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Abstract

The property of Weak Gross Substitutibility (WGS) of goods in a market has been found
to be conducive to efficient algorithms for finding equilibria. In this paper, we give a natural
definition of a δ-approximate WGS property, and show that the auction algorithm of [GK04,
GKV04] can be extended to give an (ε + δ)-approximate equilibrium for markets with this
property.

1 Introduction

The computational complexity of finding a market equilibrium has recieved a lot of interest lately
[DPS02, DPSV02, Jai04, DV04, GK04, CSVY06, CMV05] (also see [CPV04] for a survey). A
key property that has been used in designing some of these algorithms is that of Weak Gross
Substitutibility (WGS). A market satisfies WGS if an increase in price of one good does not lead
to a decrease in demand of any other good. Markets with WGS have been well studied in both the
economics and the algorithmic game theory literature. It has been shown, for instance, [ABH59]
that the tatonnement process converges for all markets satisfying WGS.

In this paper we extend the definition of WGS to approximate WGS and design algorithms
for the same. We formulate the following alternate definition of WGS: the monetary demand for
any good, which is the demand for the good times the price, is a decreasing function of its price,
given that all the other prices are fixed. Our definition of an approximate WGS now follows from
bounding the increase in the monetary demand for a good with an increase in its price.

2 Preliminaries

In this section, we define the Fisher market model which we refer to throughout this paper.
Consider a market with n buyers and m goods. The goods are assumed to be perfectly divisible,
and w.l.o.g. a unit amount of each good is available as supply. Each buyer i has an intial
endowment ei of money, and utility functions uij : uij(xij) gives the utility gained by her for
having bought (consumed) xij units of good j. Given prices P = (p1, ..., pm), a buyer uses
her money to buy a bundle of goods Xi = (xi1, ..., xim), called the demand vector for buyer i,
such that her total utility Ui(Xi) =

∑
j uij(xij) is maximized, subject to the budget constaint:∑

j xijpj ≤ ei. Equilibrium prices are such that the market clears, that is, total demand for every
good is equal to the supply: for all goods j,

∑
i xij = 1.

Let vij be dUi

dxij
. We assume that for all i and j, Ui is non-negative, non-decreasing, differentiable

and concave. These constraints translate into vij being non-negative, non-increasing and well
defined. From the KKT conditions on the buyers’ optimization program, it follows that vij(xij)/pj

is equalized over all goods for which xij > 0. So for any optimal bundle of goods Xi for buyer i,
there exists α such that xij > 0 ⇒ vij(xij)

pj
= α, and xij = 0 ⇒ vij(xij)

pj
≤ α.

Definition 2.1 For any ε > 0, a price vector P is an ε-approximate market equilibrium if each
buyer can be allocated a bundle Xi such that Ui(Xi) is at least the optimal utility times (1− ε) and
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the market clears exactly.

Definition 2.2 A market satisfies WGS if for two price vectors P and P ′, such that pj = p′
j for

all goods j 6= k and pk < p′
k, the demand of good j at P ′ is at least its demand at P .

[GKV04] gave the following equivalent condition for WGS, when the utilities are separable.

Lemma 2.3 ([GKV04]) A market satsfies WGS if and only if the function xijvij(xij) is non-
decreasing for all i and j.

3 Extending WGS

3.1 An alternate definition of WGS

Let the monetary demand for a good be its demand times its price. We motivate our alternate
definition of WGS by analysing how the monetary demand for a good changes as its price goes
up.

Consider a buyer i who has an optimal bundle of goods (xi1, ..., xim). For any good j such that
xij > 0, vij(xij)

pj
= α. Now suppose price of good k is driven up to p′

k > pk, rest of the prices being
unchanged. In this case, clearly the current allocation no more represents an optimal bundle for
the buyer. We now describe a way for the buyer to adjust her allocation in order to attain the
new optimum. This is done in two stages.

In the first stage, she sells some of good k to equalize the marginal rate of utility of good k
with that of other goods. Let x′

ik be such that vik(x′
ik) = αp′

k. The difference between the values
of the new and original holdings is x′

ikp′
k − xikpk. This is the amount of money she will have to

pay as a result of the increase in price. From Lemma 2.3,

x′
ijp

′
j − xijpj =

1
α

(x′
ijvij(x′

ij)− xijvij(xij))

≤ 0

This means that she has some money left over at the end of the first stage. In the second stage,
she splits the left over money among all goods in such a way that vij(xij)

pj
remains the same for all

goods with xij > 0. Two things are worth noting: the monetary demand for good k and the value
of α both decrease as a result. This leads us to an alternate formulation of WGS.

Lemma 3.1 A market satisfies WGS if for two price vectors P and P ′, such that pj = p′
j for all

goods j 6= k and pk < p′
k, the monetary demand for good k at P ′ is smaller than that at P .

Proof Suppose that the market is WGS. Let the demand at P and P ′ be X and X ′ respectively.
Then WGS implies that x′

j ≥ xj for all j 6= k. Therefore p′
jx

′
j ≥ pjxj for all j 6= k. Since∑

j p′
jx

′
j =

∑
j pjxj , it follows that p′

kx′
k ≤ pkxk.

Now assume that p′
kx′

k ≤ pkxk. We need to prove that x′
j ≥ xj . We can ignore those j for

which xj = 0. Again, since
∑

j p′
jx

′
j =

∑
j pjxj , there exists some j 6= k such that p′

jx
′
j ≥ pjxj ,

and in turn x′
j ≥ xj . Therefore α′ = vij(x

′
j)

p′
j

≤ vij(xj)
pj

= α. Hence for all j 6= k such that

xj > 0, x′
j ≥ xj .

Elasticity of demand: This formulation is related to the Price Elasticity of Demand (see [SN92]
for details) defined as

Ed =
% change in demand
% change in price

(1)

Elasticity is a widely used measure of responsiveness of the demand to change in prices. Our
alternate definition of WGS simply states that Ed > 1.
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3.2 Approximate-WGS utility functions

We have seen how WGS can be interpreted from the demand perspective as well as the revenue
perspective. Extending the revenue interpretation from Lemma 3.1, we say that a market satisfies
δ-approximate WGS if increasing the price of a good does not cause its monetary demand to
increase by more than a factor of (1 + δ).

Definition 3.2 For any δ ≥ 0, a market satisfies δ-approximate WGS if for two price vectors P
and P ′, such that pj = p′

j for all goods j 6= k and pk < p′
k, the monetary demand for good k at P ′

is at most (1 + δ) times that at P .

In the next section, we will prove that this definition allows us to design efficient approximation
algorithms for these markets. Henceforth we will refer to definition 3.2 as δ-approximate weak
gross substitutability.

The above definition gives the following necessary condition on a δ-approximate WGS market.

Lemma 3.3 If a market satisfies δ-approximate WGS, then

∀i, j,∀x > x′ ⇒ xvij(x) ≥ x′vij(x′)
(1 + δ)

Proof Let P be a price vector so that the demand of buyer i for good j at these prices is x.
Increase pj to get a price vector P ′ so that the demand of buyer i for good j at P ′ is x′. Let
α = vij(x)

pj
and α′ = vij(x

′)
p′

j
. Then as in the prooof of Lemma 3.1, α′ ≤ α. And by definition,

p′
jx

′ ≤ pjx(1 + δ), which implies x′vij(x
′)

α′ ≤ xvij(x)(1+δ)
α . Combining the two inequalities, we get

that x′vij(x′) ≤ xvij(x)(1 + δ).

4 Auction Algorithm

In this section we show that by slightly modifying the auction algorithm in [GKV04], we can
compute an (ε+δ)-approximate equilibrium for a market exhibiting δ-approximate WGS property.
This result shows that WGS is not a hard threshold: Markets do not suddenly become intractable
if they slightly violate the WGS property.

We will use the auction algorithm of [GKV04] as the starting point. This algorithm computes
ε-approximate equilibrium when the market satisfies WGS. An outline of the auction algorithm is
as follows:

• Ascending prices: Prices start out at suitably low values and are raised in multiplicative
steps. At any stage, some buyers may have an allocation of good j at price pj , where as
others may have bought the same good at price pj

(1+ε) . Buyer i’s holding of good j at price
pj is denoted by hij and that at price pj/(1 + ε) is denoted by yij . Total allocation of good
j to buyer i is xij = hij + yij .

• Decreasing surplus: A buyer’s surplus is the money she hasn’t spent. It is denoted by
ri = ei −

∑
j hijpj −

∑
j yijpj/(1 + ε). Each buyer exhausts her surplus by buying goods at

price pj from others whose allocation of good j is at price pj/(1 + ε). If no other buyer has
the good at lower price, the price is raised from pj to (1 + ε)pj . Finally due to rising prices,
total surplus of all buyers r =

∑
i ri approaches zero.

• Buy-back: Suppose buyer i had xij amount of good j with bang per buck αij = vij(xij)
pj

.
Suppose now that other competing buyers raise the price pj to p′

j , reducing xij to x′
ij . If

vij(x
′
ij)

p′
j

≥ αij , then before buying other desirable goods, buyer i, buys back some of good j,
until the rate of utility gain per dollar for good j returns to αij .
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• Near-Optimality: ε-approximate optimality of the partial bundle of goods is maintained
for each buyer throughout the algorithm. Therefore, when the total surplus tends to zero,
the current price and allocation vectors represent ε-approximate equilibrium.

We require only slight modification in the auction algorithm, in order to get it working for
δ-approximate WGS markets. The pseudocode of the modified algorithm can be found in figure
1. The modification to original algorithm from [GKV04] appears in algorithm main.

Figure 1: Modified auction algorithm

procedure initialize

Set initial prices as: ∀j, pj = v1j(aj)e1/(
∑

j
ajv1j(aj)).

Allocate entire quantity of all the goods to buyer 1. Consequently, we have:

1. ∀j : α1j = (
∑

j
ajv1j(aj))/e1

2. r1 = 0
end procedure initialize

algorithm main

initialize

while ∃i : ri > εei

while (ri > 0) and (∃j : (1 + δ)αijpj < vij(xij))
if ∃k : ykj > 0 then outbid(i, k, j, (1 + δ)αij)

else raise price(j)
while (ri > 0) and (∃j : αijpj < vij(xij))

if ∃k : ykj > 0 then outbid(i, k, j, αij)

else raise price(j)
j = arg maxq αiq

if ∃k : ykj > 0
outbid(i, k, j, αij/(1 + ε))
αij = vij(xij)/pj

else raise price(j)
end algorithm main

procedure raise price(j)
∀i : yij = hij; hij = 0
pj = (1 + ε)pj

end procedure raise price

procedure outbid(i, k, j, α)
Transfer good j from buyer k to buyer i until one of the following events happen:

1. Buyer i’s surplus reduces to zero.

2. Buyer k has no more of good j left.

3. Value of vij(xij)/pj drops to α.
end procedure outbid

We have modified buy back step mentioned above, and split it into two rounds: (Let X ′
i and

P ′ denote the allocation and price vectors at the begining of each round)

1. First round: For each good j such that vij(x
′
ij)

p′
j

> (1 + δ)αij , buyer i buys it back to an

amount x∗
ij such that (1 + δ)αij = vij(x

∗
ij)

p∗
j

. (As opposed to buy back until αij = vij(x
∗
ij)

p∗
j

in

the original algorithm). If buyer i has to raise price of good j in this process, p∗
j may be

strictly higher than p′
j . As we shall see, this ensures that the buyer does not spend more on

any good than she originally had when the value of αij was set. Therefore, the buy-back is
possible for all goods.
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2. Second round: For each good j such that vij(x
′
ij)

p′
j

> αij , buyer i buys it back to an amount

x∗
ij such that αij = vij(x

∗
ij)

p∗
j

, until she has surplus money left. This round is identical to the
buy-back step in the original algorithm.

Lemma 4.1 First buy-back round finishes with each good j considered having αij = vij(x
∗
ij)

(1+δ)p∗
j
.

Proof Consider a situation when buyer i has x′
ij amount of good j when her turn arrives to spend

her surplus. Let p′
j be the current price and αij <

vij(x
′
ij)

(1+δ)p′
j
. Let x∗

ij be the amount and p∗
j be the

price such that

x∗
ij ≤ x′

ij < xij AND p∗
j ≥ p′

j > pj AND αij = vij(x
∗
ij)

(1+δ)p∗
j

where xij and pj is the endowment and price of good j respectively when αij was set, i.e.
αij = vij(xij)

pj
. Then using property of the market from lemma 3.3, we get:

vij(x∗
ij)

(1 + δ)p∗
j

= αij =
vij(xij)

pj
≥

x∗
ijvij(x∗

ij)
(1 + δ)xijpj

⇒ xijpj ≥ x∗
ijp

∗
j

The above equation certifies that the value of good j held by buyer i at the end of the first
buy-back round is at most the value of her holding at original price pj . When competing buyers
reduced xij to x′

ij , the value was returned to buyer i in dollars. The above equation says that she
can safely buy back upto x∗

ij of good j, using up only the surplus value returned to her for good
j. The same is true for all such goods, hence buyer i can buy all goods considered in the first
buy-back round upto x∗

ij such that αij = vij(x
∗
ij)

(1+δ)p∗
j
.

Correctness and convergence of the algorithm can be proved along the lines of [GKV04], by
showing that the algorithm maintains following invariants at the start of each iteration of the
outer while loop in procedure main:

I1: ∀j,
∑

i xij = aj I4: ∀i, j, xij > 0 ⇒ (1+ε)vij(xij)
pj

≥ αij

I2: ∀i,
∑

j xijpj ≤ ei I5: ∀j, pj does not fall
I3: ∀i, j, ri = 0 ⇒ αij ≥ vij(xij)

(1+δ)pj
I6: r does not increase

Invariant I1 says that all goods are fully sold at any stage. Invariant I2 conveys the fact
the buyers never exceed their budget — the initial endowment. Invariants I3 and I4 together
guarantee the optimality of the bundle each buyer has after she has exhausted her surplus. Only
I3 is different from the earlier auction algorithms. By invariants I3 and I4, as well as the manner
in which αij ’s are modified in the algorithm, we have the following at the termination:

∀i, j (1 + ε)vij(xij)
pj

≥ αij ≥
vij(xij)
(1 + δ)pj

For each buyer i and goods j and k αij ≤ (1 + ε)αik

Above constraints imply that all the bang-per-buck values for a buyer
(

vij(xij)
pj

)
are within a factor

(1 + ε)2(1 + δ) of each other at termination. Therefore, the modified algorithm terminates with
(ε+δ)-approximate equilibrium, ignoring the higher order terms. The analysis of the running time
is similar to that in [GKV04]:

Lemma 4.2 If bidding is organized in rounds, i.e. if each buyer is chosen once in a round to
exhaust his surplus in procedure main, the total unspent surplus money r =

∑
i ri decreases by a

factor of (1 + ε).
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5 Open Problems

Our result holds for separable utility functions. Clearly, definition 3.2 makes sense in the non-
separable setting as well. An important open problem therefore is to devise an algorithm that finds
approximate equilibrium for non-separable utility markets. Alternatively, it will be interesting to
see if other algorithms that solve WGS markets extend to approximate-WGS markets.
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