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1. Introduction

We present the first polynomial time algorithm for the linear version of an old
problem, defined in 1891 by Irving Fisher [Brainard and Scarf 2000]: Consider a
market consisting of buyers and divisible goods. The money possessed by buyers
and the amount of each good are specified. Also specified are utility functions
of buyers, which are assumed to be linear (Fisher’s original definition assumed
concave utility functions). The problem is to compute prices for the goods such
that even if each buyer is made optimally happy, relative to these prices, there is no
deficiency or surplus of any of the goods, that is, the market clears.

Fisher’s work was done contemporarily and independently of Walras’ pioneering
work [Walras 1874] on modeling market equilibria. Through the ensuing years, the
study of market equilibria occupied center stage within mathematical economics.
Its crowning achievement came with the work of Arrow and Debreu [1954] which
established the existence of equilibrium prices in a very general setting, through
the use of Kakutani’s fixed point theorem.

Fisher’s and Arrow and Debreu’s market equilibrium models are considered the
two most fundamental models within mathematical economics. The latter can be
seen as a generalization of the former—it consists of agents who come to the market
with initial endowments of goods, and at any set prices, want to sell all their goods
and buy optimal bundles at these prices. The problem again is to find market clearing
prices.

1.1. PRIOR ALGORITHMIC RESULTS. General equilibrium theory has long en-
joyed the status of the crown jewel within mathematical economics. However, other
than a few isolated results, it is essentially a non-algorithmic theory. Among its al-
gorithmic results are Scarf’s work on approximately computing fixed points [Scarf
1973] and some very impressive nonlinear convex programs that capture, as their
optimal solutions, equilibrium allocations for the case of linear utility functions:
the Eisenberg–Gale program for Fisher’s model [Eisenberg and Gale 1959] and
the Nenakov–Primak program [Nenakov and Primak 1983] for the Arrow–Debreu
model; see Codenotti et al. [2004] for a survey of these works. The ellipsoid algo-
rithm can be used to find approximate solutions to these programs. Subsequent to
our work, exact algorithms for solving these programs have also been found (see
Section 1.3).

Within theoretical computer science, the question of polynomial time solvabil-
ity of equilibria, market equilibria as well as Nash equilibria, was first consid-
ered by Megiddo and Papadimitriou [1991]. Subsequently, a complexity-theoretic
framework for establishing evidence of intractability for such issues was given by
Papadimitriou [1994]. Our work follows Deng et al. [2002] who gave polynomial
time algorithms for the Arrow–Debreu model for the cases that the utility functions
are linear and either the number of goods or the number of agents is bounded.

In retrospect, all necessary ingredients for obtaining an exact, though not combi-
natorial, polynomial time algorithm for Fisher’s linear case were present even before
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our work. The fact that equilibrium prices and allocations for this case are rational
numbers that can be expressed using only polynomially many bits, which is shown
in this paper as a consequence of our combinatorial algorithm (see Lemma 7.1),
can also be shown directly using the Eisenberg–Gale program (for a proof, see
for example Theorem 5.1 in Vazirani [2007]). This fact, together with the work of
Newman and Primak [1992] yields the desired algorithm.

1.2. ALGORITHMIC CONTRIBUTIONS OF OUR WORK. For the linear case of
Fisher’s model, it is natural to seek an algorithmic answer in the theory of linear
programming. However, there does not seem to be any natural linear programming
formulation for this problem. Instead, a remarkable nonlinear convex program,
given by Eisenberg and Gale [1959], captures, as its optimal solutions, equilibrium
allocations for this case.

Our algorithm uses the primal-dual paradigm—not in its usual setting of LP-
duality theory, but in the enhanced setting of convex programming and the
Karush-Kuhn-Tucker (KKT) conditions. After introducing some definitions and
notation, in Section 3, we pinpoint in Section 4 the added difficulty of working in this
enhanced setting and the manner in which our algorithm circumvents this difficulty.

Our algorithm is not strongly polynomial. Indeed, obtaining such an algorithm
is an important open question remaining. It will require a qualitatively different
approach, perhaps one which satisfies KKT conditions in discrete steps, as is the
rule with all other primal-dual algorithms known today (as pointed out in Section 4,
we start by suitably relaxing the KKT conditions and our algorithm satisfies these
conditions continuously rather than in discrete steps).

The usual advantages of combinatorial algorithms apply to our work as well,
namely such algorithms are easier to adapt, certainly heuristically and sometimes
even formally, to related problems and fine tuned for use in special circumstances;
Section 1.3 offers specific examples.

Our first exposition [Devanur et al. 2002] of this algorithm suffered from a major
shortcoming. Although the high level algorithmic idea given in Devanur et al.
[2002] was the same as the one given in the current version (see Sections 5 and 7),
the exact implementation (using the notion of “pre-emptive freezing”) contained a
subtle though fatal flaw. Fixing this flaw involved introducing the notion of balanced
flows, a nontrivial idea that is likely to find future applications (see Section 8).

We explain briefly the role played by this new notion. The primal variables in
the Eisenberg–Gale program are allocations to buyers and the “dual” variables
are Lagrangian variables corresponding to the packing constraints occurring in the
program; these are interpreted as prices of goods. As is usual in primal–dual algo-
rithms, our algorithm alternates between primal and dual update steps. Throughout
the algorithm, the prices are such that buyers have surplus money left over. Each
update attempts to decrease this surplus, and when it vanishes, the prices are right
for the market to clear exactly.

Clearly, the number of update steps executed needs to be bounded by a polyno-
mial. Devanur et al. [2002] attempted to do this by adjusting the high level algorithm
to ensure that in each iteration, the decrease in the total surplus money is at least
an inverse polynomial fraction of the total. However, despite numerous attempts,
no implementation of this idea has yet been found.

The main new idea is to measure progress with respect to the l2-norm of the
vector of surplus money of buyers, rather than the l1-norm; the latter of course
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is the total surplus money. Unlike the l1-norm, the l2-norm of the surplus vector
depends on the particular allocation chosen. The special allocation we choose is
the one that minimizes the l2-norm of the surplus vector. In turn, this allocation
corresponds to a balanced flow in the network N (p) defined in Section 3.

The following observation may shed additional light. The special allocation men-
tioned above (and the notion of balanced flow in network N (p)), has an alternative
definition. Let us compare the vector of surplus money with respect to two allo-
cations lexicographically, after sorting the vectors in decreasing order. The special
allocation that minimizes the l2-norm of the surplus vector is also the one that yields
the lexicographically smallest surplus vector.

This alternative definition can be used for stating an algorithm that is identical
to ours. Can a polynomial running time be established for the algorithm using the
alternative definion, thereby dispensing with l2-norm altogether? At present we
see no way of doing this—our proof of the fact that guarantees progress, namely
Corollary 8.6, crucially uses l2-norm.

Another ingredient for ensuring polynomial running time is new combinatorial
facts in parametric bipartite networks (see Section 6).

1.3. SUBSEQUENT ALGORITHMIC DEVELOPMENTS. The conference version of
this article [Devanur et al. 2002] spawned off new algorithmic work along several
different directions. [Jain et al. 2003; Devanur and Vazirani 2003] used this algo-
rithm to give an approximate market clearing algorithm for the linear case of the
Arrow–Debreu model. [Vazirani 2006] gave the notion of spending constraint util-
ity functions for Fisher’s model, a polynomial time algorithm for the case of step
functions and showed that these utilities are particularly expressive in Google’s Ad-
Words market. [Devanur and Vazirani 2004] extended spending constraint utilities
to the Arrow–Debreu model and established many nice properties of these utilities.
Garg and Kapoor [2004] gave some very interesting approximate equilibrium al-
gorithms for the linear case of both models using an auction based approach. These
algorithms have much better running times than ours.

Another exciting development came from a simple observation in Kelly and
Vazirani [2002] that Fisher’s linear case can be viewed as a special case of the re-
source allocation framework given by Kelly [1997] for modeling and understanding
TCP congestion control. Kelly and Vazirani [2002] observed that although contin-
uous time algorithms, not having polynomial running times, had been developed
for Kelly’s problem, finding discrete time algorithms would be interesting.

Jain and Vazirani [2008] explored this issue by defining the class of Eisenberg–
Gale markets—markets whose equilibrium allocations can be captured via convex
programs having the same form as the Eisenberg-Gale program—and studying
algorithmic solvability and game-theoretic properties of these markets. This line
of work was extended further in Chakrabarty et al. [2006]—they study algorithmic
solvability of Eisenberg–Gale markets with two agents, thereby positively settling
some of the open problems of Jain and Vazirani [2008].

The above stated works provide combinatorial algorithms for computing equi-
libria. An advantage of this approach is illustrated in Vazirani [2006]. As stated
above, some of the basic properties of equilibria for linear Fisher markets can be
easily established using the Eisenberg–Gale convex program (e.g., see Theorem 5.1
in Vazirani [2007]). Interestingly enough, all these properties also hold for the
generalization to spending constraint utility functions. They are established in
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Vazirani [2006] via a generalization of our combinatorial algorithm to this case; at
present we do not know of a convex program that captures equilibrium allocations
for this case.

Yet another application of the combinatorial structure of markets was to deter-
mining continuity properties of equilibrium prices and allocations for linear Fisher
markets and some of its generalizations [Megiddo and Vazirani 2007; Vazirani and
Wang 2008] (the proofs in Megiddo and Vazirani [2007] for linear Fisher mar-
kets are based on the Eisneberg–Gale program; however, it was the combinatorial
structure that made these properties apparent).

Progress has also been made on obtaining convex programs that capture equilibria
for various utility functions for the two fundamental market models, see Codenotti
et al. [2004], as well as on the question of finding exact equilibria by solving convex
programs using either the ellipsoid method [Jain 2004] or interior point algorithms
[Ye 2008].

2. Fisher’s Linear Case and the Eisenberg–Gale Convex Program

Fisher’s linear case is the following. Consider a market consisting of a set B of
buyers and a set A of divisible goods. Assume |A| = n and |B| = n′. We are given
for each buyer i the amount ei of money she possesses and for each good j the
amount b j of this good. In addition, we are given the utility functions of the buyers.
Our critical assumption is that these functions are linear. Let uij denote the utility
derived by i on obtaining a unit amount of good j . Given prices p1, . . . , pn of
the goods, it is easy to compute baskets of goods (there could be many) that make
buyer i happiest. We will say that p1, . . . , pn are market clearing prices if after
each buyer is assigned such a basket, there is no surplus or deficiency of any of the
goods. Our problem is to compute such prices in polynomial time.

First, observe that, without loss of generality, we may assume that each b j is
unit—by scaling the uij’s appropriately. The uij’s and ei ’s are in general rational;
by scaling appropriately, they may be assumed to be integral. Now, it turns out that
there is a market clearing price iff each good has a potential buyer (one who derives
nonzero utility from this good). Moreover, if there is a solution, it is unique [Gale
1960; Eisenberg and Gale 1959]. We assume that we are in the latter case.

The Eisenberg-Gale convex program is the following:

maximize
n′∑

i=1

ei log ui

subject to ui = ∑n
j=1 uijxij ∀i ∈ B∑n′

i=1 xij ≤ 1 ∀ j ∈ A
xij ≥ 0 ∀i ∈ B, ∀ j ∈ A,

(1)

where xij is the amount of good j allocated to buyer i . The price of good j in the
equilibrium is equal to the optimum value of the Lagrangean variable corresponding
to the second constraint in the above program.

By the KKT conditions, optimal solutions to xij’s and p j ’s must satisfy the
following conditions:

(1) ∀ j ∈ A : p j ≥ 0.

(2) ∀ j ∈ A : p j > 0 ⇒ ∑
i∈A xij = 1.
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(3) ∀i ∈ B, ∀ j ∈ A :
uij
p j

≤
∑

j∈A uijxij
ei

.

(4) ∀i ∈ B, ∀ j ∈ A : xij > 0 ⇒ uij
p j

=
∑

j∈A uijxij
ei

.

Via these conditions, it is easy to see that an optimal solution to the Eisenberg
and Gale program gives equilibrium allocations for Fisher’s linear case, and the
corresponding dual variables give equilibrium prices of goods. The Eisenberg and
Gale program also helps prove, in a very simple manner, basic properties of the
set of equilibria: Equilibrium exists under certain conditions (the mild conditions
stated above), the set of equilibria is convex, equilibrium utilities and prices are
unique, and if the program has all rational entries then equilibrium allocations and
prices are also rational.

3. High Level Idea of the Algorithm

Let p = (p1, . . . , pn) denote a vector of prices. If at these prices buyer i is given
good j , she derives uij/pi amount of utility per unit amount of money spent. Clearly,
she will be happiest with goods that maximize this ratio. Define her bang per buck
to be αi = max j {uij/p j }; clearly, for each i ∈ B, j ∈ A, αi ≥ uij/p j . If there are
several goods maximizing this ratio, she is equally happy with any combination of
these goods. This motivates defining the following bipartite graph, G. Its bipartition
is (A, B) and for i ∈ B, j ∈ A (i, j) is an edge in G iff αi = uij/p j . We will call
this graph the equality subgraph and its edges the equality edges.

Any goods sold along the edges of the equality subgraph will make buyers
happiest, relative to the current prices. Computing the largest amount of goods that
can be sold in this manner, without exceeding the budgets of buyers or the amount of
goods available (assumed unit for each good), can be accomplished by computing
max-flow in the following network: Direct edges of G from A to B and assign a
capacity of infinity to all these edges. Introduce source vertex s and a directed edge
from s to each vertex j ∈ A with a capacity of p j . Introduce sink vertex t and a
directed edge from each vertex i ∈ B to t with a capacity of ei . The network is
clearly a function of the current prices p and will be denoted N (p). The algorithm
maintains the following throughout:

Invariant. The prices p are such that (s, A ∪ B ∪ t) is a min-cut in N (p).
The Invariant ensures that, at current prices, all goods can be sold. The only even-

tuality is that buyers may be left with surplus money. The algorithm raises prices
systematically, always maintaining the Invariant, so that surplus money with buyers
keeps decreasing. When the surplus vanishes, market clearing prices have been at-
tained. This is equivalent to the condition that (s∪A∪B, t) is also a min-cut in N (p),
that is, max-flow in N (p) equals the total amount of money possessed by the buyers.

Remark 3.1. With this setup, we can define our market equilibrium problem
as an optimization problem: find prices p under which network N (p) supports
maximum flow.

4. The Enhanced Setting and How to Deal with It

We will use the notation set up in the previous section to pinpoint the difficulties
involved in solving the Eisenberg–Gale program combinatorially and the manner
in which these difficulties are circumvented.
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As is well known, the primal–dual schema has yielded combinatorial algorithms
for obtaining, either optimal or near-optimal, integral solutions to numerous linear
programming relaxations. Other than one exception, namely Edmonds’ algorithm
for maximum weight matching in general graphs [Edmonds 1965], all other algo-
rithms raise dual variables via a greedy process.

The disadvantage of a greedy dual growth process is obvious—the fact that a
raised dual is “bad”, in the sense that it “obstructs” other duals that could have
led to a larger overall dual solution, may become clear only later in the run of
the algorithm. In view of this, the issue of using more sophisticated dual growth
processes has received a lot of attention, especially in the context of approximation
algorithms. Indeed, Edmonds’ algorithm is able to find an optimal dual for matching
by a process that increases and decreases duals.

The problem with such a process is that it will make primal objects go tight and
loose and the number of such reversals will have to be upper bounded in the running
time analysis. The impeccable combinatorial structure of matching supports such
an accounting and in fact this leads to a strongly polynomial algorithm. However,
thus far, all attempts at making such a scheme work out for other problems have
failed.

The fundamental difference between complimentary slackness conditions for
linear programs and KKT conditions for nonlinear convex programs is that whereas
the former do not involve both primal and dual variables simultaneously in an
equality constraint (obtained by assuming that one of the variables takes a non-zero
value), the latter do.

Now, our dual growth process is greedy—prices of goods are never decreased.
Yet, because of the more complex nature of KKT conditions, edges in the equality
subgraph appear and disappear as the algorithm proceeds. Hence, we are forced to
carry out the difficult accounting process alluded to above for bounding the running
time.

We next point out which KKT conditions our algorithm enforces and which ones
it relaxes, as well as the exact mechanism by which it satisfies the latter. Throughout
our algorithm, we enforce the first two conditions listed in Section 2. As mentioned
in Section 3, at any point in the algorithm, via a max-flow in the network N (p),
all goods can be sold; however, buyers may have surplus money left over. With
respect to a balanced flow in network N (p) (see Section 8 for a definition of such
a flow), let mi be the money spent by buyer i . Thus, buyer i’s surplus money is
γ i = ei − mi . We will relax the third and fourth KKT conditions to the following:

—∀i ∈ B, ∀ j ∈ A :
uij
p j

≤
∑

j∈A uijxij
mi

.

—∀i ∈ B, ∀ j ∈ A : xij > 0 ⇒ uij
p j

=
∑

j∈A uijxij
mi

.

We consider the following potential function:

� = γ2
1 + γ2

2 + · · · + γ2
n′,

and we give a process by which this potential function decreases by an inverse
polynomial fraction in polynomial time (in each phase, as detailed in Lemma 8.10).
When � drops all the way to zero, all KKT conditions are exactly satisfied.

There is a marked difference between the way we satisfy KKT conditions and the
way primal-dual algorithms for LP’s do. The latter satisfy complimentary conditions
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in discrete steps, that is, in each iteration, the algorithm satisfies at least one new
condition. So, if each iteration can be implemented in strongly polynomial time,
the entire algorithm has a similar running time. On the other hand, we satisfy
KKT conditions continuously—as the algorithm proceeds, the KKT conditions
corresponding to each buyer get satisfied to a greater extent.

Next, let us consider the special case of Fisher’s market in which all uij’s are 0/1.
There is no known LP that captures equilibrium allocations in this case as well and
the only recourse seems to be the special case of the Eisenberg–Gale program in
which all uij’s are restricted to 0/1. Although this is a nonlinear convex program,
it is easy to derive a strongly polynomial combinatorial algorithm for solving it.
Of course, in this case as well, the KKT conditions involve both primal and dual
variables simultaneously. However, the setting is so easy that this difficulty never
manifests itself. The algorithm satisfies KKT conditions in discrete steps, much the
same way that a primal-dual algorithm for solving an LP does.

In retrospect, Megiddo [1974] (and perhaps other papers in the past) have implic-
itly given strongly polynomial primal-dual algorithms for solving nonlinear convex
programs. Some very recent papers have also also done so explicitly, for example,
Jain and Vazirani [2008]. However, the problems considered in these papers are
so simple (e.g., multicommodity flow in which there is only one source), that the
enhanced difficulty of satisfying KKT conditions is mitigated and the primal–dual
algorithms are not much different than those for solving LP’s.

5. A Simple Algorithm

In this section, we give a simple algorithm, without the use of balanced flows.
Although we do not know how to establish polynomial running time for it, it still
provides valuable insights into the problem and shows clearly exactly where the
idea of balanced flows fits in. We pick up the exposition from the end of Section 3.

How do we pick prices so the Invariant holds at the start of the algorithm? The
following two conditions guarantee this:

—The initial prices are low enough prices that each buyer can afford all the goods.
Fixing prices at 1/n suffices, since the goods together cost one unit and all ei ’s
are integral.

—Each good j has an interested buyer, has an edge incident at it in the equality
subgraph. Compute αi for each buyer i at the prices fixed in the previous step
and compute the equality subgraph. If good j has no edge incident, reduce its
price to

p j = max
i

{
uij

αi

}
.

The iterative improvement steps follow the spirit of the primal-dual schema: The
“primal” variables are the flows in the edges of N (p) and the “dual” variables are the
current prices. The current flow suggests how to improve the prices and vice-versa.

For S ⊆ B, define its money m(S) = ∑
i∈B ei . With respect to prices p, for set

S ⊆ A, define its money m(S) = ∑
j∈A p j ; the context will clarify the price vector

p. For S ⊆ A, define its neighborhood in N (p)

�(S) = { j ∈ B | ∃i ∈ S with(i, j) ∈ G}.
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By the assumption that each good has a potential buyer, �(A) = B. The Invariant
can now be more clearly stated.

LEMMA 5.1. For given prices p network, N (p) satisfies the Invariant iff

∀S ⊆ A : m(S) ≤ m(�(S)).

PROOF. The forward direction is trivial, since under max-flow (of value m(A))
every set S ⊆ A must be sending m(S) amount of flow to its neighborhood.

Let’s prove the reverse direction. Assume (s∪ A1∪ B1, A2∪ B2∪t) is a min-cut in
N (p), with A1, A2 ⊆ A and B1, B2 ⊆ B. The capacity of this cut is m(A2)+m(B1).
Now, �(A1) ⊆ B1, since otherwise the cut will have infinite capacity. Moving A1

and �(A1) to the t side also results in a cut. By the condition stated in the Lemma,
the capacity of this cut is no larger than the previous one. Therefore, this is also a
min-cut in N (p). Hence, the Invariant holds.

If the Invariant holds, it is easy to see that there is a unique maximal set S ⊆ A
such that m(S) = m(�(S)). Say that this is the tight set with respect to prices p.
Clearly the prices of goods in the tight set cannot be increased without violating the
Invariant. Hence our algorithm only raises prices of goods in the active subgraph
consisting of the bipartition (A−S, B−�(S)). We will say that the algorithm freezes
the subgraph (S, �(S)). Observe that in general, the bipartite graph (S, �(S)) may
consist of several connected components (with respect to equality edges). Let these
be (S1, T1), . . . , (Sk, Tk).

Clearly, as soon as prices of goods in A − S are raised, edges (i, j) with i ∈ �(S)
and j ∈ (A − S) will not remain in the equality subgraph anymore. We will assume
that these edges are dropped. Before proceeding further, we must be sure that these
changes do not violate the Invariant. This follows from:

LEMMA 5.2. If the Invariant holds and S ⊆ A is the tight set, then each good
j ∈ (A − S) has an edge, in the equality subgraph, to some buyer i ∈ (B − �(S)).

PROOF. Since the Invariant holds, j ∈ (A−S) must have an equality graph edge
incident at it. If all such edges are incidents at buyers in �(S), then �(S ∪ j) = �(S)
and therefore

m(S ∪ j) > m(S) = m(�(S)) = m(�(S ∪ j)).

This contradicts the fact that the Invariant holds.

We would like to raise prices of goods in the active subgraph in such a way that
the equality edges in it are retained. This is ensured by multiplying prices of all
these goods by x and gradually increasing x , starting with x = 1. To see that this
has the desired effect, observe that (i, j) and (i, l) are both equality edges iff

p j

pl
= uij

uil
.

The algorithm raises x , starting with x = 1, until one of the following happens:

—Event 1. A set R �= ∅ goes tight in the active subgraph.

—Event 2. An edge (i, j) with i ∈ (B − �(S)) and j ∈ S becomes an equality
edge. (Observe that as prices of goods in A − S are increasing, goods in S are
becoming more and more desirable to buyers in B − �(S), which is the reason
for this event.)
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If Event 1 happens, we redefine the active subgraph to be (A − (S ∪ R), B −
�(S ∪ R)), and proceed with the next iteration. Suppose Event 2 happens and that
j ∈ Sl . Because of the new equality edge (i, j), �(Sl) = Tl ∪ i . Therefore, Sl is not
tight anymore. Hence, we move (Sl, Tl) into the active subgraph.

To complete the algorithm, we simply need to compute the smallest values of x
at which Event 1 and Event 2 happen, and consider only the smaller of these. For
Event 2, this is straightforward. Below we give an algorithm for Event 1.

6. Finding Tight Sets

Let p denote the current price vector (i.e., at x = 1). We first present a lemma
that describes how the min-cut changes in N (x · p) as x increases. Throughout
this section, we will use the function m to denote money with respect to prices
p. Without loss of generality, assume that with respect to prices p the tight set in
G is empty (since we can always restrict attention to the active subgraph, for the
purposes of finding the next tight set). Define

x∗ = min
∅�=S⊆A

m(�(S))

m(S)
,

the value of x at which a nonempty set goes tight. Let S∗ denote the tight set at
prices x∗ · p. If (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) is a cut in the network, we will assume
that A1, A2 ⊆ A and B1, B2 ⊆ B.

LEMMA 6.1. With respect to prices x · p:

—if x ≤ x∗, then (s, A ∪ B ∪ t) is a min-cut.
—if x > x∗, then (s, A∪B∪t) is not a min-cut. Moreover, if (s∪ A1∪B1, A2∪B2∪t)

is a min-cut in N (x · p) then S∗ ⊆ A1.

PROOF. Suppose x ≤ x∗. By definition of x∗,

∀S ⊆ A : x · m(S) ≤ m(�(S)).

Therefore, by Lemma 5.1, with respect to prices x · p, the Invariant holds. Hence,
(s, A ∪ B ∪ t) is a min-cut.

Next suppose that x > x∗. Since x · m(S∗) > x∗ · m(S∗) = m(�(S∗)), with
respect to prices x · p, the cut (s ∪ S∗ ∪ �(S∗), t) has strictly smaller capacity than
the cut (s ∪ A ∪ B, t). Therefore the latter cannot be a min-cut.

Let S∗ ∩ A2 = S2 and S∗ − S2 = S1. Suppose S2 �= ∅. Clearly, �(S1) ⊆ B1

(otherwise the cut will have infinite capacity). If m(�(S2) ∩ B2) < x · m(S2), then
by moving S2 and �(S2) to the s side, we can get a smaller cut, contradicting the
minimality of the cut picked. In particular, if S2 = S∗, then this inequality must
hold, leading to a contradiction. Hence, S1 �= ∅. Furthermore,

m(�(S2) ∩ B2) ≥ x · m(S2) > x∗m(S2).

On the other hand,

m(�(S2) ∩ B2) + m(�(S1)) ≤ x∗(m(S2) + m(S1)).

The two imply that

m(�(S1))

m(S1)
< x∗,

contradicting the definition of x∗. Hence, S2 = ∅ and S∗ ⊆ A1.
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Remark 6.2. A more complete statement for the first part of Lemma 6.1, which
is not essential for our purposes, is: If x < x∗, then (s, A ∪ B ∪ t) is the unique
min-cut in N (x · p). If x = x∗, then the min-cuts are obtained by moving a bunch
of connected components of (S∗, �(S∗)) to the s-side of the cut (s, A ∪ B ∪ t).

LEMMA 6.3. Let x = m(B)/m(A) and suppose that x > x∗. If (s ∪ A1 ∪
B1, A2 ∪ B2 ∪ t) be a min-cut in N (x · p), then A1 must be a proper subset of A.

PROOF. If A1 = A, then B1 = B (otherwise this cut has ∞ capacity), and
(s ∪ A ∪ B, t) is a min-cut. But for the chosen value of x , this cut has the same
capacity as (s, A ∪ B ∪ t). Since x > x∗, the latter is not a min-cut by Lemma 6.1.
Hence, A1 is a proper subset of A.

LEMMA 6.4. x∗ and S∗ can be found using n max-flow computations.

PROOF. Let x = m(B)/m(A). Clearly, x ≥ x∗. If (s, A ∪ B ∪ t) is a min-cut in
N (x · p), then by Lemma 6.1 x∗ = x . If so, S∗ = A.

Otherwise, let (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) be a min-cut in N (x · p). By Lemmas
6.1 and 6.3, S∗ ⊆ A1 ⊂ A. Therefore, it is sufficient to recurse on the smaller graph
(A1, �(A1)).

7. Termination with Market Clearing Prices

Let M be the total money possessed by the buyers and let f be the max-flow
computed in network N (p) at current prices p. Thus M − f is the surplus money
with the buyers. Let us partition the running of the algorithm into phases, each
phase terminates with the occurrence of Event 1. Each phase is partitioned into
iterations which conclude with a new edge entering the equality subgraph. We will
show that f must be proportional to the number of phases executed so far, hence
showing that the surplus must vanish in bounded time.

Let U = maxi∈B, j∈A{uij} and let � = nU n .

LEMMA 7.1. At the termination of a phase, the prices of goods in the newly
tight set must be rational numbers with denominator ≤ �.

PROOF. Let S be the newly tight set and consider the equality subgraph induced
on the bipartition (S, �(S)). Assume without loss of generality that this graph is
connected (otherwise we prove the lemma for each connected component of this
graph). Let j ∈ S. Pick a subgraph in which j can reach all other vertices j ′ ∈ S.
Clearly, at most 2|S| ≤ 2n edges suffice. If j reaches j ′ with a path of length 2l,
then p j ′ = ap j/b where a and b are products of l utility parameters (uik’s) each.
Since alternate edges of this path contribute to a and b, we can partition the uik’s
in this subgraph into two sets such that a and b use uik’s from distinct sets. These
considerations lead easily to showing that m(S) = p j c/d where c ≤ �. Now,

p j = m(�(S))d/c,

hence proving the lemma.
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LEMMA 7.2. Each phase consists of at most n iterations.

PROOF. Each iteration brings goods from the tight set to the active subgraph.
Clearly, this cannot happen more than n times without a set going tight.

LEMMA 7.3. Consider two phases P and P ′, not necessarily consecutive, such
that good j lies in the newly tight sets at the end of P as well as P ′. Then the increase
in the price of j , going from P to P ′, is ≥ 1/�2.

PROOF. Let the prices of j at the end of P and P ′ be p/q and r/s, respectively.
Clearly, r/s > p/q. By Lemma 7.1, q ≤ � and r ≤ �. Therefore, the increase in
price of j ,

r

s
− p

q
≥ 1

�2
.

LEMMA 7.4. After k phases, f ≥ k/�2.

PROOF. Consider phase P and let j be a good that lies in the newly tight set
at the end of this phase. Let P ′ be the last phase, earlier than P , such that j lies
in the newly tight set at the end of P ′ as well. If there is no such phase (because
P is the first phase in which j appears in a tight set), then let P ′ be the start of
the algorithm. Let us charge to P the entire increase in the price of j , going from
P ′ to P (even though this increase takes place gradually over all the intermediate
phases). By Lemma 7.3, this is ≥ 1/�2. In this manner, each phase can be charged
1/�2. The lemma follows.

COROLLARY 7.5. Algorithm 1 terminates with market clearing prices in at
most M�2 phases, and executes O(Mn2�2) max-flow computations.

Remark 7.6. The upper bound given above is quite loose, for example, it is
easy to shave off a factor of n by giving a tighter version of Lemma 7.2.

Algorithm 1. The Basic Algorithm

Initialization:
∀ j ∈ A, p j ← 1/n; ∀i ∈ B, αi ← min j uij/p j ;
Compute equality subgraph G;
∀ j ∈ A if degreeG( j) = 0 then p j ← maxi uij/αi ;
Recompute G;
(F, F ′) ← (∅, ∅) (The frozen subgraph); (H, H ′) ← (A, B) (The active subgraph);
While H �= ∅ do

x ← 1;
Define ∀ j ∈ H , price of j to be p j x ;
Raise x continuously until one of two events happens:
if S ⊆ H becomes tight then

Move (S, �(S)) from (H, H ′) to (F, F ′);
Remove all edges from F ′ to H ;

if an edge (i, j), i ∈ H ′ , j ∈ F attains equality, αi = uij/p j , then
Add (i, j) to G;
Move connected component of j from (F, F ′) to (H, H ′);
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8. Establishing Polynomial Running Time

For a given flow f in the network N (p), define the surplus of buyer i , γi (p, f ),
to be the residual capacity of the edge (i, t) with respect to f , which is equal to ei
minus the flow sent through the edge (i, t).

In this section, we are trying to speed up Algorithm 1 by increasing the prices
of goods adjacent only to “high-surplus” buyers. However, the surplus of a buyer
might be different for two different maximum flows in the same graph. Therefore,
we will restrict ourselves to a specific flow so that the surplus of a buyer is well
defined. The following definition serves this purpose:

Define the surplus vector γ(p, f ) := (γ1(p, f ), γ2(p, f ), . . . , γn(p, f )). Let
‖v‖ denote the l2 norm of vector v .

Definition 8.1 (Balanced flow). For any given p, a maximum flow that mini-
mizes ‖γ(p, f )‖ over all choices of f is called a balanced flow.

If ‖γ(p, f )‖ < ‖γ(p, f ′)‖, then we say f is more balanced than f ′.

For a given p and a flow f in N (p), let R(p, f ) be the residual network of N (p)
with respect to the flow f . We will give a characterization of balanced flow via
R(p, f )

LEMMA 8.2. Let f and f ′ be any two maximum flows in N (p). If γi (p, f ′) <
γi (p, f ) for some i ∈ B, then there exist a j ∈ B such that γ j (p, f ) < γ j (p, f ′)
and

(1) There is a path from j to i in R(p, f ) \ {s, t}.
(2) There is a path from i to j in R(p, f ′) \ {s, t}.

PROOF. Consider the flow f ′− f . It defines a feasible circulation in the network
R(p, f ). Since γi (p, f ′) < γi (p, f ), there is a positive flow along the edge (i, t)
in f ′ − f . By following this flow all the way back to t in the circulation, one can
find a node j , such that there is a positive flow from t to j and then to i in f ′ − f .
Since both flows are maximum, s is an isolated vertex in f ′ − f and this flow does
not go through s. Now, f ′ − f is a valid flow in R(p, f ) and therefore there exists
a path from j to i in R(p, f ) \ {s, t}. Moreover, having a positive flow from t to
j implies that γ j (p, f ) < γ j (p, f ′). A similar argument shows that there is also a
path from i to j in R(p, f ′) \ {s, t}.

LEMMA 8.3. If a ≥ bi ≥ 0, i = 1, 2, . . . , n and δ ≥ ∑n
j=1 δ j where δ, δ j ≥

0, j = 1, 2, . . . , n, then ‖(a, b1, b2, . . . , bn)‖2 ≤ ‖(a+δ, b1−δ1, b2−δ2, . . . , bn−
δn)‖2 − δ2.

PROOF

(a + δ)2 +
n∑

i=1

(bi − δi )
2 − a2 −

n∑
i=1

bi
2 ≥ δ2 + 2a(δ −

n∑
i=1

δi ) ≥ 0.

The following property characterizes all balanced flows. It defines the flows for
which there is no path from a low-surplus node to a high-surplus node in the residual
network.

Property 1. There is no path from node i ∈ B to node j ∈ B in R(p, f ) if surplus
of i is more than surplus of j in N (p, f ).
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Algorithm 2.

Initialization:
∀ j ∈ A, p j ← 1/n;
∀i ∈ B, αi ← min j uij/p j ;
Define G(A, B, E) with (i, j) ∈ E iff αi = uij/p j ;
∀ j ∈ A if degreeG( j) = 0 then p j ← maxi uij/αi ;
Recompute G; δ = M ;
repeat

Compute a balanced flow f in G;
Define δ to be the maximum surplus in B;
Define H to be the set of buyers with surplus δ ;
repeat

Let H ′ be the set of neighbors of H in A;
Remove all edges from B \ H to H ′;
x ← 1; Define ∀ j ∈ H ′, price of j to be p j x ;
Raise x continuously until one of the two events happens:
Event 1: an edge (i, j), i ∈ H, j ∈ A \ H ′ attains equality, αi = uij/p j ;

Add (i, j) to G;
Recompute f ;
In the residual network corresponding to f in G, define I to be the set of buyers that
can reach H ; H ← H ∪ I ;

Event 2: S ⊆ H becomes tight;
until some subset S ⊆ H is tight;

Until A is tight;

THEOREM 8.4. A maximum-flow f is balanced iff it has Property 1.

PROOF. Suppose f is a balanced flow. Let γi (p, f ) > γ j (p, f ) for some i and
j , and suppose for the sake of contradiction, that there is a path from j to i in
R(p, f ) \ {s, t}. Then one can send a circulation of positive value along t → j →
i → t in R(p, f ), decreasing γi and increasing γ j . From Lemma 8.3, the resulting
flow is more balanced than f , contradicting the fact that f is a balanced flow.

To prove the other direction, suppose that f is not a balanced maximum flow.
Let f ′ be a balanced flow. Since ‖γ(p, f ′)‖ < ‖γ(p, f )‖, there exists i ∈ B such
that γi (p, f ′) < γi (p, f ).

By Lemma 8.2, there exists j ∈ B such that γ j (p, f ) < γ j (p, f ′) and there is a
path from j to i in R(p, f ) \ {s, t}. Since f has Property 1 , γi (p, f ) ≤ γ j (p, f ).
The above three inequalities imply γi (p, f ′) < γ j (p, f ). But again by Lemma 8.2,
there is a path from i to j in R(p, f ′) \ {s, t} so f ′ doesn’t have Property 1. This
contradicts the assumption that f ′ is a balanced flow by what we proved in the first
half the theorem.

The following lemma provides our main tool for proving polynomial running
time of Algorithm 2. We will use it to prove an upper bound on the l2-norm of the
surplus vector of buyers at the end of every phase.

LEMMA 8.5. If f and f ∗ are respectively a feasible and a balanced flow in
N (p) and for some i ∈ B and δ > 0 γi ( f ) = γi ( f ∗) + δ, then there is a flow f ′
and for some k there is a set of vertices i1, i2, . . . , ik and values δ1, δ2, . . . , δk such
that

—
∑k

l=1 δl ≤ δ

—γi ( f ′) = γi ( f ) − δ
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—γil ( f ′) = γil ( f ) + δl

—γi ( f ′) ≥ γil ( f ′).

PROOF. Consider f ∗ − f in R(p, f ) and in a similar fashion as in Lemma 8.2
follow the incoming flow of node i until you reach s or the node i itself. Let f ′ be
the flow augmented from f by sending back the flow through all these circulations
and paths. We will have γi ( f ′) = γi ( f ) − δ and for a set of vertices i1, i2, . . . , ik

and values δ1, δ2, . . . , δk such that
∑k

l=1 δl ≤ δ, we have γil ( f ′) = γil ( f ) + δl .
Moreover, since f ∗ is balanced, γi ( f ′) = γi ( f ∗) ≥ γil ( f ∗) ≥ γil ( f ′).

COROLLARY 8.6. ‖γ(p, f )‖2 ≥ ‖γ(p, f ∗)‖2 + δ2.

PROOF. By Lemma 8.3, ‖γ( f, p)‖2 ≥ ‖γ( f ′, p)‖2 + δ2 and since f ∗ is a
balanced flow in N (p), ‖γ( f ′, p)‖2 ≥ ‖γ( f ∗, p)‖2.

COROLLARY 8.7. For any given p, all balanced flows in N (p) have the same
surplus vector.

As a result, one can define the surplus vector for a given price asγ(p) := γ(p, f )
where f is the balanced flow in N (p). This vector can be found by computing a
balanced flow in the equality subgraph in the following way:

COROLLARY 8.8. For a given price vector p the balanced flow can be computed
by at most n max-flow computation.

PROOF. We will use the divide and conquer method. Let mavg := (
∑n′

i=1 ei−∑n
j=1 p j )/n′. Compute the maximum flow in the equality subgraph after subtracting

mavg from the capacity of each edge adjacent t . Let (S, T ) be the maximal min-
cut in that network. s ∈ S, t ∈ T . If A ⊂ S, then the current maximum flow is
balanced. Otherwise, let N1 and N2 be the networks induced by T ∪{s} and S ∪{t}
respectively. Claim that the union of balanced flows in N1 and N2 is a balanced
flow in N .

In order to prove the claim, it is enough (from Theorem 8.4) to show that the
surplus of all buyers in N1 (in a balanced flow) is at least mavg and that of all
buyers in N2 is at most mavg. We will prove the former; the proof of the latter is
similar. Let L be the set of all buyers in N1 with the lowest surplus, say s. Suppose
s < mavg. Let K be the set of goods reachable by L in the residual network of
N1 w.r.t a balanced flow. By Theorem 8.4, no other buyers are reachable from L
in this network. Hence, �N1

(K ) ⊆ L . Since the surplus of all buyers in L is s,
m(K ) = m(L) − s|L| > m(L) − mavg|L|. This is a contradiction to the fact that
(S, T ) was a min-cut.

In a set of feasible vectors, a vector v is called min-max fair iff for every feasible
vector u and an index i such that ui < vi there is a j for which u j < v j and v j < vi .
Similarly, v is max-min fair iff ui > vi implies that there is a j for which u j < v j
and v j > vi .

Remark. The surplus vector of a balanced flow is both min-max and max-min
fair.

8.1. THE POLYNOMIAL-TIME ALGORITHM. The main idea of Algorithm 2 is
that it tries to reduce ‖γ(p, f )‖ in every phase. Intuitively, this goal is achieved
by finding a set of high-surplus buyers in the balanced flow and increasing the
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prices of goods in which they are interested. If a subset becomes tight as a result
of this increase, we have reduced ‖γ(p, f )‖ because the surplus of a formerly
high-surplus buyer is dropped to zero. The other event that can happen is that a
new edge is added to the equality subgraph. In that case, this edge will help us to
make the surplus vector more balanced: we can reduce the surplus of high-surplus
buyers and increase the surplus of low-surplus ones. This operation will result in
the reduction of ‖γ(p, f )‖.

The algorithm starts with finding a price vector that does not violate the invariant.
The rest of the algorithm is partitioned into phases. In each phase, we have an active
graph (H, H ′) with H ⊂ B and H ′ ⊂ A and we increase the prices of goods in H ′
like Algorithm 1. Let δ be the maximum surplus in B. The subset H is initially the
set of buyers whose surplus is equal to δ. H ′ is the set of goods adjacent to buyers
in H .

Each phase is divided into iterations. In each iteration, we increase the prices
of goods in H ′ until either a new edge joins the equality subgraph or a subset
becomes tight. If a new edge is added to the equality subgraph, we recompute the
balanced flow f . Then, we add to H all vertices that can reach a member of H in
R(p, f ) \ {s, t}. If a subset becomes tight as a result of increase of the prices, then
the phase terminates.

Consider a phase in the execution of Algorithm 2. Define pi and Hi to be the
price vector and the set of nodes in H after executing the i’th iteration in that phase.
Let H0 denote the set of nodes in H before the first iteration.

LEMMA 8.9. The number of iterations executed in a phase is at most n. More-
over, in every phase, there is an iteration in which surplus of at least one of the
vertices is reduced by at least δ

n .

PROOF. Let k denote the number of iterations in the phase. Every time an edge
is added to the equality subgraph, |H ′| is increased by at least one. Therefore, k is
at most n.

Define δi = min j∈Hi (γ j (pi )), for 0 ≤ i ≤ k. δ0 = δ and the phase ends when
the surplus of one buyer in H becomes zero so δk = 0. So there is an iteration t in
which δt − δt−1 ≥ δ

n .
Consider the residual network corresponding to the balanced flow computed at

iteration t . In that network, every vertex in Ht \ Ht−1 can reach a vertex in Ht−1

and therefore, by Theorem 8.4, its surplus is greater than or equal to the surplus of
that vertex. This means that minimum surplus δt is achieved by a vertex i in Ht−1.
Hence, the surplus of vertex i is decreased by at least δt−1 − δt during iteration
t .

LEMMA 8.10. If p0 and p∗ are price vectors before and after a phase,
‖γ(p∗)‖2 ≤ ‖γ(p0)‖2(1 − 1

n3 ).

PROOF. In every iteration, we increase prices of goods in H or add new edges
to the equality subgraph. Moreover, all the edges of the network that are deleted
in the beginning of a phase have zero flow. Therefore, the balanced flow computed
at iteration i is a feasible flow for N (pi+1). Therefore, by Lemma 8.6, ‖γ(p0)‖ ≥
‖γ(p1)‖ ≥ ‖γ(p2)‖ ≥ · · · ≥ ‖γ(pk)‖. Furthermore, by the previous lemma

there is an iteration t and node i such that γi (pt−1) − γi (pt ) ≥ δ
n . So we have:
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‖γ(pt )‖2 ≤ ‖γ(pt−1)‖2 − ( δ
n )2, which means that

‖γ(p∗)‖2 ≤ ‖γ(pt )‖2 ≤ ‖γ(pt−1)‖2 −
(

δ

n

)2

≤ ‖γ(p0)‖2 −
(

δ

n

)2

.

Now ‖γ(p0)‖2 ≤ δ2n so

‖γ(p∗)‖2 ≤ ‖γ(p0)‖2

(
1 − 1

n3

)
.

Remark 8.11. The upper bound given above is quite loose, for example, one
can reduce the upper bound to (1 − 1

n2 ) by considering all iterations t in which
δt−1 − δt > 0.

By the bound given in the above, it is easy to see that after O(n2) phases, ‖γ (p)‖2

is reduced to at most half of its previous value. In the beginning, ‖γ (p)‖2 ≤ M2.
Once the value of ‖γ (p)‖2 ≤ 1

�4 , the algorithm takes at most one more step. This is
because Lemma 7.1, and consequently, Lemma 7.3 holds for Algorithm 2 as well.
Hence, the number of phases is at most

O(n2 log (�4 M2)) = O(n2(log n + n log U + log M)).

As noted before, the number of iterations in each phase is at most n. Each iteration
requires at most O(n) max-flow computations.

Hence we get:

THEOREM 8.12. Algorithm 2 executes at most

O(n4(log n + n log U + log M))

max-flow computations and finds market clearing prices.

9. Discussion

An important question remaining is whether there is a strongly polynomial algo-
rithm for computing equilibrium for Fisher’s linear case and solving the Eisenberg–
Gale program. Another issue is whether the machinery developed in Section 8 is
necessary for obtaining a polynomial time algorithm, that is, does the algorithm
given in Sections 5 and 6 have a polynomial running time? If not, it would be nice
to find a family of instances on which it takes super-polynomial time.
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