no loss of generality to
assume R′ = {o1, . . . , o|R′|}. Recall that G = {s1, . . . , s|G|} is the set of good
facilities. We consider |R′| swaps as follows. For each i such that 1 ≤ i ≤ |R′|,
we swap si with oi. The clients j ∈ NO(oi) such that π(j) = j are rerouted
to oi. The clients j ∈ NS(si) are rerouted to s′ ∈ S that serves π(j) in S.
The remaining clients are not rerouted. We call these |R′| swaps, Type 4
operations.

Since S is a local optimum solution, the increase in the facility and service
costs after each operation considered above is at least zero. In the sections to
follow, we bound this increase due to all the 4 types of operations together. At
this point, we remark that, the Type 4 operations are crucial for being able to
bound the change in service cost of those clients j ∈ C which are served by a far
facility in O and π(j) = j.

s

Oj

o

j

Sj

Fig. 1. Rerouting a client j ∈ NO(o) when o is brought in

coj ≤ Oj + Sj + Sj

(a) (b)

o

Oπ(j)

π(j)
Nos

j

Sj

s s′

Sπ(j)

s

Sj

π(j) = j

Oj

o′

Oj

o

Fig. 2. Rerouting a client j ∈ No
s when s is taken out and o is not brought in

5.3 Bounding the increase in the facility cost

In Type 1, 2, and 3 operations, each facility in O is brought in exactly once
and each facility in S is taken out exactly once. Thus in these operations the
increase in the facility cost is exactly fac(O) − fac(S). In Type 4 operations,
each far facility is brought in exactly once and some good facilities are taken
out exactly once. Thus the increase in facility cost in these operations is at most∑
o:far fo ≤ fac(O). Thus the overall increase in the facility cost is at most

2 · fac(O)− fac(S). (1)

5.4 Bounding the increase in the service cost

We call a facility o ∈ O a near facility if it is captured by some s ∈ S and o is
not a far facility.

1. A client j ∈ C served by a near facility in O is called “white” if π(j) = j.
2. A client j ∈ C served by a far facility in O is called “gray” if π(j) = j.
3. A client j ∈ C is called “black” if π(j) 6= j.

Recall that a client j ∈ No
s is rerouted only when either o is brought in and/or

s is taken out.

Lemma 4. Increase in the service cost of a white client j ∈ C over all operations
is atmost Oj − Sj.

Proof. Let j ∈ No
s where s ∈ S is a 1-bad or 2+bad facility that captures the near

facility o ∈ O. Note that we swap s with o once - either as a Type 1 operation

or as a Type 2 operation. The increase in the service cost of j in this swap is
Oj − Sj (Figure 1). Since s or o are not considered in Type 3 or 4 operations,
the client j is not rerouted in these operations.
Lemma 5. Increase in the service cost of a gray client j ∈ C over all operations
is at most 3Oj − Sj.
Proof. Let j be served by a far facility o′ ∈ O. Let s be the 2+bad facility in S
that captures o′. Since π(j) = j, from P1 we have j ∈ No′

s . Let o be the closest
facility in O that s captures. Note that cso ≤ cso′ . A gray client is not rerouted
in Type 1 operations. In Type 2 operations, j is rerouted to o (Figure 2(b))
and increase in service cost of j is at most cjo − cjs. Since cjo ≤ cjs + cso ≤
cjs + cso′ ≤ cjs + cjs + sjo′ , the increase is at most cjs + cjo′ = Sj + Oj .
In Type 3 and 4 operations, increase in the service cost of j is Oj − Sj each
(Figure 1). So, the increase in service cost of j over all the operations is at most
(Oj + Sj) + 2(Oj − Sj) = 3Oj − Sj .
Lemma 6. The total increase in the service cost of a black client j ∈ C in all the
4 types of operations is at most 2Dj+Oj−Sj where Dj = Oj+Oπ(j)+Sπ(j)−Sj.
Proof. Let j ∈ No

s for facilities s ∈ S and o ∈ O. We first bound the increase in
the service cost of a black client j due to operations of Type 1, 2, and 3. Amongst
these operations, there is exactly one swap in which o is brought in. This swap
contributes Oj − Sj to the increase in service cost of j. The facility s may be
either deleted once or considered in a swap with o′ ∈ O. If it is considered in
a swap with o′ ∈ O such that o′ = o, then the increase in service cost of client
j has already been accounted for in Oj − Sj . If s is deleted or considered in a
swap with o′ ∈ O such that o′ 6= o, j is rerouted to s′ that serves π(j) in S and
the increase in its service cost is at most cjs′ − cjs ≤ cjo + coπ(j) + cπ(j)s′ − cjs =
Oj + Oπ(j) + Sπ(j) − Sj = Dj (Figure 2(a)). Thus the total increase in service
cost of j due to Type 1,2, and 3 operations is at most Dj +Oj − Sj .

In Type 4 operations, since π(j) 6= j, the client j is rerouted only when s
is (possibly) taken out. In such a case, it is rerouted to s′ that serves π(j) in
S (Figure2(a)) and the increase in its service cost is again at most cjs′ − cjs ≤
cjo+coπ(j) +cπ(j)s′−cjs = Oj +Oπ(j) +Sπ(j)−Sj = Dj . Thus the total increase
in the service cost of j in all 4 types of operations is 2Dj +Oj − Sj .
Lemma 7. Increase in the service cost over all the operations is atmost 5 ·
serv(O)− serv(S).

Proof. Lemmas 4,5, and 6, imply that the the total increase in the service cost
of all the clients in all the 4 types of operations is at most∑

j:white
(Oj − Sj) +

∑
j:gray

(3Oj − Sj) +
∑

j:black
(2Dj +Oj − Sj).

Now from property P3 of the function π, we have
∑
j:black Sj =

∑
j:black Sπ(j)

and
∑
j:blackOj =

∑
j:blackOπ(j).∑

j:black
Dj =

∑
j:black

(Oj +Oπ(j) + Sπ(j) − Sj) = 2
∑

j:black
Oj .

Hence the total increase in the service cost of all the clients is at most
∑
j∈C(5 ·

Oj − Sj) = 5 · serv(O)− serv(S).

5.5 Bounding the increase in the total cost

From (1) and Lemma 7, it follows that the total increase in cost due to all the
operations is atmost 2 ·fac(O)−fac(S) + 5 ·serv(O)−serv(S). As S is a local
optimum, in each operation the total cost increases by a non-negative amount.
Together, these imply that cost(S) ≤ 5 · cost(O), thus proving Theorem 1. The
k-median problem has a family of instances in which the ratio of the costs of
local optimum to the global optimum is asymptotically equal to 5 [1]. So, our
analysis of locality gap is tight.

6 Conclusions

This is the first analysis of local search for the k-facility location problem. Other
approximation algorithms for the problem [3, 2, 4] can not be used to bound price
of anarchy. It would be interesting to see if price of anarchy of many more games
can be analysed via local search analysis.

7 Acknowledgements

Vijay V. Vazirani was supported in part by NSF Grants 0311541, 0220343 and
0515186.

References

1. V. Arya, N. Garg, R. Khandekar, V. Pandit, K. Munagala, and A. Meyerson. “Local
Search Heuristics for k-median and Facility Location Problems.” Siam Journal of
Computing”, 33(2):544–562, 2004.

2. M. Charikar, and S. Guha. “Improved Combinatorial Algorithms for the Facility
Location and k-Median Problems.” In Proceedings, IEEE Symposium on Founda-
tions of Computer Science, pages 378–388, 1999.

3. M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. “A constant-factor approx-
imation algorithm for the k-median problem.” In Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages 1–10, 1999.

4. K. Jain, V. V. Vazirani. “Primal-Dual Approximation Algorithms for Metric Fa-
cility Location and k-Median Problems.” In Proceedings of the 40th Annual Sym-
posium on Foundations of Computer Science, pages 2–13, 1999.

5. E. Koutsoupias, C. H. Papadimitriou, “Worst-case equilibria.” In 16th Annual
Symposium on Theoretical Aspects of Computer Science, pages 404–413, 1999.

6. C. Papadimitriou, “Algorithms, games, and the Internet”. In Proceedings of the
33rd Annual ACM Symposium on the Theory of Computing, pages 749–753, 2001.

7. T. Roughgarden and E. Tardos. “How bad is selfish routing?” Journal of the ACM,
49(2):236–259, 2002. Preliminary version in FOCS ’00.

8. T. Roughgarden. “The price of anarchy is independent of the network topology.”
In Proceedings of the 34th Annual ACM Symposium on the Theory of Computing,
pages 428–437, 2002.

9. A. Vetta, “Nash Equilibria in Competitive Societies, with Applications to Facility
Location, Traffic Routing and Auctions.” In Proceedings of the 43rd Symposium
on Foundations of Computer Science, 2002.

