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ABSTRACT
Enabling interactive data exploration at cloud scale requires
minimizing end-to-end query execution latency, while guar-
anteeing fault tolerance, and query execution under resource-
constraints. Typically, such a query execution involves or-
chestrating the execution of hundreds or thousands of re-
lated tasks on cloud scale clusters. Without any resource
constraints, all query tasks can be scheduled to execute si-
multaneously (gang scheduling) while connected tasks stream
data between them. When the data size referenced by a
query increases, gang scheduling may be resource-wasteful
or un-satisfiable with a limited, per-query resource budget.
This paper introduces Bubble Execution, a new query
processing framework for interactive workloads at cloud scale,
that balances cost-based query optimization, fault tolerance,
optimal resource management, and execution orchestration.
Bubble execution involves dividing a query execution graph
into a collection of query sub-graphs (bubbles), and schedul-
ing them within a per-query resource budget. The query
operators (tasks) inside a bubble stream data between them
while fault tolerance is handled by persisting temporary re-
sults at bubble boundaries. Our implementation enhances
our JetScope service, for interactive workloads, deployed in
production clusters at Microsoft. Experiments with TPC-H
queries show that bubble execution can reduce resource us-
age significantly in the presence of failures while maintaining
performance competitive with gang execution.
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Analyzing hundreds of terabytes of data on large clusters
of commodity hardware is becoming the norm in today’s
big data exploration and analytic scenarios. These clusters,
which are often configured as multi-tenant systems to run
thousands of concurrent queries per hour, impose limits or
constrains on the amount of resources available per query.
At the same time, failures and workload fluctuations are
common in such cloud scale clusters. While the scale and
complexity of data processing continues to grow, business
requirements to reduce “time-to-insight” demand a signif-
icant reduction in end-to-end query execution latency. A
low-latency big data system that is both resource-aware and
fault tolerant, greatly facilitates fast data exploration, data
analysis, and a wide range of real-time business scenarios.

Existing systems use many optimization techniques to
achieve low-latency query execution. They use optimized
record formats, such as column-store [21] along with al-
gorithmic query execution innovations such as vectorized
expression evaluation [2] to provide very low query execu-
tion latencies. Running such engines on expensive high-end
nodes, e.g. parallel databases, gives very low query latencies.
However, when the data size grows to a point where hun-
dreds or thousands of compute nodes are required, parallel
database solutions become unfeasible or prohibitively expen-
sive and assumptions of parallel database systems (e.g., no
fault tolerance) break down.

Recent interactive query engines address the requirements
of ad-hoc real-time analytics, such as Dremel [24], Tenz-
ing [22], JetScope [3], Spark [1], and Presto [10]. Most of
them offer high-level SQL-based query languages and con-
ceptual data models, with support for data loading, and im-
port/export functionality to connect to cloud storage or data
warehousing systems. They employ optimized file formats,
in-memory processing, and direct inter-operator data trans-
fer techniques to achieve low latencies while fault tolerance
is achieved via check-pointing or lineage. However, some of
these techniques have implicit limitations. For example, our
previous work on JetScope uses operator-to-operator pipe
channels for data transfers and hence requires full gang se-
mantics [11] when scheduling. Similarly, Spark provides
fault tolerance through lineage which requires persistence
among wide dependencies. On the other hand, gang execu-
tion enables the whole query to be running in a streamline
manner, minimizing latencies. Gang execution, however, be-
comes expensive for complex queries involving thousands of
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operators, by holding compute resources longer than needed
for the execution. Furthermore, to provide fault tolerance,
the intermediate data needs to be persisted at each corre-
sponding execution operator, which increases latency.

This paper introduces Bubble Execution, a new query
processing framework for interactive workload at cloud scale,
that balances cost-based query optimization, fault tolerance,
optimal resource management, and execution orchestration.
Bubble execution can be adapted to general big data ana-
lytic engines. Our specific implementation of bubble exe-
cution builds on our previous JetScope service, for interac-
tive workload, deployed in production clusters at Microsoft.
JetScope supports the Scope language, a SQL-based declar-
ative scripting language with no explicit parallelism, while
being amenable to efficient parallel execution on large clus-
ters. A cost-based query optimizer is responsible for con-
verting scripts into efficient, physical, distributed query ex-
ecution plans represented by a directed acyclic graph (DAG)
of query operators (tasks). The execution of a plan is orches-
trated by a job manager that schedules tasks on available
compute resources. With bubble execution, the optimizer
revisits the plan graph to aggregate or partition tasks into
sub-graphs, called bubbles, each of which will satisfy the per-
query resource constraints. Next, the job manager schedules
tasks as gangs at bubble boundaries. Multiple bubbles can
execute in parallel provided the sum of bubble sizes does not
exceed the per-query resource quota. The intermediate re-
sults can be materialized at bubble boundaries providing an
implicit checkpoint for the scheduler to recover when some
tasks fail.

Providing fault tolerance efficiently while maintaining low
query latency at scale is particularly challenging. The simple
approach of rerunning the entire query in case of a failure is
expensive and significantly increases the end-to-end query
latency. Bubble execution implements a lightweight fault
tolerance technique by leveraging different types of commu-
nication channels between tasks. Intermediate results are
in-memory-streamed within a bubble, without hitting disks,
to reduce execution latency. At bubble boundaries, tem-
porary results are persisted to disk so that failure can be
recovered from the beginning of a bubble rather than the
beginning of the query. Thus, the overall impact of fail-
ure recovery is greatly minimized without sacrificing query
latency.

Bubble execution has been deployed to hundreds of com-
pute nodes in production on the Microsoft Cosmos service.
Bubble execution serves as the distributed query processing
platform for various services, targeted for large-scale inter-
active data analysis. It enables queries that were previ-
ously too expensive to run in JetScope and provides users
with the ability to control the resources usage of their query
pipelines. Bubble execution leverages the scalable architec-
ture of JetScope which efficiently serves tens of hundreds of
concurrent queries per hour with a variety of complexities.

The Microsoft Cosmos service runs a variety of workloads
including batch data preparation, interactive, streaming and
machine learning. We evaluated bubble execution against
batch and interactive (gang) query execution and schedul-
ing policies using queries based on the TPC-H benchmark.
In batch mode, each task is scheduled independently and
can be recovered independently. In gang mode, all query
tasks are scheduled simultaneously and often employ all or
nothing recovery semantics. Alternatively, bubble execu-

tion provides a combined semantics where tasks inside a
bubble are scheduled as a gang, and bubbles can be sched-
uled independently from each other. Experiments show that
bubble execution outperforms batch execution and achieves
comparable performance to gang execution using fewer re-
sources. For example, bubble execution could reduce 50%
of resources usage with 25% of slowdown compared to gang
execution, and half of the test cases achieve similar perfor-
mance. This gives system administrators configuration flex-
ibility to trade-off between latency and concurrency, from
a business operation point of view. With fine-grained fault
tolerance, bubble execution can recover from failures while
maintaining deterministic behavior.

In summary, the main contributions of this paper are:

• Bubble execution, a new query processing framework
for interactive workloads at cloud scale. The frame-
work consists of key extensions to the cost-based query
optimizer and the job scheduler components.

• A cost-based optimizer policy for bubble generation,
with horizontal and vertical cut heuristics to balance
latency and failover cost.

• A two-phase scheduling algorithm to avoid deadlocks
and under-utilization of resources.

• A fine-grained fault tolerance mechanism that lever-
ages direct operator-to-operator pipe channels and re-
coverable channels.

• A comprehensive performance evaluation on a large-
scale production system showing the benefits of bubble
execution over batch and gang execution.

The rest of this paper is structured as follows. Section 2
presents an overview of the framework and architecture for
bubble execution. Section 3 provides our new proof that
bubble generation is an NP-Hard problem, and presents de-
tails of a bubble generation algorithm necessary to achieve
low query latency within resource constraints. Section 4
presents a scheduling mechanism to achieve scheduling ef-
ficiency with high resource utilization. Section 5 describes
how bubble execution achieves fault tolerance with minimal
performance impact. Section 6 presents performance exper-
iments comparing bubble execution to other execution mod-
els, provides evidence for the efficiency of its fault tolerance
strategy, and evaluates the system scalability. Section 7 re-
views related work, and Section 8 provides a summary and
conclusions of this work.

2. BUBBLE EXECUTION FRAMEWORK
Bubble execution is built on the top of JetScope architec-

ture, which scales out interactive query processing over big
data while supporting hundreds of concurrent queries with a
variety of complexities. Bubble execution extends two com-
ponents of the architecture: the query optimizer to enable
bubble generation, and the job manager to enable smooth
scheduling of bubbles without wasting resources and avoid-
ing deadlocks.

2.1 Architecture
In this section, we describe the overall architecture with

bubble execution and how a query is answered, from submis-
sion, compilation, optimization to execution and returning
the results in a streaming fashion.
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Figure 1: JetScope Architecture Overview

In JetScope, queries are submitted to the cluster portal
either from users’ development environments or various ap-
plications via ODBC APIs. Inside the computing cluster,
the system is comprised of three major layers: (i) front-
end, (ii) orchestration, and (iii) back-end, as shown in Fig-
ure 1. The front-end layer authenticates users and compiles
the query. It hands the compiled query to the orchestra-
tion layer, which schedules and dispatches individual tasks
to back-end nodes for execution. The data is read from
a distributed file system, storing data across the cluster.
Whenever possible, tasks are dispatched to the nodes that
are close to the input data in the network topology to take
advantage of data locality. Once the query starts execu-
tion, the results are streamed back through the front-end to
the client application as soon as they become available. To
support high query concurrency, the system automatically
shards query compilation and scheduling among different
instances of system components and provides efficient load
balancing among them. The capacity of the system can be
dynamically adjusted by adding or removing compute nodes
in various functions.

Bubble execution improves the layers (i) and (ii) of the
above architecture, specially involving the following compo-
nents.

• A compiler that takes scripts as input, and generates
a distributed computing plan. The script is written in
Scope, a SQL-based language, to provide a more user-
friendly interface for the cloud developers and data
scientists to process and analyze TBs of data at great
flexibility.

• A cost-based query optimizer that partitions a comput-
ing plan into small tasks. In addition, the optimizer
does task re-ordering, redundant task elimination, and
extracting task prediction. The optimizer builds a cost
model, searches the solution space and aims to get the
best distributed execution plan in bubble groups.

• A job manager that dispatches the tasks in the plan
to selected compute nodes, collects the execution state
from the nodes, and takes different strategies to handle
the cluster dynamics like duplicate task execution and
re-invocation.

2.2 Token
We use the concept of a token to control resources usage

in query execution. In Scope, a query is compiled and cost-
based optimized into a query execution plan (QEP). The
QEP is a directed acyclic graph (DAG), where data is pro-
cessed from the leaf vertices representing file and structured
stream scans, through various relational operators (e.g., fil-
ters, joins, aggregations), toward a final resultset. Each ver-
tex (relational operator) in the DAG is called a task. Tasks
are organized into stages, where each stage has one or more
tasks that execute the same operation over different files,
table partitions, or intermediate results.

In Cosmos, a physical server resource, is divided into a set
of logical resource units, each called a token. For example,
a server with 24 CPU cores and 128 GB RAM, can reserve
8 cores and 32 GB RAM for platform services, and leave 16
cores and 96 GB RAM for user query workloads. In this
example, a token represents a resource slice of 1 core and
6 GB RAM. A goal of the query optimizer is to map one
token per query operator (task) in the QEP, which means,
a physical machine can process 16 QEP tasks concurrently.
A user submits a query to the system giving it a token bud-
get, based on the importance or priority of the query to the
users business goals. The token budget for a query is fixed
throughout the execution of the query. The job manager
takes the QEP and token budget for a query, and orches-
trates the execution of the QEP by stages, each of which
consumes the assigned token budget per query.

2.3 Bubble and Channel
A bubble consists of one or more tasks that can be ex-

ecuted all at once. Connected tasks within a bubble have
a strong data communication dependency, and in-memory
streaming data between them, avoiding disks, reduces la-
tency. A channel [18] is the abstraction of communication
between two tasks. One task as producer can write data
into the channel, and other tasks as the consumers can read
data from the channel. In the bubble execution framework,
there are two types of channels:

• Pipe channel: provides one-time streaming capabil-
ity between tasks. The connected tasks can execute
in streamline manner. But it’s not recoverable on any
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Execution Scheduling Execution Channel FT requirement
model granularity granularity for channels
Batch Task Group of tasks Recoverable All channels recoverable
Bubble Bubble Group of bubbles Recoverable and Pipe Channels between bubbles recoverable
Gang All tasks All tasks Pipe All channel recoverable or none (restart all)

Table 1: Execution model comparison

failure. In JetScope, the pipe channel is implemented
as a service, called StreamNet, with memory cache
that can avoid landing data to disk.

• Recoverable channel: persists the data from the
producer and ensures that the consumer can read the
data from any node at any time, even when a con-
sumer restarts. This kind of channel is the basis for
failure-tolerance. Failed tasks can be re-executed once
detected. The most common implementation of the
recoverable channel is a disk file. For better reliability,
it could be a stream on a distributed file system with
multiple replicas.

Inside a bubble, tasks are connected via pipe channels,
so that once in execution they can in-memory stream data
between them. Between the bubbles, tasks are connected
via recoverable channels, which provide a checkpoint for the
bubble to recover if any failure occurs. A query consists of
one or more bubbles which can execute concurrently depend-
ing on the dependency graph and availability of compute
resources.

The Microsoft Cosmos service supports a batch data prepa-
ration job service that uses a batch execution model. We can
consider batch execution as one end in the spectrum of bub-
ble task density, where a query contains as many bubbles
as tasks, that is, there is one bubble per task. Each task
is connected via a recoverable channel. JetScope, an inter-
active service, introduced gang execution which represents
another end in the bubble task density spectrum consisting
of a single execution bubble for all the tasks comprising the
query. Bubble execution represents an intermediate point in
the task density spectrum. Table 1 summarizes those three
execution models.

2.4 Extensions of Optimizer and Job Manager
With the new challenges on cost model and scheduling

policy from the bubble and channel, bubble execution ex-
tends two components of the JetScope architecture: the
query optimizer to enable bubble generation, and the job
manager to enable smooth scheduling of bubbles without
wasting resources and avoiding deadlocks.

The optimizer performs its usual cost-based optimization
[5] producing a distributed query execution plan represented
by a DAG. We propose adding a bubble-generation phase
which breaks down the DAG into groups of tasks, called
bubbles. The input to this phase is the QEP DAG, the per-
query token budget, and the estimated data size carried by
each channel connecting tasks. There are many approaches
for traversing the QEP DAG and defining the bubble bound-
aries. In our implementation, we propose a heuristic, de-
scribed in details in Section 3.2, based on iterative vertical
and horizontal cuts of the graph until we reach bubble sizes
that meet the query token quota and minimize latency. We

have found our heuristic strikes a practical engineering bal-
ance that adds little overhead to the optimization time while
producing results that are comparable to gang scheduling.

The job manager takes the output of the query optimizer
which consists of a QEP DAG annotated with bubble bound-
aries. Each bubble must consume no more than the total
number of tokens given to the query. However, bubbles
could potentially require a fraction of the total allocated
token budget which opens the possibility of scheduling mul-
tiple bubbles of a query concurrently subject to the data
dependencies implied by the QEP DAG. The responsibility
of job manager is to find a schedule of bubbles that honors
data dependencies between tasks minimizes waste of com-
puting resources. Achieving efficient bubble scheduling in
a distributed environment is challenging since all concur-
rent queries at a given point in the system are competing
for the same physical resources. In JetScope, which uses
gang execution, running multiple queries concurrently with-
out resource control can result in deadlocks [3]. In bubble
execution, the job manager is extended with a two-phase
scheduling algorithm that avoids such deadlocks. This algo-
rithm is described in Section 4.

2.5 Resource Management
When the optimizer partitions the plan into small tasks,

all of them have a similar workload and each of them fits
a token of resources. A task in execution maps to a single
token for the duration of the task. Based on the amount
of resources given to the query, a certain number of tokens
are allocated to execute it. The job manager uses these
tokens to schedule tasks on the cluster resources. At any
given moment in execution, job manager strives to keep a
maximum number of concurrently running tasks as similar
to the number of tokens allocated to the query. However,
depending on the stage of the query processing, there may
not be enough tasks to fully utilize the tokens, similarly,
there can be more tasks than that can be executed at once.

For batch execution, a query can use one or more tokens
for execution. The job manager computes the task priorities
according to task dependencies, and dispatches the tasks to
the matched nodes under the given tokens. To further re-
duce the query latency, gang execution dispatches all the
tasks at once for an execution plan, enabling related tasks
to stream data between them. However, gang execution re-
quires that all tokens for the entire execution plan are avail-
able to the job manager. Further, it keeps all tasks of the
query in execution even if the consumer task may be idle and
waiting for the data to be available from its producer tasks.
This aggressive resource allocation will prevent other queries
from executing due to lack of tokens in the whole system.
Bubble execution strikes a balance between the batch and
gang execution approaches, making the much needed parts
of the query plan to use streaming while adhering to token
(resource) constraints.
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NoComplainOrders =

SELECT *

FROM orders

WHERE NOT (O_COMMENT.Contains("special")

AND O_COMMENT.Contains("packages"));

SELECT c_count,

COUNT(*) AS custdist

FROM

(

SELECT C_CUSTKEY, COUNT(O_ORDERKEY) AS c_count

FROM customer

LEFT OUTER JOIN NoComplainOrders

ON C_CUSTKEY == O_CUSTKEY

GROUP BY C_CUSTKEY

)

GROUP BY c_count

ORDER BY custdist DESC, c_count DESC;

Figure 2: TPC-H Q13 script

(a) 125 tokens (b) 10 tokens

Figure 3: TPC-H Q13 execution plans

2.6 A Sample Query and the Bubbles
Figure 2 shows the script of TPC-H Query 13 and fig-

ure 3 shows its possible plans. During the compilation, the
optimizer partitions the plan into 151 tasks: 100 tasks to
partition the table orders, 25 tasks to merge the partitioned
result, 25 tasks to join with the table customer, and one
task to aggregate the final result, as depicted in Figure 3a.

Given 125 tokens, the optimizer can group the tasks into
two bubbles: The first bubble contains 100 Partition tasks
and 25 Merge tasks; and the second one includes the remain-
ing tasks. During the plan execution, the scheduler first dis-
patches 125 tasks with 125 tokens to achieve the maximally
allowed parallelism. After all the 125 tasks complete, it dis-
patches the rest 26 tasks all together. If the constraint is
10 tokens, the plan could be broken down into small 126
bubbles, as shown in Figure 3b.

3. BUBBLE GENERATION
Bubble generation is the process of breaking down an exe-

cution plan into bubbles. An execution plan is composed of
tasks and the tasks are organized as stages [18]. Every stage
has one or more tasks which execute the same operations
against different data partitions. A bubble can span over

several stages, and the tasks inside a bubble can have dif-
ferent operations. Bubble generation can be abstracted as
an optimization problem with given token budget and chan-
nel weights. The section 3.1 first formalizes this problem
and proves its NP hardness. And then the section 3.2 pro-
poses a heuristic greed algorithm to provide an approximate
solution.

3.1 The Minimum DAG K-cut Problem
We capture the essential optimization required for gener-

ating the bubbles as the minimum DAG k-cut problem.
This problem considers one iteration, where you are required
to find just one bubble, of a given size k <= K , the token
budget. The problem asks for a bubble of size k, with the
goal of minimizing the data persistence cost. We state the
problem as a decision problem, since our main result here is
to show NP-Hardness of this problem.

Definition 1 (The Minimum DAG k-cut problem).
Given a directed acyclic graph (DAG) G = (V,E), and in-
tegers k and C, is there a set of vertices S ⊆ V such that

1. |S| = k,

2. there are no edges directed from Sc to S, (where Sc =
V \ S,) and

3. |E(S, Sc)| ≤ C, where E(S, Sc) is the set of edges
(u, v) such that u ∈ S and v ∈ Sc?

The problem can be generalized to a weighted version, where
each edge e ∈ E has a capacity ce and we require an upper
bound on the capacity of the cut, i.e.,

c(S, Sc) =
∑

e∈E(S,Sc)

ce ≤ C.

Note that this is different than the classic min k-cut prob-
lem [14] because of two reasons:

1. The min k-cut problem requires a cut that results in k
connected components, whereas the k in our definition
refers to the size of the cut.

2. There is an additional requirement in our problem that
the cut is a topological cut in the graph.

We will show that this problem is NP-Hard via a reduction
from the CLIQUE problem.

Definition 2 (The CLIQUE problem). Given an un-
directed graph G = (V,E) and an integer l, is there a clique
in G of size l, i.e., is there a set of vertices S ⊆ V such that

1. |S| = l, and

2. every pair of vertices in S have an edge between them?

It is well known that CLIQUE is NP-Hard, and was one
of the original 21 problems shown to be NP-Hard by [19].

We observe that a standard reduction allows us to assume
that the input graph for CLIQUE is regular, i.e., all vertices
have the same number of edges; see [9]. We will use this
version for the reduction.

Theorem 1. The DAG k-cut problem is NP-Hard
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Proof. Suppose that we are given an instance of regular-
CLIQUE, which is a d-regular graph G = (V,E), i.e., each
vertex has exactly d edges incident on it, and an integer l.
The problem is to decide whether there is a clique of size l
in G.

We construct an instance of Min DAG k-cut as follows.
This instance has a DAG G′ = (V ′, E′) where V ′ = V ∪ E.
There is one vertex in V ′ for every vertex as well as every
edge in G. There is an edge e′ = (u′, v′) ∈ E′ if and only if
u′ is a copy of a vertex u ∈ V , v′ is a copy of an edge e ∈ E,
and e is incident on u in G. The parameters k and C in the
instance are set as k = l+

(
l
2

)
, and C = (d−l+1)l = dl−2

(
l
2

)
.

The following claim completes the proof.
Claim: There is a clique of size l in G if and only if there

is a DAG k-cut of size ≤ C in G′.
CLIQUE ⇒ DAG k-cut Assume that there is a clique

in G of size l. Let this clique be on the set of vertices S ⊆
V . Consider the following cut, given by the set S′ ⊆ V ′

that includes all copies of vertices and edges in the clique
S. Clearly the size of S′ is k. Consider the edges that leave
S′. These are in 1:1 correspondence with edges in E such
that one of their endpoints is in S and the other isn’t. Each
vertex in S has exactly d edges in all, out of which exactly
l − 1 have another endpoint in S itself (since S is a clique).
That leaves us with d − l + 1 edges that leave S for each
vertex in S, giving us exactly C edges in all.

DAG k-cut ⇒ CLIQUE Consider any k-cut in G′, say
given by S′ ⊆ V ′. We will argue that if S′ doesn’t look like
the construction in the previous paragraph starting from a
clique of size l in G, then the number of edges going out of
S′ must be more than C. Suppose not.

First, there must be at least l + 1 vertices in S′ that cor-
respond to vertices in V . Now we just count the number of
edges that cross the cut S′. Each vertex in S′ that corre-
sponds to a vertex in V has exactly d outgoing edges in G′.
For each vertex in S′ that corresponds to an edge in E, there
are exactly 2 incoming edges in G′. Since there are at most(
l
2

)
− 1 such vertices in S′, they can together save at most

2
(
l
2

)
−2 such edges. Thus the number of outgoing edges from

S′ is at least d(l+1)−(2
(
l
2

)
−2) = dl−2

(
l
2

)
+d+2 > C.

3.2 A Heuristic Algorithm
Although bubble generation is different from min k-cut

problem [27] since the k is the token budget, the classic
algorithms for min k-cut problem can still be applied for
bubble generation with some modification. For example,
we implemented the algorithm SPLIT [25] and found this
classic greedy algorithm tends to generate superfluous bub-
bles and compromise the query execution latency. Based on
the heuristics from our engineering practices, we propose a
greedy bubble generation algorithm, called MERGE. This
algorithm leverages two kinds of cuts to generate the bub-
bles:

• Horizontal cut: made between two dependent stages.
Like Figure 3a, a four-staged plan is cut between Merge

and Join stages, into two bubbles. A horizontal cut
determines where to place the recoverable channels.

• Vertical cut: made between those tasks with no di-
rect or indirect dependencies within stages. For in-
stances, in the Figure 3b, besides two horizontal cuts
(one between Partition and Merge stages and the

Input: Token Budget, Tasks and Channels with
estimated intermediate data size

Output: Bubbles
/* init */

Assign each task to a bubble;
/* Merge while keeping vertical cut */

repeat
Sort channels by intermediate data size
descendingly;

foreach channel do
if (vertical cut constraint) and (token budget
constraint) and (heuristic constraint) then

Merge the producer and consumer bubbles;
break;

end

end

until No bubbles can be merged further ;
/* Merge to break vertical cut */

repeat
Sort channels by intermediate data size
descendingly;

foreach channel do
if (token budget constraint) and (heuristic
constraint) then

Merge the producer and consumer bubbles;
break;

end

end

until No bubbles can be merged further ;
Algorithm 1: Algorithm MERGE for bubble generation

other between Join and Aggregate stages), there are
also two vertical cuts: the first is made within the
Partition stage so that all tasks are partitioned into
100 bubbles; the other cut breaks the Merge and Join

stages into 25 independent bubbles. Each of the bub-
bles (101∼125) has one task from the Merge stage and
one from the Join stage.

Algorithm MERGE 1 starts with a basic solution: ev-
ery task is a bubble; then it enumerates each channel, and
merges the connected bubbles while keeping the vertical
cuts; finally, it enumerates each channel again, and tries
to merge bubbles as many as possible. The intermediate
data size of two connected bubbles determines the prior-
ity of merging. And each bubble merging must honor the
constraint of token budget. Additional heuristic is also in-
corporated as the constraint of bubble merging. For exam-
ple, a partition stage without filter operation often gener-
ates large intermediate data that stress pipe channels. So
if the token budget is small, a horizontal cut between the
partition stage and its downstream stage is preferred and
the two bubbles containing the two stages cannot be merged.

Figure 4 shows an example of bubble generation for TPC-
H Query 13 under 100 token budget limit. First, this algo-
rithm makes a vertical cut on each stage so that each task is
a bubble. Next, it searches for any two stages that have
a one-to-one dependency and merges the bubbles within
stages so that the vertical cut still holds. This is to merge
bubbles in the vertical dimension. At last, the algorithm
merges as many bubbles as possible while keeping the bubble
size within token budget. In other words, it merges bubbles
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(a) Take each task as a bubble. (b) Merge bubbles vertically. (c) Merge bubbles horizontally.

Figure 4: TPC-H Q13: bubble generation steps with 100 tokens

in the horizontal dimension. This greedy algorithm doesn’t
generate the best bubbles, but it’s good enough for current
production clusters. Section 6 provides the evaluation result
for the algorithm MERGE.

4. BUBBLE SCHEDULING
The stage topology of an execution plan contains a skele-

ton that represents how tasks are connected to each other.
Bubble generation draws the bubble boundaries by annotat-
ing the channels between stages and the job manager follows
the annotations to materialize the execution plan and identi-
fies bubbles. It then dispatches those bubbles to computing
nodes in an efficient way.

4.1 Two-Phase Scheduling
Achieving efficient bubble scheduling in a distributed envi-

ronment is challenging. In gang execution, running multiple
queries concurrently without resource control could result
in deadlocks [3]. To solve this, gang execution introduces
query admission control, which accepts a query only when
resources are available to execute the whole query at once.

A task is ready only if all of its inputs are ready to be
consumed and a bubble is ready only if all the tasks in the
bubble are ready. In batch execution, a ready task is en-
queued to wait for resources and de-queued once resources
are ready. In bubble execution, the amount of available
resources is dynamic and at some moment may be less than
the required amount from a ready bubble. To efficiently
utilize available resources, the job manager must solve the
following two challenges:

• Resource competition from different bubbles:
consider the example shown in Figure 5a. There are
150 tokens available, and two bubbles waiting for dis-
patching, each requires 100 tokens. The first 75 tasks
in Bubble 1 are ready and en-queued, then another
75 tasks in Bubble 2 are ready and en-queued. The
150 tasks could be dispatched, but there will be no
resources to dispatch any other tasks in Bubble 1 or
Bubble 2. Bubble 1 and Bubble 2 will wait for each
other in a deadlock.

(a) Deadlock (b) Under-utilization

Figure 5: Scheduling challenges

• Resources under-utilization: Figure 5b show an-
other example with total 150 tokens and two bubbles
requiring 100 tokens for each. Assume 99 tasks in Bub-
ble 1 are ready and one task is left because its upstream
task is a straggler. Even when all tasks in Bubble 2 are
ready, the queue can be locked by Bubble 1 to ensure
it is dispatched prior to Bubble 2. In this case, the
system is wasting resources due to the slow tasks.

To solve the resource competition and under-utilization
issues, we propose two-phase scheduling algorithm that uses
two types of queues: a per-bubble bubble queue and a global
queue. Any task that becomes ready is en-queued into it’s
bubble queue first. Whenever a bubble queue is full with
all the tasks in the corresponding bubble, it pops them out
and pushes them into the global queue. In this way, no
matter how many resources are available, the tasks in the
global queue are always ordered by bubbles. Even when
available resources are less than the required amount of a
ready bubble, the job manager can still dispatch the tasks in
global queue without waiting for more resources to become
available. After all, the final dispatching order for all tasks
is eventually consistent with the bubble order.

When a task fails in a given bubble, the failure will be
propagated through the pipe channels to the other tasks in
the same bubble. This will further cause all the tasks in
that bubble to be re-run, and hence they will be first moved
into the bubble queue in the order of the failure arrival time.
Next, following the two-phase scheduling logic above, those
tasks will be pushed to the global queue when the bubble
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Figure 6: Query 13: priority assignment

queue is full. Thus, the task dispatching is always bubble
atomic with the two queues.

4.2 Bubble Priority
In the two-phase scheduling algorithm, when a bubble is

ready, the tasks in the bubble are all in the global queue. If
there are multiple bubbles in ready state, dispatching tasks
strictly in FIFO order does not yield the best resource uti-
lization. In a complex query consisting of thousands of tasks,
the tasks in the critical path usually determine the end-to-
end latency of the whole query owing to topological depen-
dencies. Especially, when some tasks fail and are moved
back into the global queue, they should have higher priori-
ties to dispatch so the query execution would not be blocked
by the failures. To address this issue, the tasks are assigned
with priorities. When multiple tasks are popped from the
global queue, they are sorted by their priorities, and then
dispatched in that order.

The priority of a task contains three factors:

1. Bubble order: is the topological order in the bub-
ble dependency graph. The bubble with higher order
should be dispatched earlier.

2. Bubble ID: is a unique integer for each bubble. Dur-
ing the sort, bubble IDs ensure the tasks are grouped
by bubbles so the dispatching is bubble-atomic.

3. Task order: is the topological order in the task de-
pendency graph. Even in the same bubble, tasks with
higher order should be dispatched earlier to build the
output channels.

When the scheduler sorts tasks, it compares tasks by the
three numbers above in the listed order.

Figure 6 illustrates the priority assignment for TPC-H
Query 13. Bubble 1∼100 has the order of 3; Bubble 101∼125
has 2; and Bubble 126 has order of 1. On the task level, the
order for Partition, Merge, Join and Aggregate are 4, 3,
2, 1, respectively. The dispatching order can be determined
if the global queue has some tasks like the following cases:

• Partition task in bubble 100, and Merge task in bub-
ble 101: Partition task will be dispatched earlier.

• Partition task in bubble 1 and Partition task in
bubble 100: Although the two tasks have the same

bubble order, Partition task in bubble 100 is dis-
patched first due to a bigger ID number.

• Merge task and Join task in bubble 101 and Merge task
and Join task in bubble 125: ordering by bubble level
first and task level second, the dispatching sequence
is Merge task in bubble 125, Join task in bubble 125,
Merge task in bubble 101, and Join task in bubble 101.

5. FAULT TOLERANCE
Failures and workload fluctuations are the norm in cloud

scale clusters. It is critical for the system to be resilient to
various system faults and efficiently recover from them with
minimum performance impact. The most common failover
mechanism is to rerun a task after it fails. To be able to
rerun a task, there are two requirements to be met:

• Channel recover-ability: every channel can be read
at any point. This implies data persistence. So the
data can be read and sought. A pipe channel doesn’t
provide such a capability.

• Deterministic behavior: intermediate results writ-
ten to channels are deterministic. This means any task
running twice should generate the same outputs. In
the real world cloud-scale computing system, some op-
erations are designed to be random to maximize per-
formance. Also, it’s hard to avoid non-deterministic
behavior from user defined operations.

If one task fails, the re-run task reads inputs from the
recoverable channels, output channels are rebuilt, and the
downstream consumer continues reading the data by skip-
ping the duplicated part through the seek operation.

Compared to bubble execution, with gang execution, it
is barely possible to resolve non-determinism issues in an
elegant way during the failover process. Since the consumer
task has been reading partial data from the failed task for
a while, the only way to ensure computing correctness is
to build up record sync mechanisms as used in streaming
systems e.g., Kafka [12], Storm [13], StreamScope [23], so
that the re-run task can inform its consumers of the need to
discard dirty records. However, it is inappropriate to add
this overhead to a non-streaming scenario.

Bubble execution simplifies the complexity of the failover
mechanism by addressing the challenge in a coarse granu-
larity. All tasks in a bubble are dispatched at once. Re-
coverable channels are built between bubble boundaries and
pipe channels are adapted inside bubbles. So the bubble
boundary is actually the checkpoint for the recovery. The
advantages of this straightforward design are: (a) A pipe
channel is usually implemented as a FIFO buffer based on
memory. Without the requirement of persistence, it’s easy
to achieve high performance and low resource utilization.
(b) Non-determinism is not a concern because the bubble
is recovered as a unit to avoid partial data reads. Con-
sidering the impact of non-deterministic tasks, the opti-
mizer can even place those tasks at the bubble boundary
to cause outputting to enhanced recovery channels, like per-
sisted streams with three replicas. This optimization re-
duces bubble re-run costs in case of a channel failure. (c)
The job manager has less communication with the comput-
ing nodes so that it can have more resources available to
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(a) Dispatch the first 125
bubbles.

(b) Task Join 1 failed in
Bubble 101.

(c) Bubble 101′ is created to
substitute Bubble 101.

(d) Dispatch Bubble 126 after
all its producer bubbles finishes.

Figure 7: Failover steps for bubble execution

support additional concurrent queries, compared to the fault
handling mechanism in JetScope.

To lower this cost, our bubble generation algorithm al-
ways begins with a high number of small bubbles, and ex-
pands bubbles while maintaining vertical cuts as much as
possible when growing bubble sizes slowly, as was shown in
Section 3.2.

Figure 7 illustrates how the failover works for the plan
from Figure 3b: (a) the first 125 bubbles are dispatched for
execution; (b) task Join 1 failed in bubble 101; (c) bubble
101′ is created for re-execution and the input are read via
recoverable channels; (d) bubble 126 is dispatched when all
its dependent bubbles complete.

6. EVALUATION
We performed detailed experiments on bubble execution

to evaluate its performance and resource usage under various
scenarios. In this section, we start with experimental results
in a real production system, using 10TB TPC-H queries to
drill down into query latency, plan quality, scheduling effi-
ciency, fault tolerance and scalability. Experiments where
run on a production subcluster consisting of 200 compute
nodes with a total capacity of 2000 tokens. Each com-
pute node consists of a server with 16 cores, 128 GB RAM,
200MB/s Disk IO, and a 10 Gbps NIC.

6.1 Query in Production
The system has been deployed to hundreds of servers in

production at Microsoft, serving millions of queries against a
wide range of big datasets daily. Most of the queries are sim-
ple ones which require less than 10 tokens. We did observe
large queries requiring more than 10,000 tokens, as shown
in Figure 8, which illustrates the token distribution among
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Figure 8: Cumulative token distribution from production
cluster

queries that require more than 50 tokens. We expect that
the number of large queries will increase with the adoption
of bubble execution.

6.2 Latency and Resource Utilization
We set up the experiment to run Query 5 with bubble exe-

cution and batch execution under different token budgets, as
shown in Figure 10. For the same token budget, bubble ex-
ecution gains shorter latency compared to batch execution.
As the token budget increases, bubble execution reduces la-
tency from 130 to 75 seconds. Bubble execution with 500
tokens shows a slowdown compared to adjacent plans. This
is because our greedy bubble generation algorithm produces
a plan with a smaller max task degree of parallelism (DOP).
The batch execution gains the same performance with to-
kens from 200 to 1300 because the max task DOP is 200.
Gang execution requires 1316 tokens and generates the best
performance in latency.

We did a set of similar experiments on all TPC-H queries.
Each query was run under different tokens varying from 10%
to 90% of the token usage for gang execution. The average
speedup is illustrated in Figure 11. If we use 10% of re-
sources, we slow down the queries by 3x (34% of speedup).
The speedup becomes higher as the resource usage increases.
With 50% of usage, the slowdown is less than 25%. This
gives system administrators configuration flexibility to trade-
off between latency and request concurrency, from a business
operation point of view.

We also collected the numbers for batch execution under
the half resources as shown in Figure 9. Most queries achieve
similar performance with bubble execution given the half re-
sources used by gang execution. For Q3, Q9, Q15 and Q19,
performance is almost on par with gang because the inter-
mediate data between bubble boundaries is very small. All
the tasks in Q14 generate few data so even batch execution
can provide the same performance. The queries Q10, Q16,
Q17, Q20 and Q22 are examples where the vertical-cut-first
heuristic builds up a bubble boundary on the channels with
huge intermediate data, so there is limited speedup from
streamline execution. The fan-out queries, Q1, Q4, Q6 and
Q12, are exceptions because the bubble generation can only
produce single-task bubbles to meet the resource limitation.
Thus, bubble and batch execution show similar performance,
and streamline execution brings huge potential to boost the
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Figure 9: Performance comparison among different execution models
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Figure 10: Query 5 running with different token budgets

queries.

6.3 Plan Quality
Since bubble generation is an NP-hard problem, the al-

gorithm MERGE tries to provide an approximate solution
with the heuristics from engineering practices. To validate
its efficiency, we implemented a modified version of the clas-
sic greedy algorithm for the min k-cut problem as the base-
line. This baseline algorithm recursively applies algorithm
SPLIT [25] on the sub graphs that don’t fit the token bud-
get until all the bubbles can run within the token budget.
We compared the latency of query execution for the plans
from our bubble generation algorithm against the baseline
algorithm.

Figure 12 shows the speedup of the plan generated by the
algorithm MERGE over the baseline algorithm. Among 22
TPC-H queries, our algorithm show average 1.17x speedup
on the baseline; Q1, Q4, Q6 and Q12 have the same plan
from the two algorithms, and thus the same latency; Q8,
Q18, Q20 and Q21 show average 1.10x slowdown. Algo-
rithm MERGE is more efficient because it tends to utilize
the full token budget for the computation and thus gener-
ates less bubbles; while the algorithm SPLIT always naively
takes the minimum cut and results in more bubbles. Fig-
ure 13 illustrates the different plans by the two algorithms
for Q13. The baseline algorithm generates 126 bubbles while
the algorithm MERGE generates 101 bubbles and manifests
better performance on streamline execution.

6.4 Scheduling Efficiency
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Figure 11: Average speedup v.s. resources for TPC-H
queries

Token usage Average DR Average WR
250 99.5% 9.3%
288 99.9% 10.2%
300 98.5% 14.1%
350 98.1% 14.8%
400 99.7% 6.9%

Table 2: Schedule efficiency metrics

Although an execution plan can be decomposed into many
tasks, not all of them can run in parallel. Based on the
dependency graph on task level, the amount of required re-
sources varies during the query execution. Figure 14 shows
an example. Given an execution plan, the required tokens
increase gradually from the beginning and decline until the
query completes. In gang execution, the token usage could
be very high at the beginning. The bubble execution always
tries to use all available tokens up to the provided limitation;
while batch execution cannot due to smaller dispatching unit
and task dependencies.

We evaluate the scheduling efficiency of bubble execution
by two rates: (i) dispatching rate measures how efficiently
the available resources are utilized by bubbles; (ii) waiting
rate indicates the waiting time for the available resources
to be used by a task.

Dispatching rate is defined as:

DRt =

{
1 if GQt = 0
min(ATt,GQt)

TT
if GQt > 0

,

10



0.5 1 1.5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22

Baseline

Speedup

Figure 12: The efficiency of algorithm MERGE

(a) Algorithm SPLIT (b) Algorithm MERGE

Figure 13: TPC-H Q13: plans with 75 tokens

where ATt is the number of available tokens, TT is the total
amount of the given tokens, and GQt is the number of tasks
in the global queue. ATt and GQt are two dynamic numbers
varying along with query execution.

Waiting rate is defined as:

WRt =

{
0 if BQt = 0
min(ATt,BQt)

TT
if BQt > 0

,

where BQt is the number of tasks in the bubble queues.
WRt is especially important for bubble execution. Thanks
to two-phase scheduling, the ready tasks are en-queued into
bubble queues, and then moved out. The waiting time for
the queue to become full is non-trivial. In Figure 14, the
token usage drops in a very short period for three times due
to this. Batch execution is better here because it takes little
time for the single-task bubbles to be ready.

We ran full TPC-H queries with different token budgets,
and Table 2 shows the average number of these metrics.
Regardless of the token usage, a 99% dispatching rate proves
that the job manager is efficient at scheduling the tasks in
the global queue. Compared to batch execution, there are

Required Tokens

Token Limit

Time

Token Usage Gang

Bubble

Batch

Figure 14: Resource utilization during query execution
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Figure 15: Execution slowdown due to failover

10% of resources idle when waiting for the rest of a bubble
to be ready.

6.5 Failure Recovery
Fault tolerance is one important aspect for bubble execu-

tion. The penalty from one task failure consists of three
factors: (1) Failure detection: some failures, like service
crashing or local power outages, can be detected in sub-
seconds; while other failures, like network congestion or ma-
chine overloads, take time to confirm. (2) Resource realloca-
tion: in a multi-tenant system, each query has been assigned
a portion of resources. Some failures, such as core service
crashing, can cause a query to lose the control of its re-
sources temporally. However, a query must recover based
on its own resources to avoid using other tenants’ resources.
If there are no available resources, the query must wait for
its capacity to recover. (3) Computing waste: it’s inevitable
to waste computing power, and it takes time to re-run the
failed tasks.

For bubble execution, the last two factors are particularly
related to the bubble generation. We assumed the failure
detection time was zero, and injected one task failure for a
query to evaluate the latency penalty for failover. Figure 15
shows the failover impact on two typical plans: Q8 and Q14.
Bubbles for Q8 favor streamline execution, so the bubble size
is relatively bigger. The latency penalty has a bigger range
comparing to batch execution. Q14, on the other hand, has
smaller bubbles which makes the bubble execution more like
batch execution. So, the latency varies in a small range as
for batch execution. Gang execution has the worst slowdown
because any failure of a single vertex causes the whole query
to rerun.
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Figure 16: Bubble execution scalability

6.6 Scalability
To validate the scalability of bubble execution, we ran

selected TPC-H queries (Q1, Q4, Q6 and Q12) with differ-
ent scale factors and resources. The selected queries are all
fan-out aggregations with two stages: an extract stage with
several tasks reading data and pre-processing, followed by
an aggregation stage with one task collecting all the out-
puts from the extract tasks and writing the final result. No
matter what the scale factor is, the performance of those
queries is linearly proportional to the number of tokens by
nature. We prepared 1TB and 10TB data, and executed
the queries with 50 and 500 tokens, respectively. Bubble
execution reveals linear scalability as shown in Figure 16.

7. RELATED WORK
One challenge on batch processing at cloud scale is to en-

sure that a long-running job survives workload fluctuations
and failures. Map Reduce [8], and Dryad [18] materialize
intermediate data as recovery points resulting in jobs that
can progress in spite of task failure. However, this approach
trades execution performance for reliability. Bubble exe-
cution accelerates query execution by replacing some of the
recovering points by pipe channels based on cost estimation.

Emerging interactive query engines focus on the latency
of query execution to provide prompt response for user in-
teraction. Map Reduce Online [7] was proposed to improve
the performance by streaming data, which reduces the ma-
terialization cost. Dremel [24] provides a quick query ex-
ecution engine based on columnar data. Shark [28] and
Spark [29, 1] are built on resilient distributed dataset. It in-
troduces lineage to track execution and recover from failure.
JetScope [3] is optimized to reduce the processing latency
by streamlining execution, yet it requires massive computing
resources. Our work is based on JetScope and proposes bub-
ble execution to enable streamline execution under limited
resources.

Most of the modern distributed computing systems are
inspired by transactional database systems which rely on a
cost-based optimizer [16, 15] to generate efficient execution
plans. Impala [20] implemented several plan optimizations,
such as ordering and coalescing analytic window functions,
and join reordering based on cost estimation. Scope [6, 30]
provides a continuous query optimizer [5] which introduces a
positive feedback from job execution to improve data statis-
tics. Bubble execution introduces resource constraints as a

new dimension to the cost model, and proposes a horizontal
and vertical cut heuristic for bubble generation.

Resource control and capacity management are necessities
in a multi-tenant system. Hadoop YARN [26] and Mesos [17]
were developed to abstract resource management for differ-
ent execution frameworks in a centralized manner. Apollo [4]
introduces a cost-based scheduler which performs schedul-
ing decisions in a distributed manner, utilizing global cluster
information via a loosely coordinated mechanism. All those
schedulers treat each task as a dispatching unit. Bubble ex-
ecution extends the dispatching unit into a group, proposing
a complete mechanism to deal with bubble management and
scheduling fairness in a multi-tenant environment.

8. CONCLUSIONS
This paper introduced Bubble Execution, a novel query

optimization and scheduling technique built on the exist-
ing JetScope architecture at Microsoft. It breaks a query
execution graph into a collection of bubbles so that they
can be scheduled for execution within per-query resource
constraints. Moreover, it facilitates the use of in-memory
streamed data transfers inside a bubble reducing the overall
latency of query execution. Fault tolerance is enforced at
bubble boundaries. These optimizations enable bubble exe-
cution to minimize latency on analytic queries while adher-
ing to resource constraints. We believe that these concepts
can be applied to any other cloud-scale data analytic engine
of similar capabilities. The experimental data presented in
the paper, confirms the benefits of bubble execution and
highlight the trade-offs we made between latency, reliabil-
ity, and resource constraints. Compared to gang execution,
bubble execution could reduce resource usage dramatically
while maintaining comparable query latencies.
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