
Online Matching with Concave Returns

[Extended Abstract]

Nikhil R. Devanur
Microsoft Research

1 Microsoft Way
Redmond, WA 98052.

nikdev@microsoft.com

Kamal Jain
∗

Ebay Research
2065 Hamilton Avenue

San Jose, California 95125
kamaljain@gmail.com

ABSTRACT
We consider a significant generalization of the Adwords prob-
lem by allowing arbitrary concave returns, and we characterize
the optimal competitive ratio achievable. The problem considers
a sequence of items arriving online that have to be allocated to
agents, with different agents bidding different amounts. The objec-
tive function is the sum, over each agent i, of a monotonically non-
decreasing concave function Mi : R+ → R+ of the total amount
allocated to i. All variants of online matching problems (including
the Adwords problem) studied in the literature consider the spe-
cial case of budgeted linear functions, that is, functions of the form
Mi(ui) = min{ui, Bi} for some constant Bi. The distinguishing
feature of this paper is in allowing arbitrary concave returns. The
main result of this paper is that for each concave function M , there
exists a constant F (M) ≤ 1 such that

• there exists an algorithm with competitive ratio of
mini{F (Mi)}, independent of the sequence of items.

• No algorithm has a competitive ratio larger than F (M) over
all instances with Mi = M for all i.

Our algorithm is based on the primal-dual paradigm and makes use
of convex programming duality. The upper bounds are obtained
by formulating the task of finding the right counterexample as an
optimization problem. This path takes us through the calculus of
variations which deals with optimizing over continuous functions.
The algorithm and the upper bound are related to each other via
a set of differential equations, which points to a certain kind of
duality between them.

Categories and Subject Descriptors
F.1.2 [ Modes of Computation]: Online computation

General Terms
Algorithms, Theory
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1. INTRODUCTION
In recent years, variants of the online bipartite matching prob-

lem (most notably the Adwords problem) have been the subject of
intense investigation. These problems are motivated by their appli-
cation to online advertising. They are also considered fundamental
problems in the theory of online algorithms. In this paper we con-
sider a significant generalization of the Adwords problem by al-
lowing arbitrary concave returns, and we characterize the optimal
competitive ratio achievable.

Consider the following problem, the online matching problem
with concave returns. An instance of the problem is given by

• a set of agents, L. For each agent i, a monotonically non-
decreasing concave function Mi : R+ → R+.

• A sequence of items. For each item j the bid of each agent i,
given by bij . R denotes the set of all items.

An algorithm for the problem allocates items to agents. Fractional
allocations are allowed. Let xij be the fraction of item j allocated
to agent i, with

∑
i xij ≤ 1. The allocation of item j can only de-

pend on the items earlier in the sequence,1 making this an “online”
problem. The goal of the algorithm is to maximize its revenue,
denoted by ALG.

ALG =
∑
i

Mi

(∑
j

bijxij

)
.

The performance of an algorithm is measured by competitive anal-
ysis. ALG is compared with the offline optimum revenue, OPT,
which is the optimal revenue taken over all valid allocations, given
the entire set of items. An algorithm is F -competitive, or equiva-
lently, has a competitive ratio of F if for all instances, ALG/OPT ≥
F . The competitive ratio may also be defined on subsets of in-
stances, such as by restricting the Mi’s to belong to a particular
family of concave functions.

This problem generalizes the Adwords problem. In the Adwords
problem the returns are given by budgeted linear functions, that is,
functions of the form Mi(ui) = min{ui, Bi} for some constant
Bi, the budget of i. All variants of online matching problems stud-
ied in the literature (as briefly summarized in Section 4) consider
budgeted linear functions, and the distinguishing feature of this pa-
per is in allowing arbitrary concave returns. The motivation for
considering concave returns is discussed in Section 1.1.
1and, of course, the functions Mi



For the Adwords problem it is known that the optimal competi-
tive ratio is 1 − 1/e [16].2 That is, there is an algorithm that has
a competitive ratio of 1 − 1/e and no algorithm has a better com-
petitive ratio. We generalize this result to our problem. The main
result of this paper is that for each concave function M , there exists
a constant F (M) ≤ 1 such that

• there exists an algorithm with competitive ratio of
mini{F (Mi)}, independent of the sequence of items.

• No algorithm has a competitive ratio larger than F (M) over
all instances with Mi = M for all i.

All budgeted linear functions have F = 1 − 1/e, so our result
does generalize the Adwords result. In fact, F (M) ≥ 1 − 1/e for
all concave functions, and could be much larger. For instance for
M(x) = xδ for any δ ∈ [0, 1], F (M) = δδ . For δ = 0.5, δδ ≃
0.7 > 1 − 1/e ≃ 0.63. In general, F (M) does not have a closed
form (in fact, M itself is arbitrary, so that is not surprising).

In order to understand the difficulty in proving something like
the above, let us look at how it is proven for the Adwords problem.
An algorithm is designed and an analysis shows that the compet-
itive ratio is 1 − 1/e. A family of instances is designed and ana-
lyzed to argue that no algorithm has a competitive ratio better than
1 − 1/e. However there is no insight into why we got the same
number in both cases, except that it seems like a lucky coincidence.
How do we get lucky when this number is not a nice number such
as 1 − 1/e or even something we can explicitly calculate? Our
analysis peels off a layer of mystery shrouding this coincidence: we
show that these two numbers are the same because they correspond
to solutions of the same differential equations. The coincidence is
removed from being “the same number” to being “the same differ-
ential equations”. Why this is so is still a bit of a mystery and we
leave this as an open problem.

We overcome several technical hurdles in proving the results.
Our algorithm is based on the primal-dual paradigm and makes use
of convex programming duality. The standard form of convex pro-
gramming duality that uses conjugate functions is somewhat com-
plicated and unwieldy. We give a significantly simpler form that
is easy to understand and is a better fit for our algorithm. Another
important feature of our algorithm is that once you adopt certain
basic principles of primal-dual algorithm design, the rest of the al-
gorithm follows naturally with no non-deterministic choices. This
“organic” approach leads to certain differential equations that gov-
ern the competitive ratio of the algorithm.

The bigger difficulty lies in showing matching upper bounds on
the competitive ratio. It is not natural, in fact it is not at all clear
how the upper bound would be related to the differential equations
from the algorithm. Once again, looking to the Adwords problem
for inspiration, the upper bound for the Adwords problem comes
from what is known as the upper triangular graph. The intuition
about why this graph is hard for the Adwords problem carries over
for any concave function, so it is natural to use the same graph
for the more general case. Unfortunately there are concave func-
tions for which this graph does not give a matching upper bound.3

One breakthrough was the realization that we can create a family
of instances by parametrizing the upper triangular graph by a cer-
tain “supply function”, and this can give better upper bounds on the
competitive ratio. One could try to guess the right supply function
to get the desired bounds, but this too is quite messy, even for sim-
ple concave functions. It turns out that the correct way is to formu-
2with the assumption that bid ≪ budget
3At this point it was very tempting to conjecture that there is a
better algorithm.

late the task of finding the right supply function as an optimization
problem. What happens then is that the optimality conditions can
be shown to be equivalent to the differential equations from the al-
gorithm, finally giving the sought after connection. This path takes
us through the calculus of variations which deals with optimizing
over continuous functions (rather than optimizing over a finite set
of variables). This connection points to a certain kind of duality be-
tween the algorithm and these instances used in the upper bound;
this duality warrants further exploration.

1.1 Motivations for concave returns
Concave returns are actually very natural in the setting of on-

line matching. They capture the commonly occurring “diminishing
returns” property. We present here some specific examples where
concave returns come up.

Display ads: A popular form of selling display ads is via “guar-
anteed delivery”, where the publisher promises to deliver a
certain number of impressions to an advertiser. On not deliv-
ering on such a promise, the publisher pays an under-delivery
penalty which is a convex function of the under-delivered
amount. When translated into returns as a function of the
number of allocated impressions, this becomes a concave
function.

Pay-per-click advertisements: In pay-per-click advertisements, the
publisher allocates impressions to advertisers, but gets paid
only for clicks. It has been empirically observed that the
number of clicks is a concave function of the number of im-
pressions.

Soft budgets: Budget constraints are treated as hard constraints in
the Adwords problem, but often in practice there is some lee-
way. If getting more items is still profitable, an agent could
borrow money (and pay an interest rate on it) to pay beyond
his budget. This translates to a concave profit function.

Proportional fairness One may want to optimize objectives other
than revenue, especially some measure that incorporates fair-
ness of allocation. One such measure, popular in the net-
working community, is Proportional fairness, introduced by
Kelly [13]. Proportional fairness maximizes a weighted sum
of logs, a concave function.

Organization: The rest of the paper is organized as follows: Sec-
tion 2 has the description and analysis of the algorithm. Section 3
gives the matching upper bounds. In Section 4 we discuss flexibil-
ity of our algorithmic approach, related work, and open problems
and directions for future research.

2. THE ALGORITHM
For the rest of the paper we make the assumption that the Mi’s

have continuous second derivatives. Our approach can actually
handle non-smooth functions, but this involves sub-gradients, etc.
We make this assumption to keep the exposition simple.

The algorithm is based on an extension of the primal-dual paradigm
to convex programs. OPT is the optimum value of a convex pro-
gram, called the Primal program (the one on the left below). The
first step is to define a dual program to the Primal convex program.
We present a simple and direct construction of the dual program
and a proof of (weak) duality. These are based on the simple geo-
metric fact that a concave function is upper bounded by any of its
tangents. Let Yi(vi) := Mi(vi)−viM

′
i(vi). This is the y-intercept

of the tangent to Mi() at vi, that is, if you draw a tangent to Mi()



at vi then (0, Yi(vi)) is the point of intersection of the tangent with
the y-axis. The Dual program, with vi’s and βj’s as variables is
stated below on the right.

maximize
∑
i

Mi(ui) s.t. minimize
∑
i

Yi(vi) +
∑
j

βj s.t.

∀ i, ui =
∑
j

bijxij . ∀ i, j, βj ≥ bijM
′
i(vi).

∀ j,
∑
i

xij ≤ 1. ∀ i, j, vi, βj ≥ 0.

∀ i, j, xij ≥ 0.

LEMMA 1. (Weak duality) The optimum value of the Dual pro-
gram ≥ OPT.

PROOF. Since Mi is concave, a tangent to Mi at any point vi
(in the domain of Mi) is an upper bound on Mi.

∀ i,∀ vi ≥ 0,Mi(ui) ≤ Mi(vi) + (ui − vi)M
′
i(vi)

= M ′
i(vi)ui + Yi(vi).

Suppose we fix vi for all i, and replace Mi by the upper bound
in the inequality above, thus linearizing the objective function of
the Primal program. Let D(v) be the value of the following linear
program (on the left). The dual of this LP is on the right, the opti-
mum value of which is also D(v) by strong LP duality. (v is the
vector of vi’s.)

maximize
∑
i

M ′
i(vi)ui s.t. minimize

∑
j

βj s.t.

∀ i, ui =
∑
j

bijxij . ∀ i, j, βj ≥ bijM
′
i(vi).

∀ j,
∑
i

xij ≤ 1. ∀ j, βj ≥ 0.

∀ i, j, xij ≥ 0.

For every choice of v we get an upper bound on OPT.

∀ v,OPT ≤ D(v) +
∑
i

Yi(vi).

In the above LPs (in particular, the dual LP), vi’s are considered as
constants. We can instead think of them as variables and obtain a
single mathematical program with vi’s and βj’s as variables. This
is exactly what the Dual program is, minv{D(v) +

∑
i Yi(vi)}.

The lemma follows.

The primal-dual paradigm as applied to online algorithms is to
maintain a set of dual variables that guide the primal solution. The
evolution of the primal solution in turn determines how the dual
variables are updated. The part of dual variables guiding the pri-
mal solution usually follows very naturally from the complemen-
tary slackness conditions (or with the duals being interpreted as
costs, etc). The non-trivial part is how the dual variables are up-
dated. This requires that

• the dual variables remain feasible and that

• the ratio of the values of the primal and the dual solutions
remains within desirable bounds.

The algorithm design principle we espouse in this paper is that
once we determine that the dual variables satisfy the above con-
ditions, their dependence on the primal solution can be “reverse-
engineered”. The above conditions often take the form of a dif-
ferential equation which can be solved (either in a closed form or
numerically) to give the dual update method.

We now describe the algorithm. Recall that the algorithm has
to determine the allocation xij in an online manner. The algo-
rithm also constructs a solution to the Dual program. The algo-
rithm maintains for each i, the variable ui =

∑
j bijxij . The

dual variable vi is set as a (smooth) function of ui, such that vi
is monotonically non-decreasing. The exact dependence of vi on
ui is left unspecified for now. The dual variables guide the pri-
mal allocation via complementary slackness conditions. For in-
stance, one complementary slackness condition says that xij >
0 implies βj = bijM

′
i(vi). This means we must allocate j to

argmaxi{bijM ′
i(vi)}. However the argmax may change as a

result of the allocation, since allocating j to i increases ui, which
increases vi, which decreases M ′

i(vi). If the argmax is unique
and does not change even after allocating j completely to i, then j
is allocated completely to i (that is xij = 1). If either the argmax
is not unique or it changes when we allocate j to i, we need to al-
locate fractionally. The allocation is best described as a continuous
process. As you start allocating j to i, ui increases, which changes
vi which in turn could change the argmax. To describe the pro-
cess, let t denote time and we specify xij as a function of t. In turn,
ui and vi are also functions of t. In fact the allocations change
smoothly over time and we only specify dxij

dt
. We set dxij

dt
= 0

if i /∈ argmaxi{bijM ′
i(vi)}. Otherwise dxij

dt
> 0 is such that

bij
dM′

i(vi(t))

dt
is the same for all the agents in the argmax. Note

that this only specifies dxij

dt
upto a constant factor. This does not

matter since the “speed of time" is immaterial to the algorithm. Al-
location stops when

∑
j xij = 1. The dual variable βj is set as

follows.

βj =

∫ ∑
i

{bijM ′
i(vi)}

dxij

dt
dt. (1)

βj is only needed for the analysis of the algorithm and does not
affect the run of the algorithm itself.

The description of the algorithm is completed by specifying the
dependence of vi on ui. As mentioned before these are reverse-
engineered from the properties we want the dual solution to sat-
isfy (Lemmas 2 and 3 here). These take on the form of a solution
to a first order differential equation, which we present below. Let
F > 0 be some constant. A solution to the following differential
equation gives v as a function of u.

M ′(u)/F = Y ′(v)
dv

du
+M ′(v). (2)

dv

du
≥ 0.

Boundary conditions: when u = 0, Y (v) = 0. u, v ≥ 0.

Suppose that for some constant F , for all agents i, (2) has a solution
with M = Mi. Let the dependence of vi on ui in the algorithm be
given by such a solution. The algorithm is summarized below.

The analysis of the algorithm is by bounding the ratio of the pri-
mal and dual solutions constructed. Let P and D be respectively
the values of the primal and the dual solutions created by the algo-
rithm throughout its run.



Algorithm 1: Algorithm for the online matching problem with
concave returns.

Input: functions Mi for all i.
Let F be a constant such that for all agents i, (2) has a solution
with M = Mi ;
Throughout the algorithm, maintain the following invariants
for each i do

ui =
∑

j bijxij ;
vi is a function of ui that satisfies (2);

for each j when j arrives do
allocate j to argmaxi{bijM ′

i(vi)} in a continuous fash-
ion ;
set βj as in (1);

LEMMA 2. The following is an invariant throughout the algo-
rithm.

dP

dD
= F.

PROOF. The differential equation (2) has already been defined
to make this lemma go through. Suppose dx of j is allocated to i.
Then

dP = M ′
i(ui)bijdx = M ′

i(ui)dui.

dD = Y ′
i (vi)dvi + bijM

′
i(vi)dx = Y ′

i (vi)dvi +M ′
i(vi)dui.

Lemma now follows from (2).

LEMMA 3. The variables vi and βj constructed by the algo-
rithm form a feasible solution to the Dual program.

PROOF. This is easy to see since we allocate j only to
argmaxi{bijM ′

i(vi)}, and the fact that M ′
i(vi) is monotonically

non-increasing throughout the algorithm.

THEOREM 4. The algorithm has a competitive ratio of F .

PROOF. The theorem follows immediately from Lemmas 1, 2
and 3, and the fact that when P = 0, D = 0.

Note: It is easy to see for instance, that the greedy algorithm has
a competitive ratio of 1

2
. The greedy algorithm corresponds to the

solution v = u. In this case, consider the integral form of (2) with
F = 1

2
and note that the left hand side is 2M(u) and the right

hand side is Y (u) +M(u). Since M(u) ≥ Y (u), the conclusion
follows. This also shows that F (M) ≥ 1

2
for all M . In fact it can

be shown that F (M) ≥ 1−1/e for all M , via an indirect argument
which we will not go into here.

Note that this completes the first part of the main result. For a
given concave function M define F (M) to be the largest constant
such that (2) has a solution. Then the algorithm has a competitive
ratio of mini{F (Mi)}.

3. THE UPPER BOUND
In this secion we prove the second part of our main result, by

showing a matching upper bound on the competitive ratio of any al-
gorithm. Such an upper bound is proven by constructing instances
and arguing that no algorithm can perform well on all the instances.
We begin by some simplifying observations.

In order to prove an upper bound on the competitive ratio, we
need to consider randomized algorithms as well. In case of ran-
domized algorithms, we consider the expected revenue of the algo-
rithm. However for this problem, randomization does not help. To

see this, for any randomized algorithm, consider the deterministic
algorithm whose allocation is equal to the expected allocation of
the given randomized algorithm. The revenue of the deterministic
algorithm is no lower than the expected revenue of the randomized
algorithm due to the concavity of the Mi’s. Thus we can restrict
ourselves to deterministic algorithms only.

We show that for a certain family of instances we can character-
ize the optimal algorithm, the one with the largest competitive ra-
tio. This enables us to prove the upper bound by simply bounding
the competitive ratio of the optimal algorithm. Consider a bipartite
graph G = (L,R,E), with vertex sets L = R = {1, 2, . . . , n}
and edges (i, j) ∈ E iff i ≥ j. This graph is commonly called
the “upper triangular” graph, since its adjacency matrix is upper
triangular. Fix a concave function M . Consider instances of the
problem with the set of agents being isomorphic to L, modulo the
identity of agents. That is, we have n agents and consider all possi-
ble bijections of agents to L. Mi = M for all i. The items are the
vertices in R, arriving in the increasing order. bij = 1 if (i, j) ∈ E
and 0 otherwise. The first item is adjacent to all the agents. Every
subsequent item is adjacent to all the agents the previous item was
adjacent to, except one. The algorithm has to make its allocation
without knowing which agent will be “left out” for the next item.

We claim that the algorithm that divides the items equally among
all its neighbors is the optimal algorithm for these instances. That
is, this algorithm has the largest competitive ratio taken over all
these instances. If an algorithm has an inequitable allocation then
an adversary picking the instance can take advantage of this by
picking the agent with the lowest allocation to be left out for the
next item. This results in a lower objective function than the equi-
table allocation because of concavity of returns. Thus, it is suf-
ficient to show an upper bound on the competitive ratio of the
equitable algorithm. That is, if we show that for this algorithm
ALG/OPT ≤ F then no algorithm can have a competitive ratio
better than F on these instances, and in turn on all instances with
Mi = M for all i.

In fact, we extend the above to instances where the items could
have an arbitrary “supply”. Suppose item j has supply fj , then the
supply constraint is that

∑
i xij ≤ fj . It is easy to see that the

assertion about the equitable algorithm being optimal still holds.
With these simplifying observations, the aim is to construct for

any M , a supply function fj such that ALG/OPT for that instance
is arbitrarily close to F (M), the largest constant such that (2) has
a solution. A direct way to show that would be to consider any
constant larger than F (M) and construct an f so that ALG/OPT
is equal to that constant. Alas we don’t know of any such direct
construction; the difficulty is in relating this to (2). It turns out that
the relation of (2) with this family of instances is somewhat indi-
rect. We show that if you formulate the task of finding the f that
minimizes ALG/OPT as an optimization problem, then the condi-
tions that characterize the optimal choice are equivalent to (2)!!
From this it follows that for the optimal choice of f we have that
ALG/OPT = F (M), giving the result we were after.

In fact, to follow the plan as outlined above, we consider a con-
tinuous version of the upper triangular graph. We define a bipar-
tite graph G = (L,R,E), with the vertex sets L = R = [0, 1].
(x, y) ∈ E iff x ≥ y. Many of the concepts in the discrete version
are based on summations, but they break down since we cannot take
summations in the continuous version. We now specify how to ex-
tend all the concepts to their continuous counterparts. The “supply”
of items is given by a function f : R → R+. An allocation is given



by a function A(x, y). The supply constraint translates to

∀y ∈ R,

∫ 1

y

A(x, y)dx = f(y).

The amount allocated to x, say u(x) is given by

u(x) =

∫ x

0

A(x, y)dy.

The revenue of the algorithm is

ALG =

∫ 1

0

M(u(x))dx.

The optimal algorithm has the allocation

A(x, y) =
f(y)

1− y
∀x ≥ y.

Thus u(x) =
∫ x

0

f(y)

1− y
dy.

The offline optimal allocation is

A(x, y) = f(y)δy(x)

where δy(x) is the dirac-delta function with peak at y. With this
allocation the amount allocated to x is f(x). Thus

OPT =

∫ 1

0

M(f(x))dx.

3.1 Calculus of variations
As mentioned before, the key to the upper bound proof is to for-

mulate the task of finding an f that minimizes the ratio ALG/OPT
as an optimization problem. A quantity that is a function of a
function, such as ALG/OPT, is called a functional (and is de-
noted ALG/OPT[f ]). The subject of finding extremal functions,
that is functions that optimize a functional is called the calculus of
variations. The calculus of variations is used for instance to find
geodesics on surfaces, or in physics to apply the “principle of least
action”. It will be used here crucially.

We will consider functions from C, the class of all real valued
functions defined on the domain [0, 1], that are right-continuous.
The dot product of two functions is defined as

f · g :=

∫ 1

0

f(x)g(x)dx.

The gradient of a functional H (at some f0) is another function
∇H such that for any other function η, the rate of change of H in
the direction of η starting from f is ∇H · η. That is,

dH[f0 + ϵη]

dϵ
|ϵ=0 = ∇H · η.

It is easy to compute the gradient of OPT:

∇OPT(x) = M ′(f(x)).

It is a little harder to compute the gradient of ALG.

LEMMA 5.

∇ALG(x) =
1

1− x

∫ 1

x

M ′(u(t))dt.

PROOF. Recall that

ALG[f ] =

∫ 1

0

M(u(x))dx, where

u(x) =

∫ x

0

f(y)

1− y
dy.

Let f = f0 + ϵη.

dALG[f ]

dϵ
=

∫ 1

0

dM(u(x))

dϵ
dx =

∫ 1

0

M ′(u(x))
du(x)

dϵ
dx.

du(x)

dϵ
=

∫ x

0

d

dϵ

f(y)

1− y
dy =

∫ x

0

η(y)

1− y
dy.

Putting the two together and changing the order of integration gives

dALG[f ]

dϵ
=

∫ 1

0

M ′(u(x))

∫ x

0

η(y)

1− y
dydx

=

∫ 1

0

η(y)

1− y

∫ 1

y

M ′(u(x))dxdy

=

∫ 1

0

η(x)

1− x

∫ 1

x

M ′(u(t))dtdx.

The last equality is a result of change of integration variables.

For a given L > 0, let CL be the class of all real-valued func-
tions f defined on the domain [0, 1] that are right-continuous, with
f(0) = 0 and bounded above by L.4 From now on, let H denote
the functional ALG/OPT. For every L, and f ∈ CL, we get an
upper bound of H[f ] on the competitive ratio of any algorithm. We
are interested in the least upper bound we can obtain this way. We
define the following quantities for ease of notation.

inf
f∈CL

H[f ] =: λ∗
L, and

inf
L

λ∗
L =: λ∗.

We first establish the existence of a minimizer of H in the class CL.

THEOREM 6. ∃f∗ ∈ CL such that H[f∗] = λ∗
L.

The proof of the above theorem is broken down into Lemmas
7–9. To begin with, the definition of λ∗

L implies there exists a se-
quence of functions f1, f2, . . . , fn, . . . ∈ CL such that

lim
n→∞

H[fn] = λ∗
L.

LEMMA 7. We may assume without loss of generality that the
functions fn are monotonically non-decreasing.

PROOF. Suppose fn is not monotonically non-decreasing. Sup-
pose for simplicity that there is only one interval where fn is de-
creasing. Let f̂n be the “ironed”5 version of fn. The function f̂n
is monotonically non-decreasing, fn and f̂n agree except on an in-
terval [a, b] and

∫ b

a
fndx =

∫ b

a
f̂ndx. Let η = f̂n − fn. We will

argue that ∇ALG · η ≤ 0 and ∇OPT · η ≥ 0, which implies that
∇H · η ≤ 0. Therefore H[f̂n] ≤ H[fn] and fn can be replaced by
f̂n in the sequence.

Further subdivide the interval [a, b] as [a, c] and [c, b] such that
η ≤ 0 in [a, c] and η ≥ 0 in [c, b]. For x ∈ [a, c], f(x) ≥
f(c), therefore M ′(f(x)) ≤ M ′(f(c)). Further, since η(x) ≤ 0,
η(x)M ′(f(x)) ≥ η(x)M ′(f(c)). Vice versa, for x ∈ [c, b],
4Strictly speaking we want to let f(0) = sup{v : Y (v) = 0}, but
we will ignore this for the sake of ease of notation.
5This is the same as Myerson’s ironing [17] used in Bayesian
mechanism design.



f(x) ≤ f(c), therefore M ′(f(x)) ≥ M ′(f(c)). Here η(x) ≥ 0,
so once again η(x)M ′(f(x)) ≥ η(x)M ′(f(c)). Therefore

∇OPT · η =

∫ b

a

η(x)M ′(f(x))dx

≥ M ′(f(c))

∫ b

a

η(x) = 0.

Similarly, it is easy to check that ∇ALG is a non-increasing func-
tion of x and hence for x ∈ [a, c], ∇ALG(x) ≥ ∇ALG(c), and
for x ∈ [c, b], ∇ALG(x) ≤ ∇ALG(c). Using an argument that is
similar to the one above, we get that ∇ALG · η ≤ 0.

LEMMA 8. (Hally-Bray. See also [19], Section 17.5.) Given
a sequence of non-decreasing functions (fn) in CL, there exists a
convergent subsequence (fni : i ∈ N) → f∗ with pointwise con-
vergence. f∗ ∈ CL is non-decreasing, but may not be continuous.

LEMMA 9. H is continuous. That is, if a sequence (fn : n ∈
N) → f pointwise, then (H[fn]) → H[f ].

PROOF. It is easy to see that ALG and OPT are continuous.
Also H is always in [ 1

2
, 1]. Hence H is continuous.

Theorem 6 now follows since

lim
i→∞

H[fni ] = H[f∗] = λ∗
L.

Now we show several properties of f∗ with the goal of relating f∗

to (2). Let l := inf{x : f∗(x) = L}. By right continuity of f∗, it
follows that f∗(l) = L.

THEOREM 10. ([18])

∇H[f∗](x) = 0 ∀ x ∈ [0, l].

PROOF. The above theorem is the standard theorem in the cal-
culus of variations, giving necessary conditions for extremal func-
tions. The exact form stated here is obtained by considering all
variations η such that η(0) = 0 = η(x) for all x ∈ [l, 1].

LEMMA 11.

∇ALG[f∗] = λ∗
L∇OPT[f∗] ∀ x ∈ [0, l].

PROOF. The lemma follows essentially from the quotient rule
for differentiation along with Theorem 10.

We next show that in fact f∗ is a differentiable function.

LEMMA 12. f∗ is differentiable in [0, 1) (and is therefore con-
tinuous).

PROOF. Note that ∇ALG[f∗] is differentiable in [0, 1). From
Lemma 11 so is ∇OPT[f∗]. However, ∇OPT[f∗] = M ′(f∗),
and M ′ is differentiable. Therefore it follows that f∗ is differen-
tiable.

We have established that for every L, the minimizer f∗ of H in
CL exists, is non-decreasing, and is also differentiable in [0, 1). We
are now ready to relate f∗ to the primal differential equation. We
define a relaxation of (2) by requiring the conditions to hold only
for v ≤ L. To be precise consider the system of equations,

M ′(u)/F = Y ′(v)
dv

du
+M ′(v), (3)

for all u such that v(u) ≤ L.

dv

du
≥ 0.

Boundary conditions: when u = 0, Y (v) = 0. u, v ≥ 0.

Let F ∗
L be the supremum of all F such that (3) has a solution.

Clearly F ∗
L ≥ F (M) since a solution to (2) also satisfies (3). It

is also easy to see that

inf
L

F ∗
L = F (M).

We now state a lemma that shows that f∗ can be used to construct
a solution to (3).

LEMMA 13.

∀ L, λ∗
L ≤ F ∗

L.

PROOF. Recall that a solution to (3 ) is to contruct v as a func-
tion of u. Note that du

dx
> 0 for u > 0 and hence one can in-

vert the function u(x) and think of x as a function of u. Define
v(u) = f∗(x(u)). We now show that this solution satisfies (3 )
with F = λ∗

L. The lemma then follows from the definition of F ∗
L.

We start with the conclusion of Lemma 11: for all x ∈ [0, l],

∇ALG[f∗] = λ∗
L∇OPT[f∗].

1
1−x

∫ ∞

x

M ′(u(t))dt = λ∗
LM

′(f∗(x)).

1
λ∗
L

∫ ∞

x

M ′(u(t))dt = (1− x)M ′(f∗(x)).

Differentiating both sides w.r.t. x,

−1
λ∗
L
M ′(u(x)) = −M ′(f∗(x)) + (1− x)M ′′(f∗(x))

df∗

dx
.

Use the fact that df∗

dx
= df∗

du
du
dx

and du
dx

= f∗

1−x
.

1
λ∗
L
M ′(u(x)) = M ′(f∗(x))− f∗M ′′(f∗(x))

df∗

du
.

Substitute v = f∗ and use Y ′(v) = −vM ′′(v).

1
λ∗
L
M ′(u) = M ′(v) + Y ′(v)

dv

du
,

for all u such that v(u) ≤ L.

The main theorem of this section now follows from Lemma 13
easily, by taking infimums.

THEOREM 14. λ∗ = F (M).

4. DISCUSSIONS AND CONCLUSION

Flexibility of our approach
Another strength of our algorithmic approach is its flexibility: sup-
pose that even for budgeted linear functions, the algorithm designer
knows (based on historic data, for instance) that an agent is guaran-
teed to get a certain number of items. Our algorithm can be tuned
to take advantage of this, by appropriately changing the boundary
conditions in the differential equations. This leads to a better com-
petitive ratio. In general this approach opens up the possibility of
incorporating other kinds of beliefs about the instance and get the
optimal algorithm based on these beliefs.

Related work
The Adwords problem was introduced by [16], who gave a 1 −
1/e competitive algorithm, based on a factor revealing LP, with the
assumption that bid ≪ budget. They also showed that this is the



best competitive ratio achievable. [4] gave a primal-dual analysis
of the same result. Our algorithm is a generalization of the primal-
dual approach of [4]. [12] considered the online bipartite matching
problem and gave a 1 − 1/e competitive randomized algorithm.
This is a special case of Adwords with bids = 0 or 1 and budgets =
1, but this does not satisfy the bid ≪ budget assumption. [10] gave
a 1 − 1/e competitive algorithm for the b-matching problem with
large b, a special case of Adwords with budgets = b and bids = 0
or 1. The Adwords problem without the bid ≪ budget assumption
is open, with the best known algorithm being 1/2-competitive. A
1 − 1/e competitive algorithm is also known for another special
case of Adwords without the bid ≪ budget assumption, which is
the vertex-weighted version of online matching [1].

Most of the papers lately consider stochastic variants of online
matching, with the dominant theme of “beating” the 1−1/e bound.
These make some distributional assumptions about the sequence of
items and analyze the performance of the algorithm in expectation
over the distribution. A partial list of papers is as follows: [9, 5, 2,
7, 6, 8, 15, 3, 11, 14].

Open problems and directions
One open problem is to dig deeper into the coincidence of differ-
ential equations. This seems to point to a different kind of duality
between the algorithm and the counterexample. Understanding this
duality would lead to greater insights into what looks like a fun-
damental issue in the design of online algorithms. Another open
problem is to use this approach to get optimal competitive ratios
for other online problems. In fact, an ambitious goal is to be able
to reverse engineer: can hard instances (believed to be worst case
instances) of problems be used to design the algorithms?
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