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Abstract. We present a new technique for analyzing the rate of con-
vergence of local dynamics in bargaining networks. The technique re-
duces balancing in a bargaining network to optimal play in a random-
turn game. We analyze this game using techniques from martingale and
Markov chain theory. We obtain a tight polynomial bound on the rate
of convergence for a nontrivial class of unweighted graphs (the previous
known bound was exponential). Additionally, we show this technique
extends naturally to many other graphs and dynamics.

1 Introduction

In a network bargaining game, nodes in a graph are involved in pairwise trans-
actions with their neighbors. This type of game was introduced by Cook and
Yamagishi [14] to capture the “power” of a node derived from its position in a
network, and has also been used in economics to model two-sided markets [33,
31]. Recently these games have been analyzed from a computational point of
view, first in a centralized model [23] and later in a distributed model [3]. An-
alyzing simple, local dynamics that converge quickly to an equilibrium in such
games was an important open problem that attracted much interest [18, 22, 21].

We draw a connection between network bargaining games and random-turn
games. Random-turn games are a well-studied class of two-player combinatorial
games in which the outcome of a coin flip determines which player moves next [25,
24]. Combinatorial games can be represented as a game on a directed graph
where players move a token along edges until one reaches their goal state. We
transform the network bargaining game into an equivalent random-turn game
which we can analyze using martingale techniques to obtain bounds on the rate
of convergence. In particular, the convergence rate for the dynamics is related
to the absorption time of the corresponding random-turn game.

We obtain a tight polynomial bound on the convergence rate for a variety
of natural dynamics on a certain class of graphs. This class includes unweighted
bipartite graphs with unique balanced outcomes, and the exposition is conducted
in this setting for clarity. The previous bound known for any class of graphs
(other than paths) was exponential.
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Network Bargaining Game

A network bargaining game is defined on a weighted graph G = (V ′, E′) with
w′ : E′ → R+.3 Every node in the graph is a player, and the weight of an edge
represents the dollar amount available to be shared between the two adjacent
players. However, each player is constrained to make at most one such sharing
agreement. An outcome of this game is a matching in the graph M ⊆ E and an
allocation describing each player’s profit, f ′ : V ′ → R+ where for all (uv) ∈ M ,
we have f ′(u) + f ′(v) = w′(uv), and for all unmatched u ∈ V ′, f ′(u) = 0.

We consider two notions of equilibrium in this game. The first (weaker) notion
is that of a stable outcome: an outcome is stable if for all unmatched edges
(uv) /∈M we have f ′(u) + f ′(v) ≥ w′(uv), that is, no two adjacent players have
incentive to deviate from their current matches. The second notion is that of a
balanced outcome: an outcome is balanced if matched players divide the surplus
equally amongst themselves. To be precise, let the best alternate of a node u be

αf ′(u) := max{0, max
v:(uv)∈E′\M

{w′(uv)− f ′(v)}},

i.e. the maximum profit a player could get from a neighbor she is not currently
matched to. For every matched edge (uv) define the surplus as

sf ′(uv) = w′(uv)− (αf ′(u) + αf ′(v)).

An outcome is balanced if it is stable and for all matched edges (uv), f ′(u) =
αf ′(u) + sf ′(uv)/2 and f ′(v) = αf ′(v) + sf ′(uv)/2, or equivalently, f ′(u) −
αf ′(u) = f ′(v)−αf ′(v). This can be seen as a generalization of Nash’s bargaining
solution for two players [28]. It is known that the following are equivalent: (1)
a balanced outcome exists, (2) a stable outcome exists and (3) the matching
polytope has no integrality gap [23].

Edge Balancing Dynamics

Balanced outcomes can be computed by centralized polynomial time algorithms [23],
but the game is by nature distributed; individual players working on individual
deals. An important open problem was to show there exist simple and natural
local dynamics that converge quickly to a balanced outcome. We now define such
dynamics with respect to a matching M and initial allocation f ′.

For our dynamics, the matching M is fixed throughout. This may seem
counter to the solution concept of a balanced outcome since the premise is the
threat of switching partners. However, once such a threat is acknowledged, the
players do not need to switch in order to bargain for their fair share. Moreover,
there are distributed dynamics that find matchings [6, 32] which also have a bar-
gaining flavor in their dynamics. One can imagine a two phase approach, where

3 We reserve the notation (V,E) and w for a graph which will be used more prevalently
in the random-turn game framework.



in the first phase the players find a matching and in the second find a balanced
outcome with the matching fixed.

The allocations are updated synchronously, and the updates proceed in rounds.
The allocation in round t is denoted byB′f ′(u, t), the best alternatives by αf ′(u, t)

and the surpluses by sf ′(uv, t).4 The initial allocation is B′f ′(v, 0) = f ′(v). Syn-
chronous Edge Balancing is defined by the following update rule: for all
u ∈ V ′, (uv) ∈M and t ≥ 1,

B′f ′(u, t+ 1)← αf ′(u, t) + sf ′(uv, t)/2.

Thus, the allocation for the next round is determined by “balancing” each
matched edge using the allocation in the current round.

We say that an allocation f ′ is ε-close to balanced if there exists a balanced
outcome B′ such that |B′(v) − f ′(v)| ≤ ε for all v, i.e. we get ε-close to a bal-
anced outcome. Note that this is stronger than a common alternate notion of
ε-balanced where |B′f ′(u, t+1)−B′f ′(u, t)| ≤ ε, i.e. each edge is locally balanced.
We wish to show Synchronous Edge Balancing converges rapidly to a bal-
anced outcome. This means that for all f ′, after polynomially many 5 time steps
t, the allocation Bf ′(u, t) is ε-close to a balanced outcome.

Random-Turn Games

Every two-player game from Tic-Tac-Toe to Chess can be formalized as a com-
binatorial game on a directed graph where each turn consists of moving a token
from one vertex to another along an edge [7]. Random-turn games are combina-
torial games where the turns are determined by a coin flip.

We consider the following version in the main body of this paper: A Random-
Turn Game consists of a directed graph D = (V,E), payoff function f : V →
[0, 1], initial vertex v0, and horizon T ∈ N. The set V of game states contains
two terminal states s and r and all payoff functions set f(s) = 0 and f(r) = 1.
The game is played by Max and Mini where Max’s goal is to maximize the
value of the end state, and Mini’s goal is to minimize it. Game play for horizon
T is as follows: a token is initially placed at v0 and at every step a fair coin is
tossed to determine who gets to move the token. Max must always move to a
predecessor of v and Mini to a successor (as determined by the edge set E).
We repeat until either T moves have been made, or we reach an absorbing state
{s, r}. At the end of the game, Mini pays Max $f(v) if the game terminates
at node v. Since this is a full-information game, for any finite horizon, one can
compute the optimal strategies for the two players. This defines a value of the
game, which is the expected payoff for Max under optimal play.

Related Work and Motivation

Network bargaining games have a long history in two communities: sociology and
game theory. In sociology, they are studied under the name network exchange

4 The subscript f ′ may be dropped when it is clear from context.
5 Where the polynomial is in |V |, |E| and 1/ log(ε).



theory, where the goal is to understand the power of a node as a function of its
position in the network (see the overview by Willer [35]). Network bargaining
games as we define here were introduced by Cook and Yamagishi [14], who also
introduced the notion of balanced outcomes. In fact, they also introduced local
dynamics similar to what we consider in this paper, but without a theoretical
analysis of the convergence of their dynamics. There have also been experimental
results [13, 8] which validate the relevance and applicability of this work.

In game theory, the study of bargaining can be traced back to Nash’s bar-
gaining solution [28]. Many results in this field focus on two-sided markets, which
naturally give rise to the bipartite version of the network bargaining game as was
introduced by Shapley and Shubik [33]. This version, known as the assignment
game, can also be viewed as the classic Gale-Shapley stable marriage problem [19]
with the addition transferable utilities. Rochford [31] defined balanced outcomes
for assignment games under the name symmetrically pairwise-bargained allo-
cations. She also showed that they are the intersection of the core and the
kernel, two common solution concepts in co-operative game theory. Other so-
lution concepts such as the nucleolus [27] have also been considered. In fact, the
computability of these solution concepts has been much studied [34, 29]. Other
related models consider price setting as a result of a bargaining process [15].

Network bargaining games were introduced to the theoretical computer sci-
ence community by Kleinberg and Tardos [23]. They gave a polynomial time
algorithm to compute the set of balanced outcomes. Since then, there has been
a flurry of activity: Azar, et al. [3] considered an asynchronous version of edge
balancing dynamics and showed (exponential time) convergence. Other aspects
of network bargaining have also been studied in the recent past [5, 10, 9, 4, 21].

We give the first polynomial time bound on local dynamics converging to a
balanced outcome for any non-trivial class of graphs. The only polynomial time
bound known previously was for paths. Moreover, the bounds are tight for a
variety of dynamics. Independently and concurrently with our work, Kanoria,
et al. [22] considered the same problem and showed convergence of a (different)
dynamics to a balanced outcome. The dynamics they consider has the advantage
that it does not need a matching to be known and fixed; rather, the dynamics
also finds a matching. One drawback is that the outcome their process converges
to is weaker (it is ε-balanced as opposed to ε-close to a balanced outcome).
Additionally, the rate of convergence of their dynamics is weaker and of the
form n4/g2 where no bounds on g are given. In fact, on many graphs where our
result is tight, g could be zero.6 Also independently and concurrently, Draief and
Vojnovic [17] showed quadratic convergence of the edge balancing dynamics for
the following graphs: a path, a cycle, a blossom and a bicycle. Faigle, Kern and
Kuipers [18] also considered similar local dynamics for a more general class of
games, but do not show bounds on the rate of convergence.

In general, analysis of the convergence of local dynamics to an equilibrium
of a game is a common theme. Examples include analysis of random best re-
sponse dynamics for the Gale-Shapley stable matching game [2, 19]. In fact, a

6 For instance, this occurs on any unweighted even length path.



major philosophical hypothesis of algorithmic game theory [20, 12, 16] is that the
existence of such dynamics is crucial to validate a solution concept.

Random-turn games are natural, and many variants have been analyzed [24,
25]. Most interestingly, a variant called the tug-of-war game has been found to
be related to partial differential equations such as the infinity Laplacian and the
p-Laplacian [30], due to which these games have received considerable attention
[11, 37, 1].

Organization

In Section 2 we introduce our theorems, techniques and extensions. Section 3
contains a detailed analysis for unweighted bipartite graphs with unique balanced
outcomes. We conclude and suggest future work in Section 4.

2 From a Bargaining Game to a Random-Turn Game

We now give a reduction from a network bargaining game to a random-turn
game, the concept that lies at the heart of our results. We first restrict ourselves
to unweighted bipartite graphs for clarity.

Consider a graph G = (V ′, E′) where w′(uv) = 1 for all (uv) ∈ E′ and V ′

is bipartitioned as {L,R}. Create a directed graph D as follows: let D = (V,E)
where V is the subset of matched vertices in L along with two special vertices,
s and r. Let the set of vertices other than s and r be denoted by V̇ . Add an
edge (uv) ∈ E if (M(u)v) ∈ E′. Additionally, place an edge from s to all vertices
in V̇ and an edge from all vertices in V̇ to r. Finally, add an (rv) edge in E if
there exists an edge (vu) ∈ E′ where u /∈M . Similarly, add a (vs) edge if there
is a (M(v)u) edge with u 6∈ M . We also give an allocation f : V → [0, 1] on
D, given the allocation f ′ on G. Define f(v) = f ′(v) if v ∈ V̇ , f(s) = 0 and
f(r) = 1. See Figure 1 for an example of this reduction. Note that an allocation
f ′ on G takes values between 0 and 1 since the edge weights all have weight 1.
Thus, the definition of an allocation allows us to reconstruct f ′ from f , since
f ′(M(v)) = 1− f ′(v) and f(u) = 0 when u 6∈M .
The concepts (from the bargaining game described earlier) translate as follows.

– An allocation is stable if for all edges (uv) ∈ E, f(u) ≤ f(v).
– Let the best predecessor and successor of a node v be v+f = arg maxu:(uv)∈E{f(u)}

and v−f = arg minu:(vu)∈E{f(u)} respectively. An allocation is balanced if it

is stable, and for all vertices v ∈ V̇ , f(v) = 1
2 (f(v+f ) + f(v−f )).

– Let the allocation in round t of Synchronous Edge Balancing beBf (v, t)
where Bf (v, 0) = f(v). Then, balancing is equivalent to Bf (v, t + 1) =
1
2 (Bf (v+, t) +Bf (v−, t)).

An interesting aspect of this reduction is the time reversal. By that we mean
that if one considers a T -horizon Random-Turn Game and T steps of Syn-
chronous Edge Balancing, then the first step of Synchronous Edge Bal-
ancing actually corresponds to the last step in the Random-Turn Game. In
general, the tth balancing step corresponds to t steps remaining in the game.
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Fig. 1. An unweighted bipartite graph G and its corresponding digraph D with bal-
anced allocations.

Throughout this paper, we say a graph D is weakly acyclic if the only directed
cycles it contains go through s or r. If a graph G reduces to a digraph D that
is weakly acyclic then the balanced outcome on G is unique. The converse also
holds for unweighted bipartite graphs.

Consider the Random-Turn Game defined by the digraph D = (V,E) and
the payoff function f as above. The following theorem relates the value of the
Random-Turn Game to Synchronous Edge Balancing, and shows it is
sufficient to analyze the convergence of the Random-Turn Game.

Theorem 1. The value of a Random-Turn Game with starting vertex v and
horizon T is exactly B(v, T ) when the directed graph is weakly acyclic.

Let the balanced outcome be denoted by B(v). For such games, we give the
optimal rate of convergence, which is as follows. Let h be the maximum length
of a path from s to r in D.

Theorem 2. There exists a T ∈ O(h2 log(1/ε)) such that for all t ≥ T the value
of the Random-Turn Game starting at vertex v with horizon t is within ε of
B(v), given that D is weakly acyclic.

The proof of this theorem is the most technical part of the paper, and uses
techniques from the theory of martingales. Recall that an allocation f ′ is ε-close
to balanced if there exists a balanced outcome B′ such that |B′(v)−f ′(v)| ≤ ε for
all v. We can now restate the result and the corresponding rate of convergence
in Synchronous Edge Balancing. The proofs are the focus of Section 3.

Theorem 3. Synchronous Edge Balancing on unweighted bipartite graphs
with a unique balanced outcome results in an allocation that is ε-close to a bal-
anced outcome after at most O(|M |2 log(1/ε)) rounds of the balancing process.

This result follows directly from Theorem 2 and the fact that h ≤ |V | = |M |+2.
Lastly, we show our result is tight.

Theorem 4. There exist graphs G with matchings M and initial allocations
such that the balancing process requires Ω(|M |2 log(1/ε)) time to be ε-close to a
balanced outcome.



Sketch of Convergence Proof

We now give a brief sketch of the proof of Theorem 2 for the case when M is
a perfect matching in G. Observe that if a game with finite horizon ends in an
absorbing state, then the vertex payoffs don’t matter. Thus one approach is to
show that with high probability, a Random-Turn Game with a sufficiently
large horizon ends in an absorbing state. To be precise, let {Xt} be a sequence
of vertices in a run of the Random-Turn Game under optimal play. We wish
to show that for a game with sufficiently large horizon T , XT ∈ {s, r} with high
probability. However, it is unclear how to analyze the behavior of Xt. Instead
we show it is sufficient to analyze the related sequence of vertices {Yt} obtained
when Max plays optimally, but Mini plays as if the payoff function was B. We
show B(Yt), the value of the balanced outcome of vertex Yt, is a supermartingale.
Moreover, we know that it is bounded in [0, 1] and show that its conditional vari-
ance is at least 1/h2. These suffice to prove the desired bound on the absorption
time.

Extensions

To summarize, the approach outlined to prove convergence of Synchronous
Edge Balancing is as follows: reduce it to convergence of a Random-Turn
Game (Theorem 1) and show bounds on this game (Theorem 2). The first part
of this approach can be extended naturally to show convergence (but not rates)
for may variants of the dynamics and general graphs. For non-bipartite graphs we
maintain a vertex in D for each matched vertex in G. If the graph is weighted we
use running payoffs in the random-turn game. Damped dynamics correspond to
lazy random-turn games. And if we wish vertices to be individual rational, then
the corresponding capped dynamics are captured by a random-turn game where
the players are allowed to quit. This list is far from exhaustive, but illustrates
the flexibility and robustness of our technique and is discussed further in the full
version of this paper.

3 Rate of Convergence

We begin with the proof of Theorem 1. We recall some notation: given an allo-
cation f , v+f = arg maxu:uv∈E{f(u)} and v−f = arg minu:vu∈E{f(u)}. The allo-
cation in round t of Synchronous Edge Balancing is Bf (v, t) (we now drop
the subscript f for convenience). The updates are, B(v, t + 1) = 1

2 (B(v+, t) +
B(v−, t)) where v+ and v− are defined with respect to B(v, t). Theorem 1 says
that B(v, T ) is the value of the Random-Turn Game starting at vertex v with
horizon T . The proof is by induction on T . We first strengthen the inductive
hypothesis to assume the optimal strategies for Max and Mini are to choose v+

and v− respectively. We refer to this strategy as the balancing strategy.

Theorem 5. Given a Random-Turn Game with horizon T , the optimal strat-
egy for either player is the balancing strategy.



Proof (Theorems 1 and 5). The proof is by a joint induction on the horizon t
to prove (a) B(v, t) is the value of the game and (b) the optimal strategy when
t+ 1 moves remain is the balancing strategy.

In the base case, t = 0. To show (a), note that the expected payoff of the
game for Max at node v is exactly Bf (v, 0) = f(v) since there are no moves to
be made. To show (b), consider the horizon t+ 1 = 1 at a given node v. In this
case, optimal moves for Max and Mini are clearly v+f and v−f respectively, since
the payoff at the end of this turn will be the terminal payoff of the game.

For the inductive step, let us assume that for all v and some t ∈ N, the value of
the game of horizon t−1 is Bf (v, t−1), and in the t horizon game the bargaining
strategy is optimal. To prove (a) we note that the latter statement implies Max
will move to v+B(v,t−1) if he wins the coin toss and Mini will move to v−B(v,t−1) if

she wins the coin toss. From the first part of the inductive hypothesis we know
B(v, t− 1) is the expected payoff for Max in the t− 1 horizon game. Thus, the
expected payoff of the game for Max under optimal play in the t horizon game is
1
2 (B(v+, t− 1) +B(v−, t− 1)) = B(v, t). To prove (b), consider the t+ 1 horizon
game. Under optimal play, Max wishes to maximize his expected payoff, and
Mini wishes to minimize the expected amount she has to pay. Assume we are
at vertex u, and recall that Max must move to a predecessor of u and Mini to
a successor. Since there are t steps remaining after the initial step, an optimal
strategy for Max (Mini) will maximize (minimize) the expected payoff Bf (v, t).
Thus, if Max wins the toss he will move to v+B(v,t) and if Mini wins it she will

move to v−B(v,t), which is precisely the balancing strategy. ut

We now give the proof of Theorem 2 for the case where we have a perfect
matching. Note that with the assumptions of the theorem, this implies D is
strongly acyclic; i.e. it does not contain cycles of any kind. We briefly explain
the technical extension for non-perfect matchings at the end of this section. The
main idea behind the proof is to first reduce the analysis to showing that a
particular sequence {Yt} (of vertices in V ) gets absorbed at {s, r} with high
probability, and then show this happens in polynomial time using techniques
from the theory of martingales.

Proof (Theorem 2). Consider two allocations, f and g such that f(v) ≤ g(v)
for all v. We show in Lemma 1 that Bf (v, t) ≤ Bg(v, t) for all v, t. Hence, if we
consider the initial allocations

0(v) =

{
0 if v 6= r;
1 otherwise.

and 1(v) =

{
1 if v 6= s;
0 otherwise.

,

we have B0(v, t) ≤ Bf (v, t) ≤ B1(v, t) for all v, t, and f . Thus, it suffices to
prove that B0(v, T ) ≥ B(v)− ε and B1(v, T ) ≤ B(v) + ε for T ∈ O(h2 log(1/ε)).
We will prove the latter, and the proof for the former follows exactly with the
roles of Mini and Max reversed and the payoff function 0 instead of 1.

Consider the game with payoff function 1 and horizon T where T ∈ O(h2 log(1/ε)).
Consider the sequence of vertices {Xt} with X0 = v that occurs if Mini and



Max play optimally. From Theorem 1,

B1(v, t) = E1(Xt). (1)

Now consider the half-optimal sequence {Yt} with Y0 = v, where Max plays
optimally for the payoff function 1 and Mini plays optimally for the payoff
function B. For the game with payoffs 1 Max’s expected payoff is only higher.
That is

E1(Xt) ≤ E1(Yt). (2)

Our key result in Lemma 3 shows that for any function f , Ev[|f(YT )−B(YT )|] ≤
ε. (The proof of this lemma follows by showing convergence of the sequence {Yt}.)
If we take f = 1 and note that 1(Yt) ≥ B(Yt), we get

E1(YT ) ≤ EB(YT ) + ε. (3)

Now consider the sequence {Zt} with Z0 = v that occurs when Mini and Max
play optimally for the payoff function B. The expected payoff for Max with
payoff function B is higher in {Zt} than in {Yt}. Thus

EB(YT ) ≤ EB(ZT ). (4)

Finally, we show in Lemma 2 that

EB(ZT ) = B(v). (5)

From (1) – (5), it follows that B1(v, T ) ≤ B(v) + ε as desired. ut

Lemma 1. The balancing process is monotonic, namely if f(v) ≤ g(v) for all
v ∈ V , then Bf (v, t) ≤ Bg(v, t) for all v, t.

Lemma 2. The value of a Random-Turn Game with function f = B is equal
to B for all horizons T ∈ N.

This Lemma follows from Theorem 1 and the observation that B is a fixed point
of Synchronous Edge Balancing. A detailed proof of both lemmas can be
found in the full version of this paper.

Lemma 3. Consider the expected payoff for Max in the half-optimal chain {Yt}
defined in the proof of Theorem 2. For sufficiently large t, the expected payoff
for Max with payoff function f is close to the balanced outcome B. Specifically,
Ev[|f(YT )−B(YT )|] ≤ ε when T ≥ 4h2 log(1/ε).

Proof. Clearly if Yt ∈ {s, r}, then the game has ended and f(Yt) − B(Yt) = 0.
Additionally, the difference |f(Yt)−B(Yt)| is at most 1 since f(v), B(v) ∈ [0, 1]
for all v ∈ V . Thus, the expected difference Ev[|f(Yt) − B(Yt)|] is at most the
probability that Yt has not been absorbed.

Let us now show this probability is bounded by ε, namely Prv[Yt 6∈ {s, r} for t ≥
4h2 log(1/ε)] ≤ ε for all v ∈ V . The main convergence is shown in Lemma 4 which
says that the probability that Yt 6∈ {s, r} for t = 4h2 is at most 1

4 . Since the
statement holds for all v ∈ V , if we are not at s or r after 4h2 time steps we can
simply apply the lemma again. Thus, after 4h2 log(1/ε) time steps, the proba-
bility that we are not at s or r is ( 1

4 )log(1/ε) = 4log ε ≤ ε. ut



Lemma 4. Prv[Yt 6∈ {s, r} for t ≥ 4h2] ≤ 1
4 for all v ∈ V where h is the height

of D7 and {Yt} is the half-optimal chain defined above.

Proof. Let the absorption time be τ = min{t : Yt ∈ {s, r}}. Note that Pr[Yt 6∈
{s, r} for some t ≥ 4h2] = Pr[τ ≥ 4h2]. We show that E[τ ] ≤ h2. Then by
Markov’s inequality, Pr[τ ≥ 4h2] ≤ 1

4 as desired.
Consider the sequence {Ψt} = {B(Yt)}. In the half-optimal chain {Yt}, Max

plays suboptimally and Mini plays optimally according to payoff function B
(see the proof of Theorem 2). Hence B(Yt) is an upper bound on the expected
payoff for Max at time t, and therefore {Ψt} is a supermartingale.8

Now consider the quadratic chain Φt = 2Ψt − Ψ2
t + tσ2 where σ2 is a lower

bound on the conditional variance of Ψt. We show that Φt is also a supermartin-
gale (Lemma 5). Therefore, since Φt ≥ 0, the optional stopping theorem9 gives
E[Φτ ] ≤ Φ0 ≤ 1. The bounds on Ψt also imply that 2Ψt − Ψ2

t ≥ 0, and hence
we get E[Φτ ] ≥ E[τ ]σ2,and E[τ ] ≤ 1

σ2 . By Lemma 6, we know that we can take
σ2 = 1

h2 , so E[τ ] ≤ h2 as required. ut

Lemma 5. Given a supermartingale 0 ≤ Ψt ≤ 1 with conditional variance at
least σ2, the quadratic chain Φt = 2Ψt − Ψ2

t + tσ2 is a supermartingale.

Lemma 6. The variance of a step in {Ψt} is at least σ2 = 1/h2.

The proofs of these lemmas can be found in the full version of this paper.
When M is not a perfect matching, D is a weakly acyclic digraph with a

cycles through s and/or r. Any vertex in such a cycle must take value exactly
0 or 1 in the balanced outcome, thus these cycles can be treated as absorbing
states. Hence, we can first analyze the mixing time of the cycle using spectral
techniques10, and then apply the theorems above to get the same time bound.

4 Conclusion and Future Work

We reduced the problem of analyzing the convergence of local dynamics for a
network bargaining game to that of a random-turn game. With this reduction
we bring all the machinery from the analysis of random processes, especially the
theory of Markov chains and martingales, to the analysis of local dynamics. We
used these techniques to give the optimal bound on unweighted graphs with a
unique balanced outcome. Prior to this work, there was no effective technique
known to analyze such dynamics, and the best bound known on any non-trivial
class of graphs was exponential.

Our work opens up a promising line of approach to analyze many variants of
local dynamics on general graphs. The most immediate is perhaps to bound the
convergence rate for weighted graphs. The difficulty with our current analysis is

7 The height is the length of the longest path from s to r.
8 Recall that a supermartingale is a sequence {at} in which at ≥ E[at+1|at].
9 See Theorem 10.10 (d) in [36].

10 See Chapter 12 in Peres, et al. [26] for an exposition on spectral techniques.



that the supermartingale Ψt we used in the unweighted case is unbounded when
there are weights. We believe a different supermartingale that does not suffer
from this drawback could give the appropriate bound.

The most significant technical hurdle arises when D is cyclic. In this case, the
game may never end, since it might get stuck in a stalemate, where the players
travel in a cycle indefinitely. Thus, a bound on the absorption time of the game
does not suffice – we must analyze the behavior on the cycle separately by
internally considering its mixing time, and externally treating it as an absorbing
state.11 However, the details of such an analysis remain unclear.

A final important direction is to obtain tight polynomial bounds for dynamics
which find both the matching and the balanced outcome simultaneously. One
approach would be to combine the dynamics by Kanoria et. al. [22] with our
techniques to attain a tight polynomial rate of convergence.
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