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Abstract

We consider the problem of online scheduling of jobs on

unrelated machines with dynamic speed scaling to minimize

the sum of energy and weighted flow time. We give an

algorithm with an almost optimal competitive ratio for

arbitrary power functions. (No earlier results handled

arbitrary power functions for minimizing flow time plus

energy with unrelated machines.) For power functions of

the form f(s) = sα for some constant α > 1, we get a

competitive ratio of O( α
logα

), improving upon a previous

competitive ratio of O(α2) by Anand et al. [3], along with a

matching lower bound of Ω( α
logα

). Further, in the resource

augmentation model, with a 1 + ε speed up, we give a

2( 1
ε

+ 1) competitive algorithm, with essentially the same

techniques, improving the bound of 1 + O( 1
ε2

) by Gupta

et al. [15] and matching the bound of Anand et al. [3] for

the special case of fixed speed unrelated machines. Unlike

the previous results most of which used an amortized local

competitiveness argument or dual fitting methods, we use a

primal-dual method, which is useful not only to analyze the

algorithms but also to design the algorithm itself.

1 Introduction

The design of online algorithms for scheduling problems
has been an active area of research. Typically in such
problems jobs arrive online, over time, and in order to
complete a job it must be assigned a certain amount of
processing, its processing volume. The algorithm has
to schedule the jobs on one or more machines so as to
complete them as soon as possible. A standard objective
is a weighted sum of flow times; the flow time of a job is
the duration of time between its release and completion.
In the unrelated machines version of the problem, each
job can have a different volume and a different weight
for each machine. Preemption/resumption is allowed,
but migration of a job from one machine to another is
not.
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Of late, an important consideration in such prob-
lems has been the energy consumption. A popular ap-
proach to model the energy consumption is via the dy-
namic speed scaling model: a machine can run at many
different speeds, higher speeds process jobs faster but
consume more energy. The rate of consumption of en-
ergy w.r.t. time is the power consumption which is given
as a function of speed. Typical power functions are of
the form sα where s is the speed and α is some con-
stant, commonly equal to 2 or 3. The objective now is
to minimize the sum of energy consumed and weighted
flow time. In this paper we show that a natural and
principled primal-dual approach gives almost optimal
competitive ratios for the most general version of the
problem, with unrelated machines and arbitrary mono-
tone non-decreasing and convex power functions.1 (See
Section 2 and Section 3 for formal problem definitions.)
We summarize our contributions below.

For power functions f(s) = sα, we give an algorithm
with competitive ratio 8α/ log2 α. We also give a
corresponding lower bound of α/4 log2 α. This improves
upon a previous O(α2) competitive ratio of Anand et
al. [3]. We also show bounds for specific values of
α, for α = 2 and 3 we show competitive ratios of 4
and 5.581 respectively. It is worth noting that these
bounds improve upon the previous best bounds known
for these values of α, even for a single machine (which
were 5.24 and 8 respectively for α = 2 and 3, due to
Bansal et al. [7]).2 For an arbitrary power function f ,
we define a quantity Γf such that for the power function
f(s) = sα, Γf = α. Therefore Γf can be thought of as
a generalization of the quantity α. We show analogous
bounds for arbitrary power functions, an upper bound
of 8Γf/ log2 Γf and a lower bound of Γf/4 log2 Γf .
No previous bounds were known for arbitrary power
functions.3 These results are summarized in Table 1.

An alternate objective function often considered
because it is sometimes easier to deal with, is the

1This is w.l.o.g. as one can reduce problems with arbitrary

power functions to those with non-decreasing and convex power
functions (e.g., Section 3.1 of [6]).

2 For the unweighted case, however, a competitive ratio of 2 is

known, due to Andrew et al. [4].
3The power functions can differ by machine, and the compet-

itive ratio is determined by the worst one.



fractional flow time. For the fractional flow time,
imagine that a job is broken into infinitesimally small
pieces and each piece has an independent flow time
which is equal to the time between its own completion
time and its release time. The fractional flow time is the
average flow time of all the pieces put together. Our
guarantees for the fractional flow time are essentially
the same as those for the integral flow time and they
are summarized in Table 2.

We also consider the resource augmentation model,
where for the same given power, machines used by the
algorithm run 1+ ε times faster than the machines used
by the offline optimum. Our techniques (with minor
modifications) extend to this model as well. We show a
competitive ratio of 2( 1

ε + 1) which improves upon the
previous best known bound of 1 + O( 1

ε2 ) by Gupta et
al. [15]. As a special case when the power function is a
0-∞ step function, this bound matches the best known
competitive ratio for minimizing the weighted flow time
on fixed speed unrelated machines (obtained in Anand
et al. [3] and Chadha et al. [11]). These results are
summarized in Table 3.

Techniques and proof overview The most common
and successful technique for analyzing online algorithms
for such scheduling problems has been the amortized lo-
cal competitiveness argument. The technique calls for a
potential function that “stores” the excess cost incurred
by the optimum solution and uses it as needed to pay
for the algorithm’s solution. More recently Anand et
al. [3] used the dual fitting method to give several im-
proved competitive ratios. We use a primal dual ap-
proach, which is a principled approach that is used to
guide the design of the algorithm itself in addition to
being a tool for the analysis. Our algorithms are based
on a convex programming relaxation. Most of the work
done is in understanding the structure of the convex
program and the properties of the optimal primal and
dual solutions; the algorithm and the analysis follow
naturally after that. In other words, we derive the al-
gorithm from the structure of the convex program.

Almost all the special cases of our problem, such
as related machines, a single machine, unweighted flow
time, etc. use the following speed scaling rule intro-
duced by Albers and Fujiwara [2]: set the speed so that
the power consumed is equal to the remaining weight
(PERW). The power is the rate of energy consumed
and the remaining weight can be thought of as the rate
of accrual of the weighted flow time. What the PERW
rule therefore ensures is that the energy consumed and
the weighted flow time are both equal, which is con-
venient for the analysis. At first glance, it may also
appear that PERW is the greedy choice, i.e., it is the

optimal choice if no more jobs are released. A more
careful analysis shows this to be false, that the optimal
speed to set, if no more jobs are released, is s so that
f∗(f ′(s)) equals the remaining weight.4 We first ana-
lyze the natural greedy algorithm that follows from this
speed scaling rule coupled with a greedy job assignment
policy: a job is assigned to the machine for which the in-
crease in the energy plus flow time is the smallest. This
gives an O(α) competitive ratio, which already beats
the previous bound of O(α2) which uses the greedy job
assignment policy along with the PERW speed scaling
rule.

Setting the speed so that no other job arrives in the
future is really a conservative approach. The algorithm
should anticipate the arrival of some jobs in the future
and run faster. Such an aggressive algorithm faces a
trade-off: the improvement obtained when there are
more jobs in the future versus the degradation when
there aren’t. The algorithm should hedge against
both the cases and balance the competitive ratio. A
systematic way to do this is to set the speed s so that
f∗(f ′(s/c)) equals remaining weight, for some constant
c, obtain a competitive ratio as a function of c and
then set c to minimize the competitive ratio. For
instance, for the power function f(s) = sα, the best
choice of c we have turns out to be 1 + lnα−1

α , giving a
competitive ratio of 8α

log2 α
. Moreover this framework

allows us to also analyze the PERW rule for power
functions f(s) = sα, which corresponds to a choice of
c = (α − 1)1/α. We show that the competitive ratio
with the PERW speed scaling rule is still O( α

logα ), thus
giving some justification for this rule as well.

We start our analysis by considering the objective
of weighted fractional flow time plus energy (Section 2).
We consider a convex programming relaxation and
its dual using Fenchel conjugates. We analyze the
simple case of scheduling a single job on a single
machine and derive the speed scaling rule f∗(f ′(s)) =
remaining (fractional) weight as optimal. We then
consider many jobs on a single machine, all released
at time 0, and show that the same speed scaling rule
is optimal, along with the job selection rule of highest
density first (HDF, density = weight/volume). We
characterize the optimal dual solution for the same and
show several structural properties of the optimal primal
and dual solutions. Finally we consider the unrelated
machines case, which calls for a job assignment rule
(which assigns jobs to machines). At any time, given
the job assignments, the algorithm uses the optimal

4 f∗ is the Fenchel conjugate of f , defined as f∗(µ) :=
supx {µx− f(x)}, and f∗(f ′(s)) has the following geometric
interpretation: if you draw a tangent to f at s, then this is the

length of the y-intercept of the tangent.



Table 1: Competitive ratios for minimizing integral weighted flow time plus energy (Section 3)

Best known This paper

α = 2 α = 3 General α = 2 α = 3 General

Single machine, f(s) = sα
5.24
[7]

8
[7]

O( α
log2 α

)

[6, 7]c
4 5.581

O( α
log2 α

)a

(Thm. 3.2)

Unrelated machines, f(s) = sα O(α2) [3]
Θ( α

log2 α
)a

(Thm. 3.2, 5.1)

Unrelated machines, any f(s) (new)
Θ
(

Γf

log2 Γf

)
ab

(Thm. 3.2, 5.1)

Table 2: Competitive ratios for minimizing fractional weighted flow time plus energy (Section 2)

Best known This paper

General 1 < α < 2 α = 2 α = 3 General

Single machine, arbitrary f(s) 2 [6] α 2 2.791 O( α
log2 α

)

Unrelated machines, f(s) = sα O(α) [3] 2α 4 5.581
Θ( α

log2 α
)a

(Thm. 2.3, 5.1)

Unrelated machines, any f(s) (new)
Θ
(

Γf

log2 Γf

)
a

(Thm. 2.3, 5.1)

Table 3: Competitive ratios for minimizing fractional/integral weighted flow time plus energy (any power
function f(s)) with resource augmentation ((1 + ε)-speed) (Section 4)

Best known This paper

Integral flow time plus energy, arbitrary power function 1 +O( 1
ε2 ) [15] 2 + 2

ε
(Thm. 4.1)Fractional flow time plus energy, arbitrary power function 1 + 5

ε [15]

Integral flow time, fixed speed 2 + 2
ε [3] 2 + 2

ε
(Thm. 4.2)Fractional flow time, fixed speed 2 + 2

ε [11]

a Specifically, we show an upper bound of
8Γf

log2 Γf
( 8α

log2 α
for f(s) = sα) and a lower bound of

Γf

4 log2 Γf
( α

4 log2 α
for f(s) = sα) on

the competitive ratios.
b Γf is defined to be maxs f∗(f ′(s))/f(s) + 1.
c To achieve this competitive ratio, one need to combine the techniques in [6, 7]. E.g., see the discussions by Anand et al. [3] for

more details.



schedule for each machine assuming no future jobs arrive
and the corresponding dual. The job assignment rule
follows from the complementary slackness conditions
using these duals.5 The competitive ratio of O(α)
follows from a simple local charging of the primal to the
dual cost, along with some of the structural properties
established earlier. We then consider a systematically
aggressive speed scaling rule, f∗(f ′(s/c)) = remaining
weight for some constant c (Section 2.5). With the rest
of the algorithm/proof more or less identical, we derive
a competitive ratio as a function of c. On optimizing,
we get a competitive ratio of O(α/ logα).

Typically algorithms designed for the fractional flow
time also work for the integral flow time with some loss
in the competitive ratio. However, our analysis for the
fractional flow time also goes through for the integral
flow time (with small modifications) without any loss in
the competitive ratio! Almost the same proof structure
works for the integral case and we outline what minor
modifications are required (Section 3). Once again
essentially the same proof goes through for the resource
augmentation model as well (Section 4). Finally we
show a simple example with 2 machines that gives
almost tight lower bounds (Section 5).

Related work We summarize here a selection of the
most relevant related work. The fact that energy costs
are a substantial part of the overall cost in data centers
(see Barroso [9]) motivates energy considerations in
scheduling problems. Early work on energy efficient
algorithms was for the case of a single machine. Albers
and Fujiwara [2] introduced the objective of energy plus
flow time in the dynamic speed scaling model, and the
PERW speed scaling rule. Generalizations to weighted
flow time followed [7, 5, 17] with the current best
competitive ratios given by Bansal et al. [6] and Andrew
et al. [4]. For other variants in the dynamic speed
scaling model, and other models such as the power down
model and the importance of energy efficient algorithms,
see the survey by Albers [1].

Motivated by the design of architectures with het-
erogenous cores/processors, Gupta et al. [15] considered
the case of related machines with different power func-
tions. (See the references therein for more reasons to
consider heterogenous machines.) All these algorithms
use the PERW speed scaling rule and use potential func-
tions with amortized local competitiveness arguments.
Anand et al. [3] used a dual fitting based argument

5This assignment rule is almost the same as the greedy assign-
ment rule, but is slightly different. We state the job assignment
rule derived from the complementary slackness conditions in the

algorithm since that seems more principled. In any case, the anal-
ysis remains the same for both job assignment rules.

to generalize this to unrelated machines and the fixed
speed case in the resource augmentation model (improv-
ing upon a previous algorithm by Chadha et al. [11]).
The major difference between dual fitting and primal
dual is that dual fitting is only used as an analysis tool
for a given algorithm while primal dual guides the de-
sign of the algorithm itself. Also in recent work Gupta
et al. [14] showed that the natural extensions of sev-
eral well known algorithms that work for homogeneous
machines fail for heterogeneous machines, thus justify-
ing the use of “non-standard” algorithms of Gupta et
al. and Anand et al. [15, 3]. As summarized in Table 1-
3, our work unifies and improves upon several of these
results, most prominently [7, 6, 3, 15, 11].

Buchbinder and Naor [10] established the primal-
dual approach for packing and covering problems, uni-
fying several previous potential function based analysis.
Gupta et al. [16] gave a primal-dual algorithm for a gen-
eral class of scheduling problems with cost functions of
the form f(s) = sα. A dual (and equivalent) problem
of online concave matching was considered by Devanur
and Jain [13] who also used the primal-dual approach to
give optimal competitive ratios for arbitrary cost func-
tions. Using either of these results for the problems we
consider only gives a competitive ratio of αα which is
significantly far from the ratios we obtain.

Recent related work In concurrent and independent
work, Nguyen [18] shows an O(α/ logα)-competitive
algorithm for minimizing flow time plus energy on
unrelated machines when the power function is f(s) =
sα. The analysis uses dual fitting based on a non-convex
program and Lagrangian duality.

2 Weighted fractional flow-time plus energy

In this section we consider the objective of fractional
flow time plus energy and obtain competitive algorithms
for it. Suppose that we are given a power function,
f : R+ 7→ R+, which is monotonically non-decreasing,
convex and is 0 at 0. Further, we assume that f is also
differentiable. For ease of presentation we assume that
all the machines have the same power function although
all of our results go through easily with different power
functions for different machines. First, we define the
offline version of the problem.

Input: A set of jobs J and a set of machines M . For
each job j ∈ J its release time rj ∈ R+. For each job
j ∈ J and each machine i ∈M , the volume vij and the
weight wij of job j if scheduled on machine i. Let the
density of job j on machine i be ρij = wij/vij .



Output: An assignment of each job to a single machine
(no migration). For each machine i and time t ∈ R+, the
job scheduled at time t on machine i, denoted by ji(t)
and the speed at which the machine is run, denoted by
sit.

Constraints: Job j must be scheduled only after its
release time. It must recieve a total amount of vij
units of computation if it is assigned to machine i, i.e.,∫
t∈[rj ,+∞]:ji(t)=j

sit dt = vij .

Objectives: The objective has two components, en-
ergy and fractional flow-time. Recall that f is the power
function, which gives the power consumption as a func-
tion of the speed. The energy consumed by machine i
is therefore

Ei =
∫∞

0
f(sit)dt .

The fractional flow-time is an aggregated measure of
the waiting time of a job. Suppose job j is scheduled on
machine i. Let v̂j(t) be the remaining volume of job j
at time t, i.e.,

v̂j(t) = vij −
∫
t′∈[rj ,t]:ji(t′)=j

si(t
′)dt′ .

The fractional flow-time of job j is then defined to be

Fj := 1
vij

∫∞
rj
v̂jdt .

The objective is to minimize the total energy consumed
by all the machines and a weighted sum of the flow-times
of all the jobs:∑

i

(
Ei +

∑
j:j→i wijFj

)
.

In the online version of the problem the details of job
j are given only at time rj . The algorithm has to make
decisions at time t without knowing anything about the
jobs released in the future.

2.1 Convex programming relaxation and the
dual The algorithms we design are based on a convex
programming relaxation of the problem and its dual,
which are shown in Figure 1. The dual convex program
is obtained using Fenchel duality. The Fenchel conju-
gate of f is the function f∗(µ) := supx {µx− f(x)} .
(See Appendix A or [12] for a detailed explanation.)

The variables sijt denote the speed at which job j
is scheduled on machine i at time t. sit =

∑
j sijt is

the total speed of machine i at time t. For each job
j, constraint (2.1) enforces that the scheduling must
complete job j. (We will not state trivial constraints
such as sijt ≥ 0 throughout the paper.) In the
objective function, the first summation corresponds to

(Pfrac) minimize
∑
i,j ρij

∫∞
rj

(t− rj)sijtdt

+
∑
i

∫∞
0
f(sit)dt

+
∑
i,j

∫∞
rj

sijt
wij

(∫ wij

0
(f∗)−1(w)dw

)
dt

∀i, t : sit =
∑
j:rj≤t sijt

∀j :
∑
i

∫∞
rj

sijt
vij
dt ≥ 1(2.1)

(Dfrac) maximize
∑
j αj −

∑
i

∫∞
0
f∗(βit)dt

∀i, j, t ≥ rj :
αj

vij
≤ ρij(t− rj) + βit

+ 1
wij

∫ wij

0
(f∗)−1(w)dw

Figure 1: Convex Programming relaxation of minimiz-
ing fractional flow time plus energy.

the fractional flow-time: sijtdt units of job j is processed
between t and t+ dt, all of which waited for a duration
of t− rj resulting in (t− rj) sijtvij

dt amount of fractional

flow-time. The second summation is the total energy
consumed.

The third summation is required because the convex
program allows a job to be split among many machines
and even have different parts run in parallel. Without
the third term, the convex program fails to provide a
good lower bound on the cost of the optimal solution.
We show that the optimum of the convex program with
an additional factor of 2 is a lower bound on opt, the
optimum offline solution to the problem. We note this
in the following theorem.

Theorem 2.1. The optimum value of the convex cro-
gram (Pfrac) is at most 2opt.

Proof. Consider an instance with only one job released
at time 0 and a large number of machines. The
optimal solution to the convex program schedules the
job simultaneously on all the machines and the total cost
w.r.t. the first two terms will tend to zero as the number
of machines tends to infinity. The optimal algorithm
has to schedule the job on a single machine and hence
pays a fixed non-zero cost. The third term fixes this
problem: consider a modified instance where we have
multiple copies of each machine (as many as the number
of jobs); the cost of the optimal solution to this instance
is only lower. In this modified instance, w.l.o.g., no two
jobs are ever scheduled on the same machine. It can be
shown (Lemma 2.2) that if job j is scheduled on a copy
of machine i all by itself, then the optimal cost (energy
+ flow-time) due to job j is

vij
wij

∫ wij

0
(f∗)−1(w)dw. Now,

still allowing a job to be split among different machines,
an
∫∞
rj

sijt
vij
dt fraction of job j is scheduled on machine i.



Thus
∑
i

∫∞
rj

sijt
wij

(∫ wij

0
(f∗)−1(w)dw

)
dt is a lower bound

on the cost of scheduling job j.

The algorithm heavily uses the structure of the
optimal solutions to the primal and the dual programs.
We explain this structure in stages. There is a natural
decomposition of the problem itself: at the highest level
is the decision to allocate a job to one of the machines.
Given these choices, the rest of the problem decomposes
into a separate one for each machine. For each machine,
given the set of jobs that have to be scheduled on it
and the volumes and densities, there is the problem
of picking the job to schedule and the speed to set at
any time, in order to minimize the total energy and
flow-time on that machine. Further, given the choice
of the job to schedule on a machine, there is an even
simpler problem of setting the speed. We start with the
simplest problem of all, given just a single job and a
single machine, what is the optimal speed schedule that
minimizes the total energy and fractional flow-time.6

2.2 Optimal scheduling for single job We obtain
a simpler convex program and its dual for the problem
of scheduling a single job on a single machine. We drop
the third term in the objective since that deals with non-
integral assignment of jobs to machines. Since there is
only one job in this subsection, we assume w.l.o.g. that
rj = 0.

minimize
∫∞

0
ρijtsijtdt+

∫∞
0
f(sit)dt

∀t : sit = sijt∫∞
0

sijt
vj
dt ≥ 1(2.2)

maximize αj −
∫∞

0
f∗(βit)dt

∀t :
αj

vij
≤ ρijt+ βit

Recall that the conjugate function f∗ is defined as
f∗(β) := sups{βs−f(s)}. The function f∗ is also convex
and monotonically non-decreasing. If f is strictly
convex, then so is f∗. The most important property
we use about f∗ is the notion of a complementary pair .
β and s are said to be a complementary pair if any one
of the following conditions hold. (It can be shown that
if one of them holds, then so do the others.)

1. f ′(s) = β;

2. (f∗)′(β) = s;

3. f(s) + f∗(β) = sβ.

6A characterization of the optimal scheduling can be found,

e.g., in [8], but we believe it is illustrative to rederive the optimal
scheduling using our primal dual approach.

The optimal solutions to these programs are character-
ized by the (generalized) complementary slackness or
KKT conditions. These are:

1. ∀t, sijt > 0⇒ αj = vij(ρijt+ βit);

2. αj > 0⇒
∫∞

0
sijt
vj
dt = 1;

3. βit and sit are a complementary pair for all t.

The first condition implies that for the entire duration
that the machine is running (with non-zero speed), the
quantity ρijt+βit remains the same, since it must always
equal αj . In other words, βit must linearly decrease with

time, at the rate of ρij , i.e., dβit

dt = −ρij .
The main result in this section is that the optimum

solution has a closed form expression where sit and βit
are set as a function of the remaining weight of the job
at time t, which we denote by ŵit. (More generally, ŵit
will denote the total remaining weight of all the jobs
on machine i.) Also the remaining volume at time t is
denoted v̂it.

Lemma 2.1. The optimum solution to the convex pro-
gram Eqn. (2.2) is such that f∗(f ′(sit)) = f∗(βit) = ŵit,
and αj = vijf

∗−1(wij).

Proof. Since βit and sit form a complementary pair, we

have that df∗(βit)
dβit

= sit. We start by multiplying the

LHS by dβit

dt and the RHS by −ρij , which is valid since
we showed these are equal. This gives

df∗(βit)

dβit

dβit
dt

= −sitρij .

Therefore

df∗(βit)

dt
= ρij

dv̂it
dt

=
dŵit
dt

.

When ŵit = 0, then sijt = 0, f(sijt) = 0 and therefore
f∗(βit) = 0 (by the third property of complementary
pairs). Therefore at any time f∗(βit) = ŵit. The rest
of the assertions in the lemma follow immediately.

Remark 2.1. By f∗(βit) = ŵit and that βit and sit
are a complementary pair, we get a closed form of

sit = (α − 1)−1/αŵ
1/α
it when f(s) = sα. Contrast this

with the PERW rule for which sit = ŵ
1/α
it .

We also give a closed form for the value of the
optimum. This form justifies the inclusion of the third
term in the objective for the convex program (Pfrac).
We will also use this lemma later to analyze how the
cost of the optimum solution changes as we add new
jobs.



Lemma 2.2. The cost of the optimal solution is
1
ρij

∫ wij

0
(f∗)−1(w)dw.

Proof. Recall that the total weighted flow-time is equal
to
∫∞

0
ŵitdt and the total energy is equal to

∫∞
0
f(sit)dt.

From Lemma 2.1, f∗(βit) = ŵit. Using this and the
properties of complementary pairs, we get the following
sequence of equalities.

(ŵit + f(sit)) dt = (f∗(βit) + f(sit)) dt = βitsitdt .

Further, by the definition of sit and βit, the above equals

−βitdv̂it = − 1

ρij
βitdŵit = − 1

ρij
f∗−1(ŵit)dŵit .

The lemma follows from observing that as t goes from
0 to ∞, ŵit goes from wij to 0.

2.3 Optimal scheduling for a single machine We
now consider the next stage where there are multiple
jobs to be scheduled on a single machine, and the
corresponding convex programs. We will continue to
assume that rj = 0 for all jobs j.

minimize
∑
j

∫∞
rj
ρijtsijtdt+

∫∞
0
f(sit)dt

∀t : sit =
∑
j sijt

∀j :
∫∞

0
sijt
vij
dt ≥ 1(2.3)

maximize
∑
j αj −

∫∞
0
f∗(βit)dt

∀t, j :
αj

vij
≤ ρijt+ βit

The complementary slackness conditions for these pair
of programs are more or less as before. To begin with,
sijt > 0⇒ αj

vij
= ρijt+ βit. As before, this implies that

βit decreases at rate ρij whenever job j is scheduled, but
the main new issue is the choice of jobs to schedule. The
above complementary slackness condition implies that
job j must be scheduled when the term ρijt+βit attains
its minimum. The first part, ρijt, always increases at
rate ρij , while the second part, βit decreases at rate
ρij(t) where j(t) is the job scheduled at time t. So if
ρij < ρij(t) then ρijt+βit is decreasing and vice-versa, if
ρij > ρij(t) then ρijt+βit is increasing. This implies that
the “highest density first” (HDF) rule is optimal, i.e.,
schedule the jobs in the decreasing order of the density.
For any j, ρijt+ βit first decreases when higher density
jobs are scheduled, then remains constant as job j is
scheduled and then increases as lower density jobs are
scheduled.

Given the choice of jobs scheduled, the choice of
speed is very similar to the single-job case. We state the
following generalization of Lemma 2.1 without proof,

since it either follows from the discussion above or is
very similar to the proof of Lemma 2.1.

Lemma 2.3. The optimum solution to the convex pro-
gram (2.3) is such that

1. Jobs are scheduled in the decreasing order of den-
sity.

2. f∗(f ′(sit)) = f∗(βit) = ŵit.

3. αj = wijt
∗+vijf

∗−1(ŵit∗) where t∗ is the first time
job j is scheduled.

Unlike the single-job case, we no longer have a closed
form expression for the optimal cost. Instead, we
consider the marginal increase in the optimal cost due
to a single job, and show the following generalization of
Lemma 2.2.

Lemma 2.4. The increase in the cost of the optimal
solution on introducing a new job j is at most

wijt
∗ +

1

ρij

∫ wij

0

f∗−1(ŵit∗ + w)dw

where t∗ is the first time job j is scheduled and ŵit∗ is
the remaining weight at time t∗ in the original instance,
without job j.

Proof. It suffices to show that even if we use a sub-
optimal speed-scaling after introducing the new job j,
the increase in the cost is only the amount as stated
in the lemma. In particular consider the sub-optimal
scheduling in which we keep the schedule till time t∗

unchanged, and then start to schedule job j and use
the optimal speed scaling. The entire job j waits
till time t∗ contributing wijt

∗ to the total flow-time.
For the rest of the increase, consider introducing an
infinitesimal weight dw at time t. This causes the
following infinitesimal increase in the flow-time and
energy: dF = ŵitdt and dE = f(sit)dt. The rest of
the proof is along the same lines as that of Lemma 2.2
and is omitted here.

Finally, we note a couple of simple observations
that follow almost immediately from Lemma 2.3. Let

Γf = maxs
f∗(f ′(s))
f(s) + 1.

Lemma 2.5.
∫∞

0
f∗(βit)dt equals the total flow-time.

Lemma 2.6. The total flow-time is at most Γf−1 times
the total energy consumed.

Proof. The total energy used is
∫∞

0
f(sit)dt. The total

flow-time is
∫∞

0
ŵitdt. Recall that by Lemma 2.3, sit

is chosen such that ŵit = f∗(f ′(sit)). So the ratio
between the fractional flow time and the energy is∫∞

0
f∗(f ′(sit))dt divided by

∫∞
0
f(sit)dt, which is at

most maxs
f∗(f ′(s))
f(s) .



2.4 Conservative greedy algorithm In this sec-
tion, we analyze a primal-dual algorithm which we call
conservative-greedy. The basic idea is that given the
choice of job assignments to machines, the algorithm
schedules the jobs as if no other jobs will be released
in the future. That is, it schedules the jobs as per the
optimal schedule for the current set of jobs, as detailed
in the previous section. The choice of job assignments
to machines is done via a natural primal-dual method,
the one dictated by the complementary slackness con-
ditions.

Concretely, at any point, given the jobs already re-
leased and their assignment to machines, the algorithm
picks the optimal scheduling on each machine, assuming
no future jobs are released. This also gives dual solu-
tions, in particular the variables βit for all i and t in
the future. When a new job j is released, its assign-
ment to a machine is naturally driven by the following
dual constraints and the corresponding complementary
slackness conditions. For all i, t,

αj
vij
≤ ρij(t− rj) + βit +

1

wij

∫ wij

0

(f∗)−1(w)dw.

For a given machine i, we saw earlier that the right
hand side (RHS) is minimized (over all t) at t∗i where
t∗i would be the first time job j is scheduled on i given
the HDF rule. That still holds true since the third term
above is independent of t. Now we need to minimize
over all i as well and the algorithm does exactly this.
It assigns job j to the machine i that minimizes the
RHS of the inequality above with t = t∗i multiplied
by vij . It sets the dual αj so that the corresponding
constraint is tight. It then updates the schedule and
βit’s for machine i. Note that as we add more jobs, the
βit’s can only increase, thus preserving dual feasibility.
The entire algorithm is summarized in Figure 2.

We will show that, surprisingly, such a conservative
approach already achieves a meaningful competitive ra-
tio for arbitrary power functions and a near optimal
competitive ratio for polynomial power functions. For-
mally, we will show the following theorem in this section.

Theorem 2.2. The fractional conservative greedy algo-
rithm is 2Γf -competitive for minimizing weighted frac-
tional flow time plus energy.

The above competitive ratio might be unbounded if
the function is highly skewed. Theorem 2.2 does
not contradict known lower bounds for fixed-speed
online scheduling, which is a special case when the
power function is a 0-∞ step function. For nice
power functions such as polynomial power functions, the
above theorem gives meaningful competitive ratios. In

particular, the fractional conservative greedy algorithm
is 2α-competitive for minimizing weighted fractional
flow time plus energy with f(s) = sα.

In the remaining of this section, we will present the
primal-dual analysis of Theorem 2.2. It is easy to see
that the algorithm constructs feasible primal and dual
solutions and the ratio is obtained by relating the cost
of the primal to that of the dual. In fact, for every job
released, we relate the increase in the cost of the primal
to the increase in the cost of the dual.

Lemma 2.7. When job j is released, the increase in the
total cost of the algorithm is at most αj.

Proof. Suppose job j is assigned to machine i and will
be scheduled at t∗ (dropping subscript i) according to
the HDF rule on the current set of jobs assigned to i.
Then

αj = wij(t
∗ − rj) + vijβit∗ +

1

ρij

∫ wij

0

(f∗)−1(w)dw .

The increase in the total cost of the algorithm is only
the increase in that for machine i. From Lemma 2.4 this
is at most

wij(t
∗ − rj) +

1

ρij

∫ wij

0

(f∗)−1(w + ŵit∗)dw .

Comparing the two, it suffices to show that

βit∗ +
1

wij

∫ wij

0

(f∗)−1(w)dw ≥(2.4)

1

wij

∫ wij

0

(f∗)−1(w + ŵit∗)dw .

By Lemma 2.3, we have βit∗ = (f∗)−1(ŵit∗). Further,
(f∗)−1 is concave because f∗ is convex. So

(f∗)−1(ŵit∗) + (f∗)−1(w) ≥ (f∗)−1(w + ŵit∗)

for all 0 ≤ w ≤ wij . Integrate this inequality for w from
0 to wij and we get Eqn. (2.4) as desired.

Proof. [Theorem 2.2] Consider the release of a new job
j and suppose it is assigned to machine i. The change
in the dual cost, ∆D, equals αj plus the change in the
contribution of βit’s, i.e., ∆D = αj −∆

(∫∞
0
f∗(βit)dt

)
.

Let the change in the total energy and the total flow-
time of the algorithm be ∆E and ∆F respectively. From
Lemma 2.7, αj ≥ ∆E + ∆F . Earlier in Lemma 2.5
we showed that the total flow-time is always equal to∫
f∗(βit)dt. Thus the same holds for the difference.

∆
(∫
f∗(βit)dt

)
= ∆F . From the three inequalities

above, the change in the dual cost is at least the change
in the energy cost of the algorithm. Since this holds for



Fractional conservative greedy algorithm

Speed scaling: Choose speed sit s.t. f∗(f ′(sit)) equals the fractional remaining weight on machine i. Set duals
βit = f ′(sit), also for future times based on the planned schedule currently.

Job selection: Schedule the job with the highest density (HDF).

Job assignment: Assign job j to machine i that minimizes ρij(t
∗
i − rj) + βit∗i + 1

wij

∫ wij

0
(f∗)−1(w)dw where t∗i

would be the first time job j is scheduled on i given the HDF rule. Set αj so that the corresponding constraint
is tight. Update the βit’s for machine i.

Figure 2: The conservative greedy online scheduling algorithm for minimizing fractional flow time plus energy
with arbitrary power functions

every change and both the dual cost and the energy cost
of the algorithm are zero to begin with, it follows that
the final dual cost is at least the final energy cost of the
algorithm, i.e., ∆D ≥ ∆E ⇒ D ≥ E.

Further, by Lemma 2.6, the total flow-time and the
energy are within a factor of Γf − 1. Even though that
was for a single machine with no future jobs, it is easy to
see that the same holds true for the conservative-greedy
algorithm as well. Therefore

F ≤ (Γf − 1)E .

The total cost of the algorithm, alg can now be
bounded in terms of the energy cost alone, which is
bound by the dual as above, i.e.,

alg = E + F ≤ ΓfE .

Also by Theorem 2.1 the dual is a lower bound on 2opt,
i.e.,

D ≤ 2opt .

Putting it all together, we get

alg ≤ 2Γfopt .

An alternate algorithm with essentially the same
analysis is the following: assign job j to machine i for
which the increase in the total cost is the minimum.
The dual αj must however be set as we do currently,
so there might be a disconnect between which machine
the job is assigned to and which machine dictates the
dual solution. The analysis still is pretty much the same
however.

2.5 Aggressive greedy algorithm In the conser-
vative greedy algorithm, the speed is scaled to the con-
servative extreme as the speed is optimal assuming no
future jobs arrive. However, in an online instance there
might be jobs in the future, some of which will be effec-
tively delayed by the current job. Therefore, a good
online algorithm should take this into account when

choosing the speed. In this section, we consider a family
of algorithms with the aggressiveness in terms of speed
scaling parameterized by any constant C ≥ 1, as given
in Figure 3.

The following property of the βit’s implies that our
choice of βit’s can be derived from the primal dual
analysis and ensures dual feasibility.

Lemma 2.8. For any time t at which no new jobs are
released, βit linearly decrease with time, at the rate of
ρij, where j is the job being processed on i at time t,

i.e., dβit

dt = −ρij.

Proof. [Sketch] Note that the claimed equation is sat-
isfied by the conservative greedy algorithm. Further,
the C-aggressive greedy algorithm is running at exactly
C times the speed of the conservative greedy algorithm
given the same remaining weight of jobs, and the βit’s
are set to be 1

C fraction of those in the conservative
greedy given the same remaining weight of jobs. Putting
together these observations and our definition of βit we
can easily verify the lemma.

We will show that by choosing the optimal aggres-
siveness we can improve the competitive ratio by a log-
arithmic factor. Concretely, we show the following.

Theorem 2.3. The fractional C-aggressive greedy al-
gorithm is 2Γf,C-competitive for minimizing weighted
fractional flow time plus energy with power function f ,
where

Γf,C =
C(CΓf + Γf − 1)

ΓfC − Γf + 1
.

(Recall that Γf = maxs
f∗(f ′(s))
f(s) + 1.)

Proof of Theorem 2.3 In the rest of this section, we
will present of proof of Theorem 2.3. Given Lemma 2.8,
it is easy to check that the way we are setting the primal
and dual variables guarantees feasibility. The compet-
itive ratio comes from analyzing the ratio between the



Fractional C-aggressive greedy algorithm

Speed scaling: Choose speed sit s.t. f∗(f ′( sitC )) equals the total remaining weight on machine i. Set duals
βit = 1

C (f∗)−1(ŵit) s.t. f∗(Cβit) equals the total remaining weight on machine i, also for future times based
on the planned schedule currently.

Job selection: Schedule the job with highest density (HDF).

Job assignment: Assign job j to machine i that minimizes ρij(t
∗
i − rj) + βit∗i + 1

wij

∫ wij

0
(f∗)−1(w)dw where t∗i

would be the first time job j is scheduled on i given the HDF rule. Set αj so that the corresponding constraint
is tight. Update the βit’s for machine i.

Figure 3: The aggressive greedy online scheduling algorithm for minimizing weighted fractional flow time plus
energy with arbitrary power functions

incremental costs of the algorithm and the dual due to
the arrival of new jobs.

We will first develop a few lemmas that are needed
in the analysis. We start by showing that the parameter
Γf for arbitrary function f plays a similar role as the
degree of polynomial functions as the following lemma
holds. (Recall Γf = α for f(s) = sα.)

Lemma 2.9. For any power function f , any s > 0 and
any C > 1, we have

f(Cs) ≤ CΓf f(s) .

Proof. Note that for any s1 > 0, we have that

f ′(s1)s1

f(s1)
=
f∗(f ′(s1)) + f(s1)

f(s1)
=
f∗(f ′(s1))

f(s1)
+ 1 ≤ Γf ,

where the first equality is because s1 and f ′(s1) are a
complementary pair and the inequality is by definition
of Γf . So we have that

ln(f(Cs))− ln(f(s)) =
∫ C

1
d ln(f(xs))

=
∫ C

1
f ′(xs)s
f(xs) dx

=
∫ C

1
f ′(xs)xs
f(xs)

1
xdx

≤
∫ C

1
Γf

1
xdx = Γf ln(C) .

The lemma follows.

Alternative dual objective: For the convenience
of analysis, we will consider an alternative dual objec-
tive,

max
∑
j

αj −
∑
i

∫ ∞
0

1

C
f∗(Cβit)dt ,

subject to the same constraints. We let D̂ denote the
value of the above dual objective. By the convexity of
f∗, we have the following lemma.

Lemma 2.10. For any values of the dual variables, we
have D̂ ≤ D.

Alternative power function: We will consider
the total cost of our algorithm w.r.t. the power function
f̂(s) = CΓf f( sC ). We let Ê denote the energy cost
of the algorithm w.r.t. this power function, and let
âlg = F + Ê denote the total cost of the algorithm
w.r.t. this power function, noting that the flow time is
unaffected. By Lemma 2.9, we have

Lemma 2.11. For any instance, we have Ê ≥ E and
âlg ≥ alg.

By Lemma 2.10 and Lemma 2.11, it suffices to
bound the ratio between the increase in the total cost
of the algorithm w.r.t. power function f̂ when a new
job arrives and the increase in the alternative dual
objective, denoted as ∆âlg and ∆D̂ respectively.

Next, suppose a new job j arrives at time t and
is assigned to machine i. We will account for the
incremental costs of the algorithm and the dual by
relating them to the incremental cost in an imaginary
instance in which we are using the conservative greedy
algorithm. We will call the current instance I and the
imaginary instance I ′.

More precisely, let there be a single machine in I ′

that is identical to machine i in I. For each incomplete
job in I at time t (before the arrival of job j), we put
an identical job with the same remaining volume in I ′

at time 0. Then, we will consider also releasing job
j in I ′ at time 0. By our construction of I ′ and the
fact that the C-aggressive greedy algorithm is running
exactly C-times faster than the conservative one, there
is a one-to-one mapping between the timeline after t in
I and the timeline in I ′ as specified in the next lemma,
whose proof is straightforward and omitted.

Lemma 2.12. For any time t′ ≥ t, the remaining weight
of each job in I at time t′ is the same as that in I ′ at
time C(t′− t), both before and after the release of job j.

Let ∆F ′ and ∆E′ denote the increase in weighted
fractional flow time and energy respectively in I ′ condi-



tioned on running the conservative greedy both before
and after releasing job j. Recall that in the conservative
greedy algorithm, we have ∆F ′ = (Γf − 1)∆E′.

We let ∆F and ∆Ê denote the increase in weighted
fractional flow time and energy (w.r.t. f̂) in I due to
the arrival of job j.

The next lemma accounts for the the increase in flow
time due to the arrival of job j as a fraction of ∆E′. The
proof is rather straightforward from Lemma 2.12 so we
omit it.

Lemma 2.13. ∆F = 1
C∆F ′ = 1

C (Γf − 1)∆E′.

The next lemma bound the increase in energy due
to the arrival of job j by a fraction of ∆E′.

Lemma 2.14. ∆Ê = CΓf−1∆E′.

Proof. For any t′ ≥ t, suppose the C-aggressive greedy
algorithm runs at speed s at time t′. Then, the
energy cost (w.r.t. f̂) in I from time t′ to t′ + dt′ is

f̂(s)dt′ = CΓf f( sC )dt′. Further, by Lemma 2.12 and
that the C-aggressive greedy algorithm is running C-
times faster than the conservative one, the conservative
greedy algorithm runs at speed s

C at time C(t′ − t)
in I ′. So the energy cost of from time C(t′ − t) to
C(t′− t) +Cdt′ in I ′ is f( sC )Cdt′, a C−Γf+1 fraction of
the corresponding energy cost in I. Integrating for all
t′ ≥ t, we get that the energy cost (w.r.t. f̂) in I after
time t is exactly CΓf−1 times the total energy cost in I ′.
As this relation holds both before and after the release
of job j, the lemma follows.

The next lemma establish the relation between the
incremental cost of the alternative dual due to βit’s and
∆E′.

Lemma 2.15. ∆
∫∞

0
1
C f
∗(Cβit)dt = 1

C2 (Γf − 1)E′.

Proof. [Sketch] Recall that βit = 1
C (f∗)−1(ŵit). By the

convexity of f∗, we have 1
C f
∗(Cβit) = 1

C ŵit. So we

have that
∫∞

0
1
C f
∗(Cβit)dt equals 1

C times the weighted
fractional flow time of instance I. Hence, we have

∆

∫ ∞
0

1

C
f∗(Cβit)dt =

1

C
∆F =

1

C2
∆F ′ .

The lemma then follows from ∆F ′ = (Γf − 1)∆E′.

The next lemma follows from the fact that the C-
aggressive greedy is running at exactly C time the speed
of conservative greedy and our choice of βit.

Lemma 2.16. αj ≥ 1
C (∆F ′ + ∆E′) = 1

CΓf∆E′.

Proof. [Sketch] Consider the time t∗ at which the new
job j would be inserted according to HDF w.r.t. the
original instance (without job j). Let t′ denote the time
at which j would be inserted in the imaginary instance.
By our choice of speed scaling, we have (t∗ − t) = 1

C t
′.

Moreover, βit∗ = 1
C (f∗)−1(ŵit). So by our choice of αj

and an analysis similar to Lemma 2.7, we get that αj is
at least 1

C time the total increase in weighted fractional
flow time plus energy in I ′, i.e., αj ≥ 1

C (∆E′ + ∆F ′).

Finally, we are ready to derive the competitive ratio
of the C-aggressive greedy algorithm.

Proof. [Theorem 2.3] Putting together Lemma 2.13 to
Lemma 2.16, we have that the incremental costs of the
algorithm (w.r.t. f̂) is

∆âlg = ∆F + ∆Ê =

(
1

C
(Γf − 1) + CΓf−1

)
∆E′

and the incremental costs of the alternative dual is

∆D̂ = αj −∆
1

C

∫ ∞
0

f∗(Cβit)dt

≥
(

1

C
Γf −

1

C2
(Γf − 1)

)
∆E′ .

Simplifying the ratio between ∆âlg and ∆D̂ from the
above equations proves Theorem 2.3.

Optimal choice of aggressiveness By optimiz-
ing our choice of C for 1 < Γf ≤ 2, Γf = 3, and asymp-
totically optimizing it for general Γf , we get the follow-
ing corollary. We also show its (asymptotic) optimality
in Section 5 with an almost matching lower bound.

Corollary 2.1. The fractional C-aggressive greedy
algorithm is:

• 2Γf -competitive for 1 < Γf ≤ 2, with C = 1;

• 5.581-competitive for Γf = 3, with C ≈ 1.168;

• 8Γf

log2 Γf
-competitive for general Γf , with C = 1 +

ln Γf−1
Γf

.

Proof. The competitive ratios for 1 < Γf ≤ 2 and
Γf = 3 are easy to verify. So we omit the tedious
calculation here.

Next, consider the asymptotical bound for general
Γf . With our choice of C = 1+

ln Γf−1
Γf

, the denominator

of Γf,C is

ΓfC − Γf + 1 = ln Γf = log2 Γf/ log2(e) .



On the other hand, note that

C = 1 +
ln Γf − 1

Γf

= 1 +
ln(1 + (Γf − 1))− 1

Γf
≤ 1 +

Γf − 2

Γf

and

CΓf =

(
1 +

ln Γf − 1

Γf

)Γf

< eln Γf−1 =
1

e
Γf .

So putting together, we get that the numerator of Γf,C
is

C(CΓf + Γf − 1) <

(
1 +

Γf − 2

Γf

)(
1

e
Γf + Γf − 1

)
=

(
2− 2

Γf

)(
1

e
+ 1− 1

Γf

)
Γf

≤
(

2

e
+ 2

)
Γf .

Finally, by the above discussion and that ( 2
e +

2) log2(e) < 4 and Theorem 2.3 we prove the claimed
asymptotic competitive ratio for arbitrary Γf .

In particular, for polynomial power functions
f(s) = sα, we have the following:

Corollary 2.2. The fractional C-aggressive greedy
algorithm is:

• 2α-competitive for 1 < α ≤ 2, with C = 1;

• 5.581-competitive for α = 3, with C ≈ 1.168;

• 8α
log2 α

-competitive for general α, with C = 1 +
lnα−1
α .

We remark that with f(s) = sα the speed scaling
of PERW also falls into the framework of C-aggressive
greedy algorithm. Further, its choice of Cα = (α− 1) is
also asymptotically optimal when α ≥ 2. (We omit this
calculation in this paper.) So our result can be viewed
as a formal justification of the optimality of PERW.
Similar remark applies to the integral case.

We also note that for minimizing fractional flow
time plus energy, we can drop the third term in the
primal objective and drop a factor of 2 in the compet-
itive ratio (e.g., Lemma 2.6). As a result, we can get
an α-competitive algorithm for 1 < α ≤ 2, and a 2.791-
competitive algorithm for α = 3, hence the claimed ra-
tios in Table 2. We omit the details in this paper.

3 Weighted integral flow-time plus energy

In this section, we will discuss the problem of online
scheduling for minimizing weighted (integral) flow-time
plus energy. The problem for weighted integral flow
time has the same input, output, and constraints as
the fractional flow time version. The only difference is
the objective. Next let us formally define the weighted
integral flow time of an instance given a schedule.
Suppose job j is completed at time cj , then the weighted
integral flow time is∑

i

∑
j:j→i

wij(cj − rj).

An equivalent formula for the same is as follows. Let
At denote the set of jobs such that have been released
before or at time t but have not been completed
according to the schedule till time t, i.e.,

rj ≤ t and

∫
t∈[rj ,∞]:ji(t)=j

sitdt < vij .

The weighted integral flow time is equal to∫ ∞
0

∑
i

∑
j∈At:j→i

wijdt .

So the main difference is that when a job is partially
completed, the entire weight of the job will contribute
to the weighted integral flow time, while only the
incomplete fraction will contribute to the weighted
fractional flow time.

Convex programming relaxation and the dual
Similar to the fractional, we will use the primal-dual
analysis via following convex program for the problem of
minimizing integral flow time plus energy and consider
its dual program:

(Pint) minimize
∑
i

∑
j

∫∞
rj
ρij(t− rj)sijtdt

+
∫∞

0
f(sit)dt

+
∑
i

∑
j

∫∞
rj

(f∗)−1(wij)sijtdt

∀i, t :
∑
j:rj≤t sijt = sit(3.5)

∀j :
∑
i

∫∞
rj

sijt
vij
≥ 1(3.6)

(Dint) maximize
∑
j αj −

∑
i

∫∞
0
f∗(βit)dt

∀i, j, t ≥ rj :
αj

vij
≤ ρij(t− rj) + βit(3.7)

+ (f∗)−1(wij)

Here we use the same notation as in the fractional
case so we will omit the detailed explanations of the



Integral conservative greedy algorithm

Speed scaling: Choose speed sit s.t. f∗(f ′(sit)) equals the integral remaining weight on machine i. Set duals
βit = f ′(sit) s.t. f∗(βit) equals the integral remaining weight on machine i, also for future times based on the
planned schedule currently.

Job selection and job assignment: Upon arrival of a new job j, assign it to a machine i and insert it into the
processing queue of i such that we minimize

ρij(t
∗
i − rj) + βit∗i +

1

wij

∫ wij

0

(f∗)−1(w)dw ,

where t∗i would be the completion time of the predecessor of job j in the queue. Set αj so that the corresponding
constraint is tight. Update the βit’s for machine i.

Figure 4: The conservative greedy online scheduling algorithm for minimizing weighted integral flow time plus
energy with arbitrary power functions

convex programs. The only change is the third term in
the primal program (and the corresponding part in the
dual). This is because conditioned on being allocated
to machine i, the optimal cost for job j in a single-
job instance w.r.t. integral flow time plus energy is
vij(f

∗)−1(wij). Hence, the share of the optimal single-
job cost for the

sijt
vij
dt fraction of job j is processed on

machine i from t to t+ dt is (f∗)−1(wij)sijtdt.

Algorithms Similar to the fractional case, we will
consider the conservative greedy algorithm, which will
use the optimal speed scaling assuming there are no
future jobs, and a more general family of C-aggressive
greedy algorithms. The main difference comparing to
the fractional case is the job selection rule on a single
machine is no longer HDF. Instead, the algorithms will
combine the job assignment rule job selection rule by
maintaining a processing queue for each machine. The
machines will process the jobs in their queues in order.
When a new job arrives, the algorithm will insert the
new job to an position in one of the processing queue
according to the dual variables. The formal descriptions
of the algorithms are presented in Figure 4 and Figure 5.

The integral conservative/aggressive greedy algo-
rithms obtain the following competitive ratio for gen-
eral power functions and polynomial power functions
respectively.

Theorem 3.1. The integral conservative greedy algo-
rithm is 2Γf -competitive for minimizing weighted in-
tegral flow time plus energy, where recall that Γf =

maxs
f∗(f ′(s))
f(s) + 1.

Corollary 3.1. The integral conservative greedy algo-
rithm is 2α-competitive for power function f(s) = sα for
minimizing weighted integral flow time plus energy.

Theorem 3.2. The integral C-aggressive greedy algo-
rithm is 2Γf,C-competitive for minimizing weighted inte-
gral flow time plus energy with power function f , where

Γf,C =
C(CΓf + Γf − 1)

ΓfC − Γf + 1
.

By asymptotically optimizing our choice of C, we
get the following corollaries, whose optimality will be
presented in Section 5. The proofs are identical to the
integral case and hence omitted.

Corollary 3.2. The integral C-aggressive greedy al-
gorithm is

• 2Γf -competitive for 1 < Γf ≤ 2, with C = 1;

• 5.581-competitive for Γf = 3, with C ≈ 1.168;

• 8Γf

log2 Γf
-competitive for general Γf , with C = 1 +

ln Γf−1
Γf

.

Corollary 3.3. For minimizing weighted integral flow
time plus energy w.r.t. power function f(s) = sα, the
fractional C-aggressive greedy algorithm is

• 2α-competitive for 1 < α ≤ 2, with C = 1;

• 5.581-competitive for α = 3, with C ≈ 1.168;

• 8α
log2 α

-competitive for general α, with C = 1 +
lnα−1
α .

Competitive ratio The primal dual analysis of the
integral case is almost identical to the fractional case. So
here we will only sketch the analysis of the conservative
algorithm and explain the main differences between the
integral case and the fractional case. Extending the



Integral C-aggresive greedy algorithm

Speed scaling: Choose speed sit s.t. f∗(f ′( sitC )) equals the integral remaining weight on machine i. Set duals
βit = 1

C f
′( sitC ) s.t. f∗(Cβit) equals the integral remaining weight on machine i, also for future times based on

the planned schedule currently.

Job selection and job assignment: Upon arrival of a new job j, assign it to a machine i and insert it into the
processing queue of i such that we minimize

ρij(t
∗
i − rj) + βit∗i +

1

wij

∫ wij

0

(f∗)−1(w)dw ,

where t∗i would be the completion time of the predecessor of job j in the queue. Set αj so that the corresponding
constraint is tight. Update the βit’s for machine i.

Figure 5: The C-aggressive greedy online scheduling algorithm for minimizing weighted integral flow time plus
energy with arbitrary power function

analysis from conservative to aggressive algorithms is
fairly straightforward using techniques we introduce in
Section 2.5. So the details will be omitted.

Next, we will show that αj is an upper bound on
the increase in flow time plus energy due the job j. This
is the main technical component of the analysis of the
competitive ratio. The claim follows easily from the
next lemma, whose proof is similar to Lemma 2.7 and
will be sketched below.

Lemma 3.1. Suppose j′ is a job in the queue of machine
i whose scheduled completion time is tij′ before the
arrival of job j. Then, the increase in total costs if
we insert job j to the queue of machine i right after j′

is at most

vij

(
ρij(tij′ − rj) + βitij′ + (f∗)−1(wij)

)
Proof. [Sketch] Note that the algorithm uses the opti-
mal speed scaling, assuming no future jobs. To bound
the increase in flow time plus energy when we insert job
j to the queue of machine i right after j′, it suffices to
bound the increase in flow time plus energy when we use
a sub-optimal speed scaling. In particular, we will let
the jobs scheduled before j use the same speed as before
the arrival of j, and use the optimal speed scaling after
that. In this case, the increase in flow time plus energy
will be the flow time due to job j waiting until time tij′ ,
i.e., wij(tij′−rj), plus the increase in flow time (of job j
and jobs scheduled after j) plus energy due to process-
ing job j, i.e., vij(f

∗)−1(W (tij′) + wij) where W (tij′)
is the integral remaining weight of jobs on machine i at
time tij′ . By the concavity of (f∗)−1, increase in flow
time is at most

vij
(
(f∗)−1(W (tij′)) + (f∗)−1(wij)

)
.

The lemma then follows by f∗(βitij′ ) = W (tij′).

Note that βit remains the same while machine i
is processing the same job. So the minimal value of
vij
(
ρij(t− rj) + βit + (f∗)−1(wij)

)
must be achieved in

the completion time tij′ of one of the jobs on i. As a
simple corollary of Lemma 3.1, we have:

Corollary 3.4. The value of αj is at least the in-
crease in flow time plus energy due to job j.

Now we are ready to analyze the competitive ratio
of the integral conservative greedy algorithm.

Proof. [Theorem 3.1] First, note that it follows from our
definition of the primal program Pint that its optimal
objective is at most twice that of the optimal flow time
plus energy by any (offline) algorithm. Further, by our
choice of βit’s, the contribution of

∑
i

∫∞
0
f∗(βit)dt is

the weighted integral flow time of the algorithm. So
combining with Corollary 3.4 we get that upon the
arrival of new jobs, the increase in the dual objective is
at least the increase in energy of the algorithm. Finally,
via the same argument as in the fractional case we have
that the weighted integral flow time of the algorithm is
at most Γf times the energy. So the theorem follows.

4 Resource augmentation

Further, as a simple application of our primal dual
approach, we manage to give simpler proofs for either
matching or improved competitive ratios for several
online scheduling problems with resource augmentation.
In the resource augmentation setting, we will compare
to a weaker offline benchmark in the sense that given
the same energy, the offline algorithm can only run at
(1 + ε)−1 fraction of the speed of the online algorithm.

Theorem 4.1. The fractional/integral conservative
greedy algorithm is (1 + ε)-speed and 2

(
1
ε + 1

)
-



competitive for minimizing weighted fractional/integral
flow time plus energy with arbitrary power functions.

As a simple corollary of the above theorem when the
power functions are step functions, we have the follow-
ing theorem for minimizing fractional/integral flow-time
(fixed speed) with resource augmentation.

Theorem 4.2. The fractional/integral conservative
greedy algorithm is (1 + ε)-speed and 2

(
1
ε + 1

)
-

competitive for for minimizing weighted frac-
tional/integral flow time on fixed-speed machines.

Primal dual analysis with resource augmentation
We only need to slightly modify the primal dual analysis
in Section 2 and Section 3 in order to prove Theorem 4.1.
Here, we will sketch the proof for the minimizing
weighted integral flow time. The analysis for weighted
fractional flow time is almost identical and omitted.

First, we will need to change the objectives of the
primal and dual programs to capture a weaker offline
offline benchmark whose speed is only a (1 + ε)−1

fraction of that of the online algorithm using the same
energy. In particular, we will consider the following
modified primal and dual convex programs:

minimize
∑
i

∑
j

∫∞
rj
ρij(t− rj)sijtdt

+
∫∞

0
f((1 + ε)sit)dt

+
∑
i

∑
j

∫∞
rj

(f∗)−1(wij)sijtdt

subject to (3.5), (3.6)

maximize
∑
j αj −

∑
i

∫∞
0
f∗((1 + ε)−1βit)dt

subject to (3.7)

We will use the same rule as in Section 3 for setting
the primal and dual variables. Since the constraints
remain the same, primal and dual feasibilities will be
satisfied. Next, let us analyze the competitive ratio.
Recall that by Corollary 3.4 we have that αj is at least
the increase in weighted flow time plus energy of the
algorithm due to job j. Further, by our choice of βit
and the convexity of f∗(·) we have that∑

i

∫ ∞
0

f∗((1 + ε)−1βit)dt

≤ (1 + ε)−1
∑
i

∫ ∞
0

f∗(βit)dt

= (1 + ε)−1
∑
i

∫ ∞
0

W ∗i (t)dt

is at most a (1 + ε)−1 fraction of the weighted flow time
of the algorithm. So the increase in the dual objective

due to job j is at least the increase in energy plus a
1− (1 + ε)−1 = ε

1+ε fraction of the increase in flow time
of the algorithm. Finally, recall that the optimal primal
objective is at most twice the optimal weighted flow time
plus energy of any (offline) algorithm. So we get that
the integral conservative algorithm with (1 + ε)-speed-
up is 2

(
1
ε + 1

)
-competitive for minimizing weighted flow

time plus energy.

5 Almost tight lower bounds

In this section, we complement our algorithmic re-
sults in Section 2 and Section 3 by providing asymp-
totically tight lower bounds for minimizing weighted
fractional/integral flow-time plus energy with arbitrary
power functions. Formally, we prove the following:

Theorem 5.1. Suppose there exists Γ ≥ 1 and s > 0

such that for any s′ ∈ [s, s+ log2 Γ
Γ s], we have f∗(f ′(s′))

f(s′) +

1 ≥ Γ. Then, any online algorithm for scheduling jobs
on unrelated machines with speed scaling to minimize
weighted fractional/integral flow-time plus energy must
have a competitive ratio of at least 1

4
Γ

log2 Γ .

In particular, we have the following asymptotically
tight lower bound for polynomial power functions as a
corollary of Theorem 5.1.

Corollary 5.1. Any online algorithm for scheduling
jobs on unrelated machines with speed scaling to mini-
mize weighted fractional/integral flow-time plus energy
w.r.t. polynomial power function f(s) = sα (α ≥ 2)
must have a competitive ratio of at least 1

4
α

log2 α
.

Proof. [Theorem 5.1] Note that a lower bound for frac-
tional flow-time will also imply the same asymptotically
tight lower bound for integral flow-time plus energy, be-
cause we can view each job in the fractional instance as
continuously many infinitesimally small jobs with the
same density in the integral instance. So in this proof,
we only need to present the lower bound for fractional
flow-time.

We construct a randomized instance consisting of
two machines. Consider two types of jobs, both of which
have density ρ. The value of ρ will be determined later.
The first type consists of only 1 job of size 1 that arrives
at time 0. This job can be processed by both machines.
The second type consists of a sequence of jobs of total
volume Γ that comes at rate s, i.e., from t to t+ dt we
have s · dt volume of such jobs arriving, from time 0+

(after the release of the type-1 job) to Γ
s . The type-2

jobs can only be processed by one of the machines, which
is randomly chosen when we construct the instance (but
it will be the same machine for all type-2 jobs).



Now we will show that even if the online algorithm
knows the instance, but not the random coin flip, it
must admit a competitive ratio at least Ω( Γ

log2 Γ ). By

Yao’s minimax principle [19], it suffices to consider de-
terministic algorithm A and lower bound its competitive
ratio.

Let us first upper bound the cost of the offline
optimal. The offline optimal could have processed all
type-2 jobs on the feasible machine with a fixed speed
s, and processed the type-1 job on the other machine
also at a fixed speed s. The energy cost will be Γ

s f(s)
in total. The weighted fractional flow time will be
ρ
2s because the type-1 job incurs a weighted fractional
flow time of ρ

2s while the type-2 jobs are completed
immediately and hence have 0 weighted fractional flow
time. We will choose the density ρ to balance the two
types of costs, i.e., Γ

s f(s) = ρ
2s . So the total cost is ρ

s .
Now consider the deterministic online algorithm.

At time 0 the algorithm needs to decide which machine
the type-1 job is assigned to. So with probability 1

2 the
algorithm will make a mistake and assign the type-1 job
to the only machine that can process the type-2 jobs.
We will show that in this case the cost of the online
algorithm will be at least Ω( Γ

log2 Γ
ρ
s ). Choose t∗ > 0

such that

(5.8) f

(
s+

1

2t∗

)
= Γf(s) .

We claim that the following lemma about t∗ holds.

Lemma 5.1. t∗ ≥ 1
2s

Γ
log2 Γ .

We will need the following lemma about f , whose
proof is similar to that of Lemma 2.9 and hence omitted.

Lemma 5.2. For any C ∈ [1, 1 + log2 Γ
Γ ], we have that

f(Cs) ≥ CΓf(s) .

Proof. [Lemma 5.1] First note that Lemma 5.2 implies

f

(
s+

log2 Γ

Γ
s

)
≥
(

1 +
log2 Γ

Γ

)Γ

f(s) .

Further, by 1 + x ≥ 2x for x ∈ [0, 1], the above is at
least 2log2 Γf(s) = Γf(s). So by the definition of t∗ and
the monotonicity of f , we get that

1

2t∗
≤ log2 Γ

Γ
s .

The lemma then follows.

Consider the first time t after time 0 that the total
size of the jobs waiting in the online algorithm drops to

1
2 . If t ≥ t∗, then the fractional flow time is at least
ρt∗

2 ≥
1
4

Γ
log2 Γ

ρ
s . If t < t∗, then from time 0 to t∗ the

algorithm has processed jobs of total size at least t∗s+ 1
2 .

So the average speed in this period is s + 1
2t∗ and the

energy cost is at least

t∗f

(
s+

1

2t∗

)
= t∗Γf(s) (by Eqn. (5.8))

= t∗
ρ

2
(by definition of ρ)

≥ 1

4

Γ

log2 Γ

ρ

s
(by Lemma 5.1).

In sum, the expected total cost of the algorithm is
at least 1

4
Γ

log2 Γ
ρ
s . So the competitive ratio is at least

1
4

Γ
log2 Γ .

We remark that the above lower bound instance
only consists of two machines and two types of jobs
with unit density, while our algorithm achieves asymp-
totically optimal competitive ratios for the most general
settings of weighted fractional/integral flow-times with
unrelated machines
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A Convex conjugates and Fenchel duality

Suppose that f : R → R is a function. The conjugate
of f is a function f∗ : R→ R such that

f∗(µ) := sup
x
{µx− f(x)} .

Although the conjugate is defined for any function f , for
the rest of the article, we will assume that f is strictly
convex and differentiable, since this is the case that is
most interesting to the applications we discuss.

Properties of f∗:

• f∗ is strictly convex and differentiable. (This
property holds even if f is not strictly convex and
differentiable.)

• f∗∗ = f . (Here we use the assumption that f is
strictly convex and differentiable.)

• If g(x) = cf(x) for some constant c, then g∗(µ) =
cf∗(µ/c).

• If g(x) = f(cx) for some constant c, then g∗(µ) =
f∗(µ/c).

• If g(x) = f(x + a) for some constant a, then
g∗(µ) = f∗(µ)− µa.

• If µ and x are such that f(x) + f∗(µ) = µx then
f ′(x) = µ and (f∗)′(µ) = x.

• Vice versa, if f ′(x) = µ then (f∗)′(µ) = x and
f(x) + f∗(µ) = µx.

We say that (x, µ) form a complementary pair wrt f if
they satisfy one of the last two conditions stated above.
We now calculate the conjugates of some simple strictly
convex and differentiable functions for illustration.

• If f(x) = 1
2x

2, then f ′(x) = x. Thus f∗(µ) is
obtained by letting µ = x in µx − f(x), which is
then equal to 1

2µ
2.

• If f(x) = − log(x), then f ′(x) = −1/x. Set µ =
−1/x to get f∗(µ) = −1 + log(x) = −1− log(−µ).

• Suppose f(x) = x log x. Then f ′(x) = log x + 1 =
µ. So x = eµ−1. f∗(µ) = µx − f(x) = x(log x +
1)− x log x = x = eµ−1. That is, f∗(µ) = eµ−1.

Convex programs with linear constraints: Con-
sider the following (primal) optimization problem.

maximize
∑
i

cixi − fi(xi) s.t.

∀j :
∑
i

aijxi ≤ bj

We will derive a minimization problem that is the dual
of this, using Lagrangian duality. This is usually a long
calculation. The goal of this exercise is to identify a
shortcut for the same.

Define the Lagrangian function

L(x, λ) :=
∑
i

cixi − fi(xi) +
∑
j

λj

(
bj −

∑
i

aijxi

)
.

We say that x is feasible if it satisfies all the constraints
of the primal problem. Note that for all λ ≥ 0 and
x feasible, L(x, λ) ≥

∑
i cixi − fi(xi). Define the dual

function
g(λ) = max

x
L(x, λ).

So for all λ, x, g(λ) ≥ L(x, λ). Thus minλ≥0 g(λ) ≥
the optimum value for the primal program. The dual
program is essentially minλ≥0 g(λ). We further simplify
it as follows. Rewriting the expression for L,

L =
∑
i

µixi − fi(xi) +
∑
j

bjλj

http://research.microsoft.com/en-us/um/people/nikdev/pubs/convex.pdf
http://research.microsoft.com/en-us/um/people/nikdev/pubs/convex.pdf


where µi = ci −
∑
j aijλj . Now note that

g(λ) = max
x

L(x, λ)

= max
x

{∑
i

µixi − fi(xi)

}
+
∑
j

bjλj

=
∑
i

f∗i (µi) +
∑
j

bjλj .

Thus we get the dual optimization problem:

minimize
∑
j

bjλj +
∑
i

f∗i (µi) s.t.

∀i :
∑
j

aijλj = ci − µi

∀j : λj ≥ 0

Note the similarity to LP duality. The differences are
as follows. Suppose the concave part of the primal
objective is −

∑
i fi(xi). There is an extra variable µi

for every variable xi that occurs in f . In the constraint
corresponding to xi, −µi appears on the RHS along
with the constant term. Finally the dual objective has∑
i f
∗
i (µi) in addition to the linear terms. In other

words, we relax the constraint corresponding to xi by
allowing a slack of µi, and charge

∑
i f
∗
i (µi) to the

objective function.
Similarly, suppose we start with the primal problem

maximize
∑
i

cixi − fi(xi) s.t.

∀j :
∑
i

aijxi ≤ bj

∀i : xi ≥ 0

Then the dual problem is

minimize
∑
j

bjλj +
∑
i

f∗i (µi) s.t.

∀i :
∑
j

aijλj ≥ ci − µi

∀j : λj ≥ 0

As we saw, the optimum for the primal program is lower
than the optimum for the dual program (weak duality).
In fact, if the primal constraints are strictly feasible,
that is there exist xi such that for all j

∑
i aijxij < bj ,

then the two optima are the same (strong duality)
and the following generalized complementary slackness
conditions characterize them:

• xi > 0⇒
∑
j aijλj = ci − µi;

• λj > 0⇒
∑
i aijxi = bi; and

• xi and µi form a complementary pair w.r.t. fi, i.e.,
µi = f ′i(xi), xi = (f∗)′i(µi) and fi(xi) + f∗i (µi) =
µixi.

Similarly suppose we start from a minimization problem
of the form

minimize
∑
i

cixi + fi(xi) s.t.

∀j :
∑
i

aijxi ≥ bj

∀i : xi ≥ 0

Then the dual of this is

maximize
∑
j

bjλj −
∑
i

f∗i (µi) s.t.

∀i :
∑
j

aijλj ≤ ci + µi

∀j : λj ≥ 0
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