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Abstract

We consider markets in the classical Arrow-Debreu
model. There are n agents and m goods. Each buyer has
a concave utility function (of the bundle of goods he/she
buys) and an initial bundle. At an “equilibrium” set of
prices for goods, if each individual buyer separately ex-
changes the initial bundle for an optimal bundle at the set
prices, the market clears, i.e., all goods are exactly con-
sumed. Classical theorems guarantee the existence of equi-
libria, but computing them has been the subject of much
recent research. In the related area of Multi-Agent Games,
much attention has been paid to the complexity as well as
algorithms. While most general problems are hard, poly-
nomial time algorithms have been developed for restricted
classes of games, when one assumes the number of strate-
gies is constant [20, 11].

For the Market Equilibrium problem, several important
special cases of utility functions have been tackled. Here we
begin a program for this problem similar to that for multi-
agent games, where general utilities are considered. We be-
gin by showing that if the utilities are separable piece-wise
linear concave (PLC) functions, and the number of goods
(or alternatively the number of buyers) is constant, then
we can compute an exact equilibrium in polynomial time.
Our technique for the constant number of goods is to de-
compose the space of price vectors into cells using certain
hyperplanes, so that in each cell, each buyer’s threshold
marginal utility is known. Still, one needs to solve a linear
optimization problem in each cell. We then show the main
result - that for general (non-separable) PLC utilities, an
exact equilibrium can be found in polynomial time provided
the number of goods is constant. The starting point of the
algorithm is a “cell-decomposition” of the space of price
vectors using polynomial surfaces (instead of hyperplanes).
We use results from computational algebraic geometry to
bound the number of such cells. For solving the problem
inside each cell, we introduce and use a novel LP-duality
based method. We note that if the number of buyers and

∗Part of the work done while the author was visiting Microsoft Re-
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agents both can vary, the problem is PPAD hard even for
the very special case of PLC utilities - namely Leontief util-
ities [8].

1 Introduction

The Arrow-Debreu market model is the very basic and
central notion in mathematical economics. The classic the-
orem by Arrow and Debreu [1] proved existence of equi-
libria, while the question of how to compute the equi-
libria has also drawn significant attention over the years
[4, 21, 15, 14, 19]. Recently, a systematic study of the com-
putational complexity of economic and game theoretic equi-
libria has been undertaken by the theoretical computer sci-
ence community. The hardness results [10, 5] show that it
is unlikely that polynomial time algorithms exist for general
markets and games. Naturally, the algorithmic approach is
focused on finding restricted classes that are tractable. For
markets, several important special classes of utility func-
tions have been tackled, but these are quite limited in their
generality and expressiveness. For multiplayer games, sev-
eral classes with general payoffs have been considered, such
as anonymous [11] and symmetric games [20], with a re-
striction on the number of strategies. We begin a similar
program for markets in this paper by considering a very
general class of utilities, the piecewise linear and concave
utilities, and restricting the number of goods/agents.

1.1 A Mathematical Model of a Market

The market model we consider has n agents trading in
m divisible goods. The goods are indexed by j ∈ [m] and
the agents are indexed by i ∈ [n]. The utility function Ui of
agent i is a real-valued function of his allocation1 xi ∈ Rm+ ,
xij is the quantity of good j that he gets. Each agent i has an
initial endowment of goods given by ei ∈ Rm+ . By rescaling

1Notation: Vectors are written in bold, like x. The jth coordinate of
x is xj . When vectors themselves are subscripted, like xi, then their jth

coordinate is xij .
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units, we assume that the total supply of each good is 1. Let
pj be the price of good j. The conditions of equilibrium
are:

• The allocations are optimal for each buyer, xi maxi-
mizes Ui(x) subject to the budget constraint: p · x ≤
p · ei.

• The market clears2, i.e., for all goods,
∑
i xij = 1.

The classic theorem of Arrow and Debreu [1] states that
if the utility functions are all continuous and concave, then
there exists an equilibrium. A special case is the Fisher
model, in which the endowment of agent i is mi units of
money, and there is a given supply of goods. So the budget
constraint for a buyer is p ·x ≤ mi, and the market clearing
condition is as before. We will abuse the notation and use
mi as a shorthand for p · ei in the Arrow-Debreu model, so
that the notations are identical for both models.

1.2 Prior Work on Market Equilibrium

The main hardness result concerning computing market
equilibrium is that it is PPAD-Hard3[8] even for Leontief
Utilities (Ui(xi) = minj

{
xij

φij

}
), and in turn, for general

utility functions.
Polynomial time algorithms for exactly computing mar-

ket equilibria are mostly known for simple families of util-
ity functions. The result closest to ours in spirit, and in
technique, is the one by Deng et. al. [12], who give a
polynomial time algorithm for linear utilities (Ui(xi) =∑
j uijxij) when the number of buyers or goods is a

constant. They use a very simple version of the cell-
decomposition technique that we use here. Devanur et. al.
[13] gave a poly-time algorithm for linear utilities in the
Fisher model, and Jain [16] did the same for the Arrow-
Debreu model. Other exact algorithms are Eaves [14] for
Cobb-Douglas utilities: Ui(xi) =

∏
j x

αj

ij ; Vazirani [23]
for a new class of utilities called the spending constraint
utilities (a special case is when the buyers have budget con-
straints on each of the goods); Codenotti and Varadarajan
[9], and Ye [25] for Leontief utilities in the Fisher model;
and Codenotti et. al. [6] for Constant Elasticity of Substi-
tution(CES) utilities: Ui(xi) = (

∑
j(aijxij)

ρ)1/ρ, for the
range of parameters −1 ≤ ρ ≤ 1. In many cases equi-
librium prices and/or allocations are irrational numbers and
hence one has to settle for approximations to the equilib-
rium. For instance, Codenotti et al. [7] give an algorithm
based on the ellipsoid method to compute an approximate

2The market clearing condition is sometimes written more generally,
as, either

P
i xij = 1 or pj = 0. Typically, under mild assumptions, one

can show that all prices are positive.
3[8] gave a reduction from Leontief Utilities to 2-player Nash, which

was later proved to be PPAD-Hard [5].

equilibrium in markets with utilities that satisfy the so called
weak gross substitutes (WGS) property.

While simple families of utility functions serve as good
starting points, they lack the expressive power needed to
model realistic markets. For example, with linear utility
functions, typically only one good is consumed by most of
the agents and with Leontief utilities, the bundle consumed
by each agent is a scalar multiple of a pre-determined bun-
dle. Agents with Cobb-Douglas utilities spend a fixed frac-
tion of their income on each good.

A characterization of all the families for which we know
polynomial time algorithms is that the set of equilibria
forms a connected convex set. This is reflected in the tools
used: primal-dual, ellipsoid and interior point algorithms,
the ones typically used to solve linear/convex programming
problems. These tools are probably inadequate to handle
general concave utility functions since they have multiple
disconnected equilibria, and new algorithmic results will re-
quire other tools.

A final note on computing approximate4 equilibria: for
constant number of goods, there are various algorithms that
compute an approximate equilibria in time exponential in
the number of goods, such as the brute force enumeration
of all prices on a multiplicative grid [17], or more sophis-
ticated algorithms for computing fixed points, such as the
ones by Scarf [21] and Merrill [18]. In contrast, we focus
on the computational complexity of finding exact equilib-
ria. Further, all our algorithms can also be used to answer
the following question: does there exists an exact equilibria
inside a given polytope? Thus, our algorithms can be used
in conjunction with these approximation algorithms to first
find an approximate equilibria, and then round it to an exact
equilibria, if possible.

1.3 Statement of results

In this paper, we consider markets with piecewise lin-
ear and concave (PLC) utility functions. A piecewise linear
function is defined by a simplicial subdivision of Rm+ , and
a linear function for each simplex in the subdivision such
that the values at the boundaries coincide. Another way to
define such a function is to define the value of the function
at each vertex of the subdivision and extend it to the entire
space by linear interpolation. In case the piecewise linear
function is also concave, it can be written as

Ui(xi) = min
l
{uli · xi + wli}.

In this representation, the simplicial subdivision is implicit.
The polytope corresponding to the linear function uli ·xi +
wli is the one on which this function is the minimum.

4For appropriate notions of approximate equilibria that we will not go
into here, since our results only concern exact equilibria.
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Piecewise linear functions are very general and can be
used to model a wide variety of preferences. Also, Leon-
tief utilities are a special case of PLC utilities, and hence
it is unlikely that there is a polynomial time algorithm for
the case of PLC utilities in general. Our main result is as
follows.

Theorem 1 There is a polynomial time exact algorithm for
markets with PLC utilities when the number of goods is a
constant.

This is the first non-trivial class of markets that have dis-
connected equilibria for which polynomial time algorithms
are known. In fact, equilibrium prices could be irrational
numbers. This raises the question, what is an exact algo-
rithm. We borrow the notion from computational algebraic
geometry: an algebraic number is uniquely represented as
a root of a polynomial and the signs of all of its derivatives
at that root. Once an algebraic number α is represented ef-
ficiently, then anything in the algebraic extension Q(α) can
also be efficiently represented. Equilibrium prices turn out
to be algebraic, and the representation sizes are all polyno-
mial in the input size.

Special Cases, Extensions and Open Problems

Of particular interest is the case of separable PLC utilities.
Separable utilities are of the form

Ui (xi1, xi2, . . . , xim) =
∑
j

Uij(xij).

If in addition, they are PLC, then we can write Uij(xij) in
the form

∑
l u
l
ijx

l
ij , 0 ≤ xlij ≤ blij , and xij =

∑
l x
l
ij . As-

sume w.l.o.g that u1
ij ≥ u2

ij ≥ · · ·. The index l refers to a
“piece” of the utility function, ulij , the slope of the piece,
and blij its length. In order to distinguish this special case
from general PLC utilities, we sometimes refer to the gen-
eral PLC utilities as non-separable PLC utilities.

The complexity for the separable PLC case (whether it is
in P, or is PPAD-Hard) has been one of the most prominent
open problems. We give polynomial time algorithms for
separable PLC utilities when either the number of agents
or the number of goods is a constant. (Note that although
the result for constant number of goods is subsumed by our
main result, we present them separately since the algorithm
for the special case is simpler and has better running time.)
An important corollary of our algorithms for the separable
case is that the equilibrium prices are rational numbers, if
the input is rational5.

We also consider the following extension: the number
of goods is arbitrary, but the prices are known linear func-
tions of O(1) parameters (like oil prices, Dow-Jones Index,

5This particular result was obtained independently by Vazirani and
Yannakakis [24].

interest rates and so on). More precisely, for each good j,
we are given a linear function, λj(q) where q is a vector in
O(1) dimensions. The goal is to find a vector q such that
pj = λj(q) are equilibrium prices (or say that there is no
such vector). Such markets have been considered in appli-
cations of the general equilibrium theory to real economies.
For instance, Shoven and Whalley [22] consider markets
with two “factors”, capital and labor, and the prices for
goods are given functions of these two factor prices. For
the case of separable PLC utilities, we extend our algorithm
to find exact equilibria in such markets as well. The follow-
ing extensions are open:

1. prices are linear functions ofO(1) parameters and util-
ities are (non-separable) PLC.

2. prices are polynomial functions of O(1) parameters.

Other classes for which the computational complexity of
finding equilibrium prices is open are

1. General PLC utilities when the number of agents is
bounded by a constant.

2. each buyer wants only O(1) goods, i.e., the utility
function only depends on a given set of O(1) variables
for each buyer.

A summary of results and open problems is presented in
Table 1.

Table 1. Table summarizing the results and
open problems. X indicates that a polyno-
mial time algorithm is presented in this pa-
per. ? indicates that the computational com-
plexity is open.

PLC, separable PLC, general
O(1) # of goods X X
O(1) # of agents X ?
Linear functions of
O(1) parameters

X ?

Polynomial functions
of O(1) parameters

? ?

General Case ? PPAD-Hard

1.4 General structure of algorithms

We use the technique of cell-decomposition to circum-
vent the difficulty of disconnected equilibria. This tech-
nique could be useful to handle other scenarios in which
the solution set is non-convex (and in particular, forms dis-
connected regions which is typical of many problems in the
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class PPAD including Nash Equilibria). All the algorithms
in this paper fall in the following general framework. They
involve two main steps, that perform the following tasks.

Cell decomposition: Divide the space Rm+ into small
“cells”, either by hyperplanes, or more generally, poly-
nomial surfaces. A cell is defined by specifying on
which “side” of each of these surfaces it lies. The goal
is to make the second step, of checking for market
clearing easy. We do this by ensuring that the opti-
mal allocation of a buyer is guaranteed to lie on a par-
ticular piece (of the piecewise linear utility function),
for all the prices in a cell, and do this for all the buy-
ers simultaneously. Typically the complexity of such
a procedure grows as a power of n. From results in
computational algebraic geometry, it follows that the
number of cells and the time to enumerate them in this
case grows as a power of m.

Typically, the hyperplanes/polynomials will be of the
form p(x) = q(x), where p and q are quantities we
wish to compare. More generally, if we wish to order
the set of quantities {pi(x)}i∈I , then we consider the
polynomials pi(x) = pj(x),∀i, j ∈ I . So given a cell,
the order of these quantities is determined.

Check for Market clearing: Given a cell, either find a
price in the cell that has a market clearing allocation,
or certify that no such price exists. Given the guaran-
tee in the first step, one has to find an allocation xi on
a given piece such that p · xi = mi and

∑
j xij = 1

for all j. This step may involve decomposing the cell
further into finer cells, and for the non-separable case,
we use a novel application of LP duality for this step.
Eventually, one solves a system of linear/polynomial
equations involving a constant number of variables.

Also our algorithms for separable utilities are consider-
ably simpler than those for non-separable utilities. Most
significantly, for separable utilities, it is sufficient to con-
sider cell decomposition using hyperplanes, while for non-
separable utilities, we need to use polynomial surfaces. In
general, non-separable utilities seem to present technically
more challenges than separable utilities.

1.5 Organization

Sections 2, 3 and 4 respectively contain the algorithms
for separable utilities with constant number of goods and
when prices are linear functions of O(1) parameters, non-
separable utilities with constant number of goods and sepa-
rable utilities with constant number of agents.

2 Algorithm for constant number of goods,
Separable utilities

Conditions of optimality

For this case it is easy to show that given a price p, {xlij} is
an optimal allocation for i if and only if ∃ αi such that

1. αi >
ul

ij

pj
⇒ xlij = 0,

2. αi <
ul

ij

pj
⇒ xlij = blij ,

and
∑
j pjxij = mi. The quantity

ul
ij

pj
is called the marginal

utility per unit cost (MUPUC) of a piece. In words, there
is a critical MUPUC αi such that any piece with higher
MUPUC than αi is fully consumed by agent i and any piece
with lesser MUPUC than αi is not consumed at all.

Algorithm

For separable utilities, the cell decomposition only involves
hyperplanes.

Step 1 Consider the following set of hyperplanes in Rm+ ,
with variables p1, p2, . . . , pm. There is one hyper
plane for each 5-tuple (i, j, j′, l, l′), i ∈ [n], j 6= j′ ∈
[m] defined by

ulij
pj
−
ul
′

ij′

pj′
= 0.

These hyperplanes divide the real space into cells.
Each cell is defined by assigning a sign for each hy-
perplane equation; a sign is one of >, < or =.

Note that given such a cell, for every i, the order of the
MUPUC of the pieces is independent of the particular p
in the cell. Let C1(i), C2(i), . . . and so on be the equiva-
lence classes of pieces arranged in the decreasing order of
MUPUC; pieces with the same MUPUC being in the same
class. Any optimal allocation for buyer i allocates the pieces
in this order. For notational convenience, let (j, l) < Ck(i)
stand for (j, l) ∈ Ck′(i) for some k′ < k. Similarly define
(j, l) > Ck(i).

Step 2 Consider the set of hyperplanes, (one for each i, k)∑
(j,l)<Ck(i)

pjb
l
ij = mi.

These further partition the cell into finer cells.

A cell in this finer partition determines, for each buyer,
the last class of pieces in his optimal allocation. The
only indeterminate is the extent to which the buyer buys
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each of the pieces in this class; let this class be denoted
by C∗(i). Let m̂i = mi −

∑
(j,l)<C∗(i)

pjb
l
ij and ŝj =

1−
∑
i,l:(j,l)<C∗(i)

blij be the residual money of buyer i and
residual supply of good j.

Equilibrium conditions are equivalent to the existence of
a fractional weighted perfect matching in the bipartite graph
G(A,B),A = [m] andB = [n]. j ∈ A is incident on i ∈ B
iff (j, l) ∈ C∗(i) for some l. The supply at node i is m̂i, and
the demand on node j is ŝjpj and the weight on edge (i, j)
is blijpj , where l is such that (j, l) ∈ C∗(i). A fractional
weighted perfect matching in this graph is an assignment of
weights fij to the edges of the graph such that

• for all j ∈ A,
∑
i∼j fij = ŝjpj ,

• for all i ∈ B,
∑
j∼i fij = m̂i and

• for all edges (i, j), 0 ≤ fij ≤ blijpj .

Checking for existence of such weights amounts to solving
a linear program and can be done in polynomial time, which
is Step 3.

The corollary that equilibrium prices are rational follows
immediately, since they are a solution to a system of linear
equalities.

Analysis of the running time

Theorem 2 The number of cells formed due to k hyper-
planes in Rm+ is at most O(km).

The number of hyperplanes in the two steps are nm2L2

and nmL. So the total number of cells the algorithm enu-
merates over is O

(
n2(mL)3

)m
. And for each cell, the al-

gorithm needs to solve a system of O(mn) linear inequali-
ties. It is clear that if m is a constant, then the running time
is a polynomial in the input size (n and L).

2.1 Prices are linear functions of O(1) pa-
rameters

The algorithm for this case is almost identical to the al-
gorithm for a constant number of goods, with λj(q) substi-
tuted for pj . We decompose the space of q vectors using
hyperplanes as before. The first set of hyperplanes are now

ulij
λj(q)

=
ul
′

ij′

λj′(q)
,

for each 5-tuple (i, j, j′, l, l′), i ∈ [n], j 6= j′ ∈ [m]. This
defines the classes C1(i), C2(i), . . . as before. The second
set of hyperplanes is, for each i, k,∑

(j,l)<Ck(i)

λj(q)blij = mi.

This defines the class C∗(i). Finally, the equilibrium con-
ditions inside a cell are equivalent to the existence of a so-
lution to the following system of equalities and inequali-
ties. The adjacencies between the goods and buyers are
defined as before: j is adjacent to i iff (j, l) ∈ C∗(i)
for some l, and let m̂i = mi −

∑
(j,l)<C∗(i)

λj(q)blij and
ŝj = 1−

∑
i,l:(j,l)<C∗(i)

blij .

• for all j ∈ A,
∑
i∼j fij = ŝjλj(q),

• for all i ∈ B,
∑
j∼i fij = m̂i and

• for all edges (i, j), 0 ≤ fij ≤ blijλj(q).

Since the λj’s are linear functions, each (in)equality is lin-
ear and hence once can solve the system efficiently.

3 Non-separable Utilities

The cell decomposition in this case will involve polyno-
mial surfaces instead of hyperplanes as before. As in the
case of hyperplanes, a set of polynomials q1, q2, . . . qN ∈
R[x1, x2, . . . , xm] divide the space into cells6, where each
cell is defined by a sign assignment σ ∈ {0, 1,−1}N to the
polynomials. The basic fact about these cells that we use is

Theorem 3 ([3]) If the polynomials have degree at most d,
then the number of non-empty cells, and the time required
to enumerate them is O(Nm+1)dO(m).

Note that this theorem solves a constraint satisfiability prob-
lem, where the constraints are polynomials and the number
variables is a constant. Given a particular sign assignment
σ ∈ {0, 1,−1}N , one can decide if there exists an x ∈ Rm
such that sign(q1(x), q2(x), . . . qN (x)) = σ (and output if
there is one) by enumerating over all the non-empty cells.
In fact, one can solve the more general problem where there
is an existential and a universal quantifier, as long as the
total number of variables is still constant.

Theorem 4 ([2]) Given a set of polynomials
q1, q2, . . . qN ∈ R[x1, x2, . . . , xm, y1, y2, . . . , ym] each of
degree atmost d, and a sign assignment σ ∈ {0, 1,−1}N ,
the time required to decide if there exists an x ∈ Rm such
that ∀ y ∈ Rm, sign(q1(x,y), q2(x,y), . . . qN (x,y)) =
σ, and output if there is one, is O(N (m+1)2)dO(m2).

Leontief Utilities

As a warm up exercise, we give an algorithm for the case of
Leontief Utilities. A Leontief Utility function is of the form

Ui(xi) = min
j

{
xij
φij

}
.

6In the computational algebraic geometry literature, these are called
semi algebraic sets
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We let some of the φij’s to be zero, where it is understood
that in that case, the minimum is only taken over the non-
zero φij’s. It is easy to see that Leontief Utilities are PLC.
Also, this case is of special interest since the general prob-
lem of computing equilibrium in a market with Leontief
Utilities when there are no restrictions on the number of
goods or buyers is PPAD-Hard [8].

It is easy to see that an optimum allocation for buyer i
with a utility function as above is given by xij = tiφij
where ti = mi

p·φi

. The equilibrium conditions are,

for all j, either
∑
i

xij = 1 or pj = 0,

i.e.,

[∑
i

(
miφij
p · φi

)
− 1

]
· pj = 0

⇔

[∑
i

(miφijPi)− P

]
· pj = 0,

where P =
∏
i p.φi and Pi =

∏
i′ 6=i p·φi′ . Each condition

is simply a polynomial in the prices with degree n+1. And
the number of conditions is just m. Hence, from Theorem
3, finding an equilibrium can be done in polynomial time if
m is a constant.

3.1 Algorithm for general PLC utilities

A high level description of the algorithm:

Step 1: Partition the space of prices (with hyperplanes) so
that given a cell, for every i, the set of optimum alloca-
tions P̂i is the intersection of Pi and {x : p ·x = mi}
for some polytope Pi that depends only on the cell. Pi
will be one of the faces of the simplicial subdivision
defining buyer i’s utility function.

The details of how to implement this step will be given
later. At this point, the goal is to find for each i, an xi ∈ P̂i,
such that

∑
i xij = 1 for all j. There are a few difficulties in

doing this. The first one is that P̂i depends on the price. The
second, and the more difficult one, is that the search space is
still very large (the number of degrees of freedom/variables
is mn). We use a novel application of LP duality to solve
this problem.

Lemma 5 Given polytopes P̂i ⊂ Rm+ for each i, there exist
xi ∈ P̂i, such that

∑
i xij = 1 for all j, if and only if for

all q ∈ Rm,
∑
j qj ≤

∑
i maxxi∈P̂i

q · xi.

This restatement has only m variables (in addition to the
prices) as opposed to the usual statement that involves mn
variables (giving the allocation for each buyer).

Proof: Suppose that there exist x∗i ∈ P̂i for all i satisfying∑
i x
∗
ij = 1 for all j. Then for all q ∈ Rm,∑
i

max
xi∈P̂i

q · xi ≥
∑
i

q · x∗i =
∑
i,j

qjx
∗
ij =

∑
j

qj .

For the converse, assume that there do not exist xi ∈ P̂i,
such that

∑
i xij = 1 for all j. This is equivalent to saying

that the all ones vector 1 ∈ Rm does not belong to the
set P = {y ∈ Rm+ : y =

∑
i xi,xi ∈ P̂i}. Since this

set is itself a polytope, LP duality says that there exists a
separating hyperplane given by q ∈ Rm, w ∈ R, such that
q · 1 > w and for all y ∈ P, q · y ≤ w. Hence

q · 1 > max
y∈P

q · y = max
xi∈P̂i

q ·
∑
i

xi =
∑
i

max
xi∈P̂i

q · xi.

�

Step 2 Let the vertices of the polytope P̂i be {vki : 1 ≤
k ≤ K}. Decompose the p, q space (which is R2m

+ )
into cells so that for all i, maxxi∈P̂i

q · xi is attained
at a particular vertex of the polytope, v∗i , that depends
only on the cell.

This step can be implemented as follows. A vertex v∗i
of the polytope P̂i is a solution to m linearly independent
equations, out of which one of them is p · x = mi. The
others are independent of p. Thus each co-ordinate of v∗i
can be written as a ratio where the numerator is independent
of p and the denominator is a linear function of p. Partition
the p, q space using the polynomials, ∀ i,∀ 1 ≤ k, k′ ≤ K,

q · vki = q · vk
′

i .

Each of them has degree at mostm+1. For each cell in this
partition, one can identify a particular vertex that attains the
maximum.

Step 3 For each cell solve the problem ∃?p : ∀ q,
∑
j qj ≤∑

i q · v∗i . As in the previous step, v∗i can be written
in terms of p. On clearing the denominators, this is a
polynomial inequality. Solving this is a direct applica-
tion of Theorem 4.

Implementing Step 1

Consider the buyer’s optimization problem,

maximize Ui

subject to ∀ l, Ui ≤ uli · xi + wli

p · xi = mi

xi ≥ 0
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Without loss of generality, we may assume that the feasible
set is a full-dimensional polytope, and the set of above con-
straints is irredundant, i.e., no constraint is implied by the
rest of them. For some choice of L∗ ⊆ [L] and J∗ ⊆ [m]
such that |L∗| + |J∗| ≤ m, the set of optimum allocations
is Pi ∩ {x : p · x = mi} where

Pi = {x : ∀ l ∈ L∗, Ui = uli · xi + wli,

∀ l /∈ L∗, Ui ≤ uli · xi + wli,

∀ j ∈ J∗, xij = 0, and
∀ j /∈ J∗, xij ≥ 0.}

The number of possible choices forPi isO((L+m)m). The
correct one depends on the price p. The goal is to partition
the price space so that the choice depends only on the cell.
In order to achieve this, the question we want to answer is,
for what values of p is a given J∗, L∗ the correct choice?

Now consider the dual problem:

minimize αimi +
∑
l

λliw
l
i

subject to ∀ j, pjαi ≥
∑
l

λliu
l
ij∑

l

λli ≥ 1

αi, λ
l
i ≥ 0

The set of optimal solutions to the dual is

Qi = {αi, λli : ∀ j ∈ J∗∗, pjαi =
∑
l

λliu
l
ij

∀ j /∈ J∗∗, pjαi ≥
∑
l

λliu
l
ij

∀ l ∈ L∗∗, λli = 0,
∀ l /∈ L∗∗, λli ≥ 0, and∑
l

λli = 1}.

for some choice of L∗∗ ⊆ [L] and J∗∗ ⊆ [m].

Lemma 6 We may choose the sets J∗, L∗, J∗∗, L∗∗ such
that J∗∗ = (J∗)c, and L∗∗ = (L∗)c.

The proof of the lemma is an easy application of the com-
plementary slackness conditions for optimality. And the an-
swer to the question asked earlier is that a given L∗, J∗ is
the right choice for those prices for which both P̂i and Qi
are non-empty. In what follows, we show how to partition
the space into cells so that given a cell, one can determine
if P̂i and Qi are non-empty.

Note that Pi is independent of p. P̂i is non-empty if
and only if the hyperplane p · x = mi intersects Pi. This

happens if and only if there are vertices z, z′ of Pi such that
p · z ≤ mi and p · z′ ≥ mi.

Consider the vertices of the simplicial subdivision in the
definition of i’s utility function. The vertices of Pi are also
vertices of this simplicial subdivision. Consider the set of
hyperplanes, for every vertex z of the simplicial subdivi-
sion,

p · z = mi.

A cell in the partition induced by these hyperplanes deter-
mines if P̂i is non-empty.

The non-emptiness of Qi depends on the position of p
relative to the vectors uli. In particular, just the equations

∀ j ∈ J∗∗, pjαi =
∑
l∈L∗

λliu
l
ij∑

l∈L∗
λli = 1

are equivalent to the statement that when restricted to the
dimensions of J∗∗, the price vector p is in the subspace
generated by the vectors {uli : l ∈ L∗}. One can eliminate
the variable αi from these equations and instead consider

∀ j ∈ J∗∗, pj =
∑
l∈L∗

µliu
l
ij .

Note that this is an over-determined system of equations,
since the number of variables = |L∗| ≤ m− |J∗| = |J∗∗| =
the number of equations. Hence one can solve for the µli’s
in terms of p. In fact, each µli is a linear function of p. (If
|L∗| is strictly less than |J∗∗|, then we use some subset of
J∗∗ to solve for the µli’s. Then, substituting for µli’s in the
rest of the equations gives linear equalities that the p vector
must satisfy.) Qi is non empty if and only if this solution
also satisfies

∀ l ∈ L∗, µli ≥ 0 and

∀ j ∈ J∗, pj ≥
∑
l∈L∗

µliu
l
ij .

If we write µli in terms of p, then these are just linear in-
equalities in p. Now if the price space is partitioned with
the corresponding hyperplanes, then a cell in the partition
determines if a particular Qi is non-empty.

Running Time: If m is a constant, then the number of
polynomials and their degree in each step are polynomials.
And the number of variables is a constant. Hence the run-
ning time is polynomial.

4 Algorithm for constant number of agents

The algorithm for this case is very similar to the one
for the case of constant number of goods. Recall that for
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separable PLC utilities, for every buyer i, there is a critical
MUPUC αi such that any piece with higher MUPUC than
αi is fully consumed by agent i and any piece with lesser
MUPUC than αi is not consumed at all. For this case, we
partition Rn+, with variables α1, α2, . . . , αn. There is one
hyperplane for each 5-tuple (i, i′, j, l, l′), i 6= i′ ∈ [n], j ∈
[m] defined by

ulij
αi
−
ul
′

i′j

αi′
= 0.

Given a cell in this partition for every j, the order of
ul

ij

αi
of

the pieces is independent of the particular α in the cell. Let
C1(j), C2(j), . . . and so on be the equivalence classes of

pieces arranged in the decreasing value of
ul

ij

αi
; pieces with

the same
ul

ij

αi
being in the same class. let (i, l) < Ck(j)

stand for (i, l) ∈ Ck′(j) for some k′ < k. Let C∗(j) be
such that ∑

(i,l)<C∗(j)

blij < 1 ≤
∑

(i,l)≤C∗(j)

blij .

Then pj = ul
ij

αi
where (i, l) ∈ C∗(j) are the equilibrium

prices. Finding equilibrium allocations simply amounts to
solving a system of linear inequalities.

5 Conclusion

Right now, the algorithm and the analysis in this paper
are rather complicated, and the running time is prohibitively
large for any reasonable application, although polynomial.
Simplifying the algorithm and the proof, and improving the
running time is an important step. For instance, instead of
the brute-force way of enumerating all the cells, coming up
with an algorithm that has a more systematic way of going
from one cell to another would be interesting.
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