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Abstract

Strategyproof cost-sharing mechanisms, lying in the core, that recover 1/a fraction of the cost, are presented for the set cover

and facility location games: a=O(log n) for the former and 1:861 for the latter. Our mechanisms utilize approximation

algorithms for these problems based on the method of dual-fitting.
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1. Introduction

Achieving truth-revealing, also called strategy-

proofness or incentive compatibility, is fundamental

to mechanism design. In a cost sharing mechanism,

the goal is to distribute the cost of a shared resource

among its users in such a way that revealing true

utility is a dominant strategy of users. Other consid-

erations include budget balance: that the users are not

charged in excess of the incurring cost, at the same

time recovering as much of the cost as possible.

Ideally, one would like to recover all the cost, but this

may not always be possible. Instead, the mechanism is
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required to recover a 1/a fraction of the cost, with a
being a measure of how good the mechanism is.

In this paper, we consider cost functions that are

defined as optimization problems. For instance, in the

set cover (facility location) game, the cost is defined by

the optimum solution to a set cover (facility location)

problem. The set cover problem is a versatile optimiza-

tion problem and can be used to model many situations.

It is one of the fundamental problems in optimization

and approximation algorithms. The facility location

problem has been widely studied in Operations

Research and also in the context of network design.

A recent paper of Nisan and Ronen [17] and one

by Lehmann et al. [9] also considered cost functions

defined as optimization problems, though in the

setting of auctions, rather than cost sharing. Indeed,

they even dealt with situations in which the under-

lying optimization problems were NP-hard, by
s 39 (2005) 11–22
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resorting to methods from the field of approximation

algorithms. Much work has been done on obtaining

strategyproof cost sharing mechanisms—for instance

for the spanning tree game [1,5,6,13,14]. Once again,

the underlying optimization problems of some of the

interesting games are NP-hard, and strategyproof cost

allocation for several such games have been studied

in Refs. [2–4,8,19], again using methods from

approximation algorithms.

Most of the work related to cost sharing me-

chanisms in general concentrate on achieving the

much harder task of group-strategyproofness (i.e., the

agents have no incentive to lie even if collusions are

allowed). Moulin and Shenker [16] showed that one

way to get a group-strategyproof cost sharing mech-

anism is to construct a cross-monotone cost sharing

method. They also showed that it is, in fact, the only

way. This severely restricts the class of group-

strategyproof mechanisms. In this paper, we show

that relaxing this condition to individual strategy-

proofness results in simpler and better mechanisms.

Another important concept in the framework of

cooperative game theory is that of a core. An

allocation is in the core if it ensures that no subset

of agents have an incentive to secede, i.e., no subset

of the agents is charged more than the stand alone

cost of serving that subset. Indeed, a budget balanced

group-strategyproof mechanism is always in the

core; the same is not true for a strategyproof

mechanism. Hence, we impose this condition addi-

tionally. However, we consider a weaker version of

core that ensures that no subset of users that actually

obtain the shared resource have an incentive to

secede, as opposed to the standard definition that

ensures the same for all possible subsets.

In this paper, we obtain strategyproof cost

allocations in the core that recover 1/a fraction of

the cost, for two fundamental games whose under-

lying optimization problems are NP-hard, the set

cover game and the facility location game. For the

former, a=O(log n), and for the latter, a=1:861. For
the latter game, this is made possible by new
approximation algorithms for the underlying optimi-

zation problem using the technique of dual fitting

[11]. In retrospect, the natural greedy algorithm for

the set cover problem (see Ref. [20]) can also be

analyzed using this technique. We utilize this view-

point for handling the set cover game. The facility

location game was studied in Ref. [4,8], who left the

open problem of obtaining a group-strategyproof

mechanism based on a constant factor approximation

algorithm. Our paper partially answers this question.

We give a strategyproof mechanism. Subsequently,

Pal and Tardos [18] gave a cross-monotonic cost-

sharing method for the facility location problem that

recovers one-third of the cost. This gives a group-

strategyproof mechanism for the facility location

game that recovers one-third of the cost. However,

recently, Immorlica et al. [7] have shown that no

cross-monotone cost sharing method for the facility

location game can recover more than one-third of the

cost. They also show a similar bound of 1=n for the

set cover game. In light of these results, our paper

shows that relaxing group-strategyproofness to strat-

egyproofness indeed gives mechanisms that recover

a larger fraction of the cost.

In fact, our technique seems to be quite general.

Towards this, we show that our technique also extends

to a game defined by a variation of the set cover

problem, called the set multicover problem (under

certain assumptions on the utilities). Our technique also

speeds up the Moulin-Shenker mechanism for sub-

modular cost functions, using the cost sharing method

defined by Jain and Vazirani [11] by a factor of n.

1.1. Organization

In Section 2, we formally define the set cover game

and give the mechanism. We also extend the

mechanism to the set multicover game. In Section 3,

we do the same for the facility location game. Section

4 shows how our technique yields essentially the same

mechanism as that of Ref. [11] for submodular cost

functions.
2. The set cover cost sharing game

Let N be a set of bidders. For each coalition So�N the cost of providing a service to the bidders in S is C(S).

How do you share C(N) among all the bidders?
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Definition 1. Given the set of bids, b1, b2, . . ., bn a cost sharing mechanism computes

(1) the set of successful bidders, A, who are provided the service, and

(2) the amount charged to each bidder, x1, x2, . . ., xn.

An important consideration is the representation of the costs. A natural and interesting (to the computer

scientist) case is when the cost is given by a solution to an optimization problem.

Definition 2 (Set cover problem). Given a universal setU, and a collection of subsets ofU, T={S1, S2, . . ., Sk}, and
a cost function c: TYQ+, find a minimum cost sub collection of T that covers all the elements of U.

Given an instance of the set cover problem over the universal set N, the cost of providing the service to a

coalition S is the cost of the optimal subcollection of T that covers all the elements in S. In order to make the output

meaningful, we impose the following well-known constraints on the mechanism:

(1) Polynomial time (PT): we require that the mechanism run in time that is polynomial in the input size.

(2) Strategyproofness: each bidder i has a privately known utility value, ui, which is the maximum he is willing

to pay for the service. If he is charged xi, then his profit, or benefit is ui�xi. Assume that the bidders are selfish, i.e.

they are only interested in maximizing their benefit, and nothing else. We say that a mechanism is strategyproof, if

for each bidder i, his profit is maximized by bidding ui, for all choices of bids for other bidders. (When a strategy is

such that it maximizes the profit for all possible values of others bids, it is called a dominant strategy.) In case of a

strategyproof mechanism, truth telling is a dominant strategy.

(3) Budget balance (BB):

(a) Costrecovery AiaAxizC(A), i.e., the cost of providing the service is recovered from all the bidders.

(b) Competitiveness AiaAxiVC(A), i.e., no surplus is created. Because if any surplus is created then a competitor

can provide the service at a cheaper cost by reducing the surplus.

The condition of budget balance consists of satisfying both, cost recovery and competitiveness, i.e.,

AiaAxi=C(A) (the set of bidders receiving the service pay exactly the total cost of T).

Approximate budget balance: we obtain the notion of a-approximate budget balance by relaxing the cost

recovery condition to AiaAxiz(1/a)C(A).
(4) Core: an allocation is said to be in the core, if for every subset of users in A, the total amount charged to the

users in the subset is no more than the cost of serving the subset alone, i.e.,

8SpA;
X

iaS

xiVC Sð Þ:

Note that this definition is weaker than the standard definition of core. This definition only forbids coalitions

that are subsets of A (the set of users that obtain the service), where as the standard definition forbids all coalitions.

(5) No positive transfer (NPT): for each bidder i, xiz0, i.e., bidders will not be paid for receiving a service.

(6) Voluntary participation (VP): if igA then xi=0 and if iaA then xiVbi, i.e., only those bidders will pay who will
receive the service. There is no bentrance feeQ for the mechanism. Moreover, they will never be asked to pay more

than their reported utilities. In other words, each bidder has the option to not receive the service, and if so, derives a

benefit of 0.

(7) Consumer sovereignty (CS): every bidder is guaranteed to receive the service if she reports a high enough

utility value. Moreover, this value should be independent of the bids of other bidders. This condition forbids the

trivial solution of not covering anyone. It also prevents the mechanism from being biased against any particular

bidder.

To summarize, given a set of bidders, N, a collection T of subsets of N, and the bids of the bidders, a set cover

cost sharing mechanism computes the set of successful bidders, A, the price charged to each bidder, and a

subcollection of T that covers A, such that all the above constraints are satisfied.
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2.1. The mechanism

A rule of thumb for designing strategyproof mechanisms is that the amount charged to bidder i should be

independent of his bid bi. The bid bi only decides whether the bidder gets covered or not. The main idea of the

mechanism is to try to cover the bidders with as little cost as possible.

Start with a target cost share of zero for all bidders. Raise the cost shares of all the bidder at the same rate. As

soon as someone’s cost share exceeds his bid, he can be discarded from further considerations. And as soon as

some bidders (who have not already been covered) are collectively able to pay for a 1/Hn (Hn=1+1/2+1/3+: : :+1/
n) fraction of the cost of a set in T, pick that set to be in the cover. These bidder get covered at their current cost

shares. Continue to raise the cost shares of others, until everyone either gets covered, or is discarded.

Algorithm 1 (Mechanism for set cover).
We digress here and give some background on the dual fitting-based analysis for the greedy set cover

algorithm. We briefly describe here what is explained in more detail in Ref. [20]. The connection between the

above mechanism and dual fitting will be clear shortly.

Formulate the set cover as an integer program as follows: let yj be a 0/1 variable that denotes whether the set SjaT

is picked in the cover or not. So the objective is

minimize
Xk

j¼1

cðSjÞyj

subject to
P
j:iaSj

yjz1; 8 iaN :

yja 0; 1f g; 8 j ¼ 1; 2; N ; k

:

The LP-relaxation of this integer program is obtained by letting the variables yj’s take any value between 0 and 1.

minimize
Xk

j¼1

cðSjÞyj

subject to
P
j:iaSj

yjz1; 8 iaN :

yjz0; 8 j ¼ 1; 2; N ; k

:
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The dual of this LP is

minimize
P
iaN

ai

subject to
P
i:iaSj

aiVc Sj
� �

; 8 j ¼ 1; 2; N ; k:

aiz0; 8 iaN

:

The greedy set cover algorithm: (see Ref. [20] for a detailed description). Iteratively pick the most cost

effective set and remove the covered elements until all the elements are covered. Cost effectiveness of a set is

defined as the average cost at which it covers new elements, i.e. the cost of that set divided by the number of

uncovered elements in it. Also whenever a set Sj is picked, set the xi of all new elements covered by Sj to be the

cost effectiveness of Sj. So the greedy algorithm not only gives a solution to the LP, but also a solution to the dual.

The objective function value of the primal solution is equal to that of the dual solution (because we are just re-

distributing the cost of picking a set to the aiVs). Note, however, that {ai}i=1
n is not feasible in the dual. The

approximation guarantee follows from showing that xi=ai/Hn is feasible.

Xk

j¼1

cðSjÞyj ¼
X

iaN

ai ð1Þ

Xk

j¼1

cðSjÞyj ¼ Hn

X

iaN

xi ð2Þ

Xk

j¼1

c Sj
�
yjVHn Optimal solution to the LPð Þ

�
ð3Þ

Xk

j¼1

c Sj
� �

yjVHn Optimal solution to the integer programð Þ ð4Þ

The main observation here is that the dual variables xi can also be interpreted as cost shares. The following

implementation shows that the mechanism can be seen as a modification of the greedy set cover algorithm. Find the

most cost effective set in T. The cost of that set is divided equally among the users in that set (that are not yet covered)

and scaled down by a factor ofHn. If everyone in that set can afford their cost shares, then pick that set and continue.

Otherwise, discard all those who cannot afford their cost shares and continue with the rest. Also, whenever cost

effectiveness is calculated, the bidders who are already covered and those who are discarded are ignored.

Lemma 1. The above mechanism returns a solution that is at most O(log n) times the optimum set cover of A. Also

it is O(log n)-approximate budget balanced.

Proof. From (in)equalities (1), (2), (3), (4), it is enough to prove that the cover returned by the mechanism is

exactly the same as the one that the greedy set cover algorithm would return with A as the universal set.

Consider the first set picked by the greedy algorithm, say S. It is also the first set picked by the

mechanism. Suppose not, and the mechanism picked some other set first. Since all the bidders in that set

would also be there in A, it is more cost effective than S, a contradiction. Similarly, all the sets picked by the

greedy algorithm are exactly the ones picked by the mechanism. Hence, they return identical

solutions. 5

Lemma 2. The mechanism returns a core allocation.

Proof. Given any subset SKA, consider the LP and its dual restricted to the set S. Since {xi}iaN (where xi=ai/Hn)

is feasible for the dual corresponding to A, {xi}iaS is feasible for the dual corresponding to S. Hence,

AiaSxiVC(S). 5
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Clearly, the mechanism satisfies VP, NPT and CS. Intuitively, why is the mechanism strategyproof? Note the

similarity of the mechanism with an English auction, where the bidders incrementally bid for a single item until

all but one drop out. Here too, the cost shares of the bidders are always increasing. And once a set is picked, the

cost shares of the bidders in that set are frozen. Also note that the greedy algorithm is such that if some bidders

are dropped mid-way, one does not have to start all the way from the beginning.

Lemma 3. The above mechanism is strategyproof.

Proof. Themechanism does only comparison operations on the bids of bidders. Suppose that an bidder bids a value bi
less than ui. If the bidder does not get covered, then there is nothing to prove. If the bidder gets covered, then it means

that all the comparisons returned the bid as the higher value. Now if the bidder had bid ui, then the result would have

been the same, and hence the bidder would have got covered at the same charge.

Suppose an bidder bids a value bi greater than ui. Again, there is nothing to prove if the bidder does not get

covered. If the bidder gets covered, at a charge greater than ui, then the benefit to the bidder is negative, and hence,

by VP, it is better to bid ui. If the bidder gets covered at a charge less than ui, then it is again indistinguishable from

the case where the bidder bids ui, and hence he would have got covered at the same price. 5

To summarize,

Theorem 4. The mechanism defined by Algorithm 1 is strategyproof, O(log n)-approximate BB, satisfies VP, NPT,

CS, and is in the core.

In strategyproofness, we assume that the bidders do not collude. In fact, there is a stronger notion which says that

even if a set of bidders collude, the dominant strategy of all the bidders is to bid their true utility value.

Definition 3. Suppose that a coalition of bidders misreport their utility such that the profit of each bidder in the

coalition does not decrease, but some bidder gets a higher profit. Call it a successful coalition. Amechanism is group-

strategyproof if no coalition is successful.

The above mechanism is not group-strategyproof. Consider the example of three bidders, {1,2,3} with

T={{1,2},{2,3},{3,1}} with the costs 2+e, 2 and 2+e, respectively. The true utilities of 1, 2 and 3 are 2, 2 and

1, respectively. If all the bidders bid their true utilities, then bidders 2 and 3 get the service at cost 1 each.

However, the benefit to bidder 3 is zero, since his cost share equals his true utility. Now if bidders 1 and 3

collude, and bidder 3 reports his utility as 1�e, then bidders 1 and 2 get the service at a cost 1+e/2. Hence,

bidder 1 gets a higher benefit, while bidder 3’s benefit does not go down. However, note that, if we require that

each bidder in the coalition should get a strictly higher benefit (weakly group-strategyproof), then the above

example does not work. In fact, it is easy to see that the mechanism is weakly group-strategyproof. It is implicit

in the proof of strategyproofness that a bidder never gets a higher benefit by lying, no matter what the other

bidders bid. However, he may get the same benefit by lying, while helping some other bidder get a higher

benefit.

Moulin and Shenker [16] give a general method to get a group strategyproof cost sharing mechanism,

conditioned on the existence of a certain kind of method to distribute the cost.

Definition 4. A cost sharing method is a function n, which, given a subset of bidders S, distributes the cost of

serving the subset among all the bidders in it. That is, AigSn(i,S)=C(S). And igS Zn(i,S)=0.

Definition 5. A cost sharing method is cross-monotonic if for all SKSV, n(i,S)zn(i,SV) 8iaS.

Given any cross-monotonic cost sharing method, Ref. [16] gives a budget-balanced group-strategyproof

mechanism that satisfies NPT, VP and CS. In fact, all the known group-strategyproof mechanisms are Moulin-

Shenker mechanisms. The set cover problem does not always admit a cross-monotone cost sharing method. In fact,

Ref. [7] shows that no cross-monotone cost sharing method can always recover X(1/n) fraction of the cost.
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2.2. Variation of set cover

So far, we assumed that the bidders want to get covered only once. Here, we consider the generalization that

the bidders might want to get covered multiple times. Assume that each bidder i has a utility uij for getting

covered the jth time. The bidders submit bids for getting covered the first time, as before. Every time a bidder

is covered, he submits a bid for getting covered again. This bid may be different than the ones submitted

before.

Note that this does not fit the prototype of the cost sharing mechanism defined in Definition 1. In particular, the

bidders’ utilities are multidimensional in this game. Consumer sovereignty now means that for each i, the bidder is

guaranteed to be covered the ith time if he bids high enough. Also, the definition of core needs to be

changed: let bidder iaA be covered ri times by the mechanism. An allocation is in the core, if the total

amount charged to a subset S of users in A is no more than the cost of covering each bidder iaS, ri
times.

Our mechanism extends naturally to this game. Unfortunately, it is strategyproof only under the extra assumption

of decreasing marginal utilities. That is, for each bidder i and for all jVzjz1, uijzuijV. The mechanism is as before,

except that it continues to offer to cover the bidders who have already been covered.

As before, this mechanism can be seen as a modification of the greedy algorithm for the set multicover problem

(see Ref. [20]) where in addition to the usual set cover instance, each element is required to be covered a given

number of times.

Note that it is possible that a bidder may lie about his utility for the first time in the hope that he gets covered

twice and thus gain a positive benefit. However, the additional cost share for getting covered each subsequent time

is only increasing. Hence, under the assumption of decreasing marginal utilities, we get that the mechanism is

strategyproof.

The following is analogous to Theorem 4:

Theorem 5. The mechanism defined by Algorithm 2 is O(log n)-approximate BB, satisfies VP, NPT, CS, and is in

the core, under the assumption of decreasing marginal utilities.

Algorithm 2 (Mechanism for set multicover).
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3. Facility location

Definition 6 (Metric uncapacitated facility loca-

tion): F is a set of facilities and C is a set of cities.

Each facility i has an opening cost fi and the cost of

connecting a facility i with a city j is cij. The

connection costs satisfy the triangle inequality. The

problem is to find a subset of facilities to open, IKF,

and a way to connect each city to an open facility,

/: CYI such that the total cost of opening the

facilities and connecting cities to open facilities is

minimized.

In the cost sharing problem, the cities are the

bidders. The mechanism is given F, C, { fi}iaF,

{cij}iaF, jaC as above, along with the bids, {bj}jaC.

It is required to compute

(1) A set of facilities to open,

(2) The set of cities to be connected to each facility,

(3) The amount to be charged to each city that gets

connected.

As in the set cover problem, the mechanism uses

the underlying greedy algorithm in Refs. [11,15].

Consider the following IP-formulation of the facility

location problem. Let us say that a star is a facility

with several cities, (i,CV) where iaF, CVKC. The

cost of a star (i,CV) is fi+AjaCVcij. The facility

location problem is equivalent to picking a minimum

cost of collection of stars such that each city is in at

least one star. Let yS be an indicator variable

denoting whether star S is picked and cS denote

the cost of star S.

minimize
P
SaS

cSyS

subject to 8 jaC :
P
S:jaS

ySz1

8 SaS : ySa 0; 1f g
The LP-relaxation of this program is:

minimize
P
SaS

cSyS

subject to 8 jaC :
P
S:jaS

ySz1

8 SaS : ySz0The dual program is:

minimize
P
jaC

aj

subject to 8 SaS :
P
jaS\C

ajVcS

8 jaC : ajz0

The main technique is to interpret the dual

variables as cost shares of the cities. The mecha-

nism uses the underlying greedy algorithm [11,15],

which raises the dual variables greedily until a

primal feasible solution is obtained whose cost is

equal to that of the duals. The approximation

guarantee is then obtained using dual fitting, that is

by showing that dividing the dual variables by a

constant (here, 1.861) gives a feasible dual.

3.1. The mechanism

Unlike in the set cover problem, the cost share

has to be accounted for connection costs as well as

the facility opening costs. For an unconnected city

j, if the cost share is xj=aj/1.861, then it offers

max(0, aj�cij) to the opening cost of a closed

facility i, i.e., the money left over (if any) after

paying for the connection cost. As before, start

with a cost share of zero for all the cities, and

raise the cost shares of all the unconnected cities

at the same rate, until one of the following

happens:

(1) If some city’s cost share goes beyond its bid, then

discard the city from all further considerations.

(2) If for some closed facility i, the total offer it gets

is equal to the opening cost, then the facility i is

opened, and every city j that has a non-zero offer

to i is connected to i.

(3) If some unconnected city j, aj is equal to its

connection cost to an already opened facility i,

then connect city j to facility i.
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Continue doing this until all the cities are either

connected or discarded. As in the set cover problem,

if A is the set of cities served, then the resulting

choice of facilities and connections is the same as

that obtained by running the algorithm of Refs.

[11,15] with A as the set of cities instead of C.

Refs. [8,15] show that dividing the aj’s by 1.861

gives a dual feasible solution. This proves the

lemmas analogous to Lemmas 1 and 2. Also the

proof of strategyproofness is analogous to that of

Lemma 3.
Theorem 6. The mechanism defined by Algorithm 3 is

strategyproof, 1.861-approximate BB, satisfies VP,

NPT, CS, and is in the core.

Remark 7. We can use the improved algorithm of

Refs. [8,9] to get a better approximation ratio (of

1.61), but then the mechanism would not be in the

core, since in that algorithm, the dual variables

may pay for more than the primal objective

function.
Like the set cover, the facility location also does not admit a cross-monotonic cost sharing method. Ref. [18]

shows a method that recovers one-third fraction of the costs and Ref. [7] shows a matching lower bound.
4. Submodular cost functions

In this section, we deviate from the previous model and assume that the cost function is given by an oracle. We

consider those cost functions that follow the economies of scale:

Definition 7. A cost function is submodular if

(1) C(t)=0,
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(2) for any S, To�N, C(S)+C(T )zC(SvT )+C(S\T).

Algorithm 3 (Mechanism for facility location).

The constraint 2 can also be replaced by

8SpTpN ;8iT ;C S þ ið Þ � C Sð ÞzC T þ ið Þ � C Tð Þ:

Jain and Vazirani [11] give a primal-dual type algorithm (JV algorithm) to compute a cross-monotonic cost

sharing method for submodular cost functions. This combined with the mechanism (MS mechanism) of

Moulin and Shenker ([16]) gives a group strategyproof cost sharing mechanism when the cost is submodular.

Our mechanism extends to this game and, in fact, gives the same output. Moreover, it is a factor n(:=|N|)

faster.

4.1. JV algorithm

Recall that, given any SpN, we need to compute n(i,S)z0 for all iaS such that AiaSn(i,S)=C(S). Start with
xi=0 for all iaS. Say a set SpN is tight if C(S)=AiaSxi. Raise the cost shares xi of bidders all at the same rate.

Whenever a set goes tight, freeze the cost shares of all bidders in that set. Continue raising the cost shares of others

until all the cost shares are frozen. n(i,S):=xi. Ref. [11] proves the following:

Theorem 8. At any time, there is a unique maximal tight set and it can be found in polynomial time.

Theorem 9. The cost sharing method n is cross-monotonic.

4.2. MS mechanism

Given an cross-monotonic cost sharing method n, Ref. [16] gives a group-strategyproof cost sharing mechanism

M(n). The mechanism tries to serve all the bidders as a first step, by using n to determine the prices. If someone is not

able to pay, i.e., his bid is less than the price, then the mechanism drops him and tries to serve the remaining bidders. It
continues the same way until everyone left can afford their cost shares.

Algorithm 4 (Mechanism M(n)).

Theorem 10. For any cross-monotonic cost sharing method n the mechanism M(n) is BB, satisfies VP, NP, CS, and
is group strategyproof [16].
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4.3. Our mechanism
Our mechanism is similar to the one for set cover. Raise the cost shares uniformly. If a set goes tight, then

we freeze their cost shares, and if a bidder’s cost share exceeds his bid, then we drop him, and continue with the

rest.

Algorithm 5 (Mechanism MVfor submodular cost functions).

It is easy to see that our mechanism is a factor n faster. The properties of BB, VP, NPT, CS and group-

strategyproofness follow from the following theorem:

Lemma 11. The mechanism MV and M(n) give identical output.

Proof. Since in mechanism M(n) the order in which the bidders are dropped (in case there are many) does not

matter, we drop them in the same order as MV. This is possible if, whenever we drop a bidder in MV, we are

allowed to drop him in M(n) as well. If a bidder is dropped in MV then with the current N his bid is less than

n(i,N), and hence can be dropped in M(n). So the set of users served is the same in the two mechanisms.

Note that by cross-monotonicity, the cost-shares of each bidder (not already dropped) in M(s) is always

increasing. Now suppose a set S goes tight at some time tS in MV. By the algorithm, we know that at this

point all the bidders in S can afford their cost shares, and that it does not go tight at any time before that. So

it goes tight at the same time in all the runs of n. Hence, the cost shares of all the bidders are the same in the

two mechanisms. 5
Theorem 12. The mechanism MV is group-strategy-

proof, BB, satisfies VP, NPT, CS, and is in the core

and makes O(n) iterations.

Note that our algorithm cannot be extended to the

Steiner Tree game (considered in Ref. [10]) in which

the cost is given as a solution to a problem of Steiner

network. Intuitively, it is because the solution is

changing each time n is run, whereas, in the set cover

case, the solution given by the greedy algorithm

remains the same.
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