
The Adwords Problem: Online Keyword Matching with
Budgeted Bidders under Random Permutations

Nikhil R. Devanur
Microsoft Research
One Microsoft Way

Redmond, WA
nikdev@microsoft.com

Thomas P. Hayes
Dept. of Computer Science
University of New Mexico

Albuquerque, NM
hayes@cs.unm.edu

ABSTRACT
We consider the problem of a search engine trying to assign
a sequence of search keywords to a set of competing bidders,
each with a daily spending limit. The goal is to maximize the
revenue generated by these keyword sales, bearing in mind
that, as some bidders may eventually exceed their budget,
not all keywords should be sold to the highest bidder. We
assume that the sequence of keywords (or equivalently, of
bids) is revealed on-line. Our concern will be the competitive
ratio for this problem versus the off-line optimum.

We extend the current literature on this problem by con-
sidering the setting where the keywords arrive in a random
order. In this setting we are able to achieve a competitive
ratio of 1− ε under some mild, but necessary, assumptions.
In contrast, it is already known that when the keywords ar-
rive in an adversarial order, the best competitive ratio is
bounded away from 1. Our algorithm is motivated by PAC
learning, and proceeds in two parts: a training phase, and
an exploitation phase.

Categories and Subject Descriptors
F.2.m [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Miscellaneous

General Terms
Algorithms

Keywords
Online, Matching, Adwords, Learning, Random Permuta-
tion

1. INTRODUCTION
Selling online advertising alongside search results is a multi-

billion dollar business [8, 20, 16] and is the major source
of revenue for search engines like Google, Yahoo and Mi-
crosoft Live Search. Since such systems are (mostly) au-
tomated, and handle very large numbers of searches, there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’09, July 6–10, 2009, Stanford, California, USA.
Copyright 2009 ACM 978-1-60558-458-4/09/07 ...$5.00.

is tremendous scope for optimization, which has attracted
practitioners and theoreticians alike. Not surprisingly, the
theoretical analyses generally consider somewhat simplified
abstractions of the actual problem, and ours is no excep-
tion. Fortunately, even very simple models have provided
interesting insights both from an algorithmic and a game
theoretic perspective.

Some of the features that have been considered (or ig-
nored) in the models [20, 8, 19, 16, 18, 4, 7, 17, 1, 9] include:
online vs. offline or equilibrium properties, algorithm design
vs mechanism design, single keyword vs multiple keywords,
incorporating budgets or not, and pay per click vs pay per
impression schemes. The problem we consider is an online
algorithm design problem, with multiple keywords and bud-
gets, with a pay per impression scheme:

Suppose there are n bidders with known daily
budgets B1, B2, . . . , Bn. There are m queries,
that come online. (Crucially, the number m is
known in advance by the algorithm.) When each
query j arrives, bidders i = 1 . . . n submit bids
uij . The algorithm has to allocate the query to
one of the bidders, without knowing the future
bids. If query j is allocated to bidder i, then the
algorithm collects revenue uij ; however, the total
revenue collected from bidder i cannot exceed Bi.

We assume that the queries arrive in a random
order, i.e., the bids are picked adversarially for
all the queries at the start, but at any point,
for all queries j, j′ not already seen, both the
bids (u1j , u2j , . . . , unj) and (u1j′ , u2j′ , . . . , unj′)
are equally likely to appear.

Search keywords are categorized as those in the head: ones
that appear very often, and those in the tail: ones that ap-
pear rarely. In fact, a significant fraction of the queries
appear just once. It is this “fat tail” that gives search en-
gines significant advantage over traditional media, which
must generally ignore the tail. But it is also the tail that
is harder to optimize over. Standard machine learning tech-
niques work well when applied to the head queries, but it is
not clear how to use statistical data to learn anything about
the tail. Our model is intended to capture exactly the na-
ture of tail queries, since we allow all the bid vectors to be
different.

Online algorithms have mostly been analyzed under the
worst case assumption, namely that the order of the bids
could be adversarial as well as the bid amounts. The ad-
words problem under the worst case assumption was intro-

duced by Mehta et al. [19], who not only gave a 1 − 1/e
competitive algorithm1 but also showed that no randomized
algorithm can do better. However, the worst case assump-
tion may be too pessimistic about the kinds of queries a
search engine gets.

It is therefore natural to investigate stronger assumptions
in order to beat the lower bound that applies in the worst
case. There are several models that assume certain random-
ness in the input, with the goal of capturing the average
case. Some of these models are

1. Bid vectors are i.i.d from a known distribution.

2. Bid vectors are i.i.d from an unknown distribution,
with the guarantee that the distribution is concen-
trated on a few vectors.

3. Bid vectors are i.i.d from an unknown distribution.

Different models are appropriate for different segments of
the keyword market, based on the frequency of the keywords.
Models 1 and 2 are more appropriate for the head queries,
and are actually quite easy to optimize over. Model 3 is more
appropriate for the queries in the tail. The random permu-
tation model is very similar to Model 3, and is cleaner to
deal with. In fact, another way to think about the random
permutation model is that the bid vectors are sampled with-
out replacement from an unknown distribution. Note that
in all of Models 1,2 and 3, the optimal offline solution is it-
self a random variable, whereas in the random permutation
model it is not. This allows us to avoid questions such as
whether the competitive ratio should be defined as a ratio
of expectations or the expectation of a ratio.

[19] asked if an algorithm achieving a competitive ratio of
1−o(1) could be designed under a distributional assumption.
In this paper, we design such an algorithm under the random
permutation model. The take-home message of our result is
that the lower bound on the competitive ratio in the worst
case depends crucially on the order of the bids, not just on
the values.

Our focus will be exclusively on the algorithmic problem,
ignoring strategic aspects, such as the problem of design-
ing a “truthful” auction mechanism (which also decides the
payments in addition to allocating the items). One reason
for this is that designing a truthful auction for the offline
version of our problem is itself a challenging open problem.
Sponsored search auctions have other aspects such as multi-
ple slots, second price payments, paying-per-click, and so on.
Some of these extensions are straightforward, while extend-
ing our results to incorporate other aspects is an interesting
avenue for future research.

An implicit practical requirement of such algorithms is
that they should be easy to incorporate into the existing
systems used by the search engines. Our algorithm should
pass this test; indeed existing systems used by many search
engines already multiply each bid with a “quality factor.”
Our algorithm introduces an extra multiplicative factor that
accounts for the budget of the bidder.

1.1 Our Results and Techniques
Let OPT denote the best revenue achievable offline. If

ALG denotes our algorithm’s expected revenue, where the
expectation is taken over the random order of the queries,

1 assuming that the budgets are much larger than the bids.

then the competitive ratio of our algorithm is ALG/OPT.
Let bmax = maxi,j{uij} be the maximum bid on any query
and let λ = maxi,i′,j{ui′j/uij : uij 6= 0} be an upper bound
on the ratio of the maximum to the minimum non zero bid
on any query. Our main result is the following.

Theorem 1. There is a 1 − ε competitive algorithm for
all inputs such that

OPT

bmax
≥ Ω

(
n2 log(λ/ε)

ε3

)
.

We first argue that none of our assumptions can be re-
moved if a competitive ratio of 1− o(1) is desired.

• As noted earlier, the lower bound of [19] shows that,
without our random permutation assumption, one can-
not get a competitive ratio better than 1− 1/e.

• The algorithm needs to know the (approximate) num-
ber of queries in advance. In particular, the following
example shows that if m is not known in advance, then
the competitive ratio is bounded away from 1 even
when there are only 2 bidders and 2 keywords, a and
b, each of which occurs m/2 times. The bids are (1, 0)
for a and (2, 1) for b. Each bidder has a budget of 150.
Now if m = 100, then OPT gives all 50 b’s to bidder 1
(in addition to all the a’s). However, if m = 200 then
OPT only gives 25 b’s to bidder 1 and 75 b’s to bidder
2. After seeing 100 keywords, any allocation has to sig-
nificantly deviate from OPT (and have a significantly
lower revenue) in at least one of the two values of m.
Thus, an online algorithm that does not know m has
to have a competitive ratio bounded away from 1.

• Finally, an assumption such as OPT ≥ f(n, ε, bmax)
is necessary, as was shown by Goel and Mehta [10].
The exact dependence required on n and ε is an open
question.

Thus, our result is optimal in the weak sense that none of the
assumptions of our model can be dropped. Also, note that
our assumption only states that the optimum is sufficiently
large relative to the maximum bid, and thus allows some
(but not all) of the bidders to have a bid-to-budget ratio
approaching 1.

Our algorithm (and the analysis) is very much like a PAC-
learning algorithm, although PAC-learning is typically used
for classification and not optimization. The algorithm uses
the bids from the first few queries as a training set to learn
how to allocate the other queries. However, since the bids
could all be distinct, the earlier bids do not quite tell you
anything about the later bids. In other words, you cannot
learn the distribution of bids. The key insight used in the
algorithm is that one only needs to learn weights for the
bidders such that multiplying their bids by their weights
and assigning the queries to the highest weighted bidder is
an almost optimal assignment. The algorithm uses the first ε
fraction of the queries to learn these weights, and uses them
on the rest of the queries.

One can draw an analogy with PAC-learning for the anal-
ysis as well: typically the sample complexity of a PAC learn-
ing algorithm depends on the size of the hypothesis class: the
“smaller” the hypothesis class, the better. Given the appro-
priate sizes, a hypothesis that is good on the sample is also
good on the entire distribution. Here the class of algorithms

that we use is parameterized by the weights, and the set of all
possible weights plays the role of the hypothesis class. The
analysis involves showing that a set of weights that is opti-
mal on the sample is, with high probability, close to optimal
on the entire set of queries. We apply standard techniques
from PAC learning; in particular, concentration bounds and
covering arguments. However, the objective function in our
setting (the profit of the mechanism) is rather badly be-
haved, which will present obstacles to our approach. We
overcome these via the following techniques:

• We use LP duality and complementary slackness con-
ditions to reduce the problem of estimating the profit
function to that of estimating n simpler functions, to
which standard concentration inequalities can be ap-
plied.

• We use non-uniform error rates across these functions
that are carefully picked and the appropriate concen-
tration inequalities to get the eventual result.

• We use “smoothing” techniques to replace the origi-
nal profit function with something more tractable. In
Section 4, we present two different approaches to this
smoothing, one based on random perturbations, and
one based on techniques from convex programming.
These methods allow us to break ties appropriately
(when two bidders have the same weighted bid), and
also are important for our covering arguments.

Previous approaches to the problem also critically use LP
duality, but have been entirely combinatorial in nature. It
is likely that the approach and techniques introduced here
are applicable to other problems as well.

1.2 Other Related Work
Buchbinder, Jain and Naor [5] also gave a 1−1/e compet-

itive algorithm for the adwords problem using a primal-dual
framework. They use the duals in order to determine the
primal allocation, which is similar to our algorithm. How-
ever, they update the duals after each query, while we cal-
culate the duals just once after an initial sampling. Also,
the techniques used in the two papers for the analysis of the
competitive ratio are entirely different.

Goel and Mehta [10] considered the random permutation
model, and showed that the greedy algorithm achieves a
competitive ratio of 1−1/e, which is tight. They also showed
that for some small instances, no deterministic algorithm
can achieve a ratio of better than 3/4, while no randomized
algorithm can do better than 5/6. Further, they showed
that the algorithm of [19] has a competitive ratio < .81.

The history of online matching problems goes back to
Karp, Vazirani and Vazirani [13] which was one of the very
first instances of competitive analysis. They considered the
online bipartite matching problem, where the bids are all
0 or 1, and the budgets are all 1, and they gave a 1 − 1/e
competitive 2 algorithm for it. Kalyanasundaram and Pruhs
[12] gave a 1 − 1/e competitive algorithm for the online b-
matching problem (as b→∞), where the bids are still 0 or
1, but the budgets are all b.

Random permutation models have also been considered in
other problems, perhaps most popular in the classic secre-
tary problem and its generalizations [6, 2, 14]. Apart from
2 A gap in their analysis was discovered by [15], and an
alternate proof was given in [10].

the similarity about random ordering of the inputs, the two
problems seem to be different.

There seem to be similarities between our paper and a
paper by Balcan et. al. [3] (which solves a mechanism design
problem), especially in the form of the results, and some
of the techniques. While these high-level similarities are
not surprising–since [3] is also inspired by learning theory–
a closer look reveals no deeper connection. In a nutshell,
their paper considers a very general class of problems and
is therefore independent of any structure in the problem,
while the issues that arise and the techniques used in solving
the problem in this paper are specific to the nature of the
problem.

2. ALGORITHM
The goal of the algorithm is to use the earlier bids to

gain some information about how to assign the later bids.
The algorithm learns weights αi for each bidder, such that
assigning query j to arg maxi{uij(1−αi)} is close to optimal.
The existence of such weights follows from LP duality; we
outline the existence proof below. The offline problem can
be formulated as the integer program

max
∑
i,j

uijxij

s.t. for all i,
∑
j

uijxij ≤ Bi

and for all j,
∑
i

xij ≤ 1.

xij ∈ {0, 1}.

Consider the LP relaxation of the above integer program,
that allows the xijs to take on fractional values in [0, 1].
Since OPT/bmax is large, the fractional and integral optima
are close to each other. Henceforth we will work with the
relaxed LP, and ignore the rounding issues.

The dual of the above LP is

min
∑
i

αiBi +
∑
j

pj

s.t. ∀ i, j, pj ≥ uij(1− αi).

Note that, at the optimum, ∀ j, pj = maxi uij(1 − αi).
Thus, one can think of the dual objective as just a function
of the αi’s. Thus we define

D(α) =
∑
i

αiBi +
∑
j

max
i
uij(1− αi).

By complementary slackness, if (α, p) minimizes the dual
LP, and x is the optimal allocation to the primal LP, then

xij > 0 implies pj = max
i
uij(1− αi),

and hence, given the optimal α, we should allocate item j
to bidder arg maxi uij(1 − αi). Thus, if we use the weights
(1 − αi) as multiplicative discount factors on the bids, we
obtain the optimal allocation, as claimed earlier.

Our algorithm uses the first εm queries to try to guess
these weights, in a way reminiscent of PAC-learning algo-
rithms: it selects the α that minimizes the restriction of D
to the observed bids. More precisely, for all subsets S, of
size εm, define

D(α, S) :=
∑
i

αiεBi +
∑
j∈S

max
i
uij(1− αi).

We now present our core algorithm, Learn-Weights.

Algorithm 2.1: Learn-Weights(ε)

for j ← 1 to εm
Observe the bids uij .
Allocate item j arbitrarily (e.g. all xij = 0).

Let α∗ := arg minα{D(α, S)}.
for j ← εm+ 1 to m

Observe the bids uij .
Give item j to the bidder maximizing uij(1− α∗i).

It can happen that there are ties; that is, arg maxi{uij(1−
α∗i)} may not be uniquely defined. For now, we will ignore
this issue, and pretend that such ties never occur (this would
be the case if, for instance, the bid vectors uj were in general
position). We will discuss ways to remove this assumption
in Section 4, resulting in two improved variants of the above
algorithm.

3. COMPETITIVE ANALYSIS
Recall that the main goal for us is to prove that α∗ =

arg minα{D(α, S)} gets enough revenue on the rest of the
queries. The main steps in showing this are:

• Find sufficient conditions on α under which the profit
of the algorithm using α is guaranteed to be close to
OPT (Lemma 2).

• Show that α∗ satisfies these conditions (Lemma 5).

We now motivate why the sufficient conditions are as re-
quired in Lemma 2. We first define indicator variables that
specify the allocation rule that is used in the algorithm; let
xij(α) = 1 if i = arg maxi{uij(1 − αi)}, and 0 otherwise.
Now let the profit obtained by using α on the entire set of
queries be P (α) =

∑
i min{Bi,

∑
j uijxij(α)}. The function

P (α) is not well-behaved: it is a step function whose level
sets are projections of the facets of the feasible polytope for
the dual polytope. The values may oscillate up and down
many times along a straight line. On the projections of the
lower-dimensional facets, there exist items for which there
is not a unique maximum discounted bid uij(1 − αi), and
hence we have not uniquely specified an allocation xij(α).
In general, it is possible to find allocations on these facets
for which the profit P (α) exceeds the values on the adjoining
full-dimensional facets.

For the above reasons we cannot directly argue about P .
Instead, we define the following functions that are easier
to argue about: let Ri(α) :=

∑
j uijxij(α), be the revenue

obtained by bidder i on using the allocation give by α, if
there were no budget constraints. The sufficient conditions
that we mentioned amount to the fact that the functions Ri
are estimated well enough by the sample. Two things are of
importance here:

• Ri(α) is a sum of numbers, one for each query. This
form of Ri lets us apply concentration inequalities to
bound the probability that Ri is estimated well by its
restriction to the sample.

• We allow the error in estimating Ri to be different for
different bidders, as long as the total error is relatively
small. Insisting on uniform error bounds gives a worse
overall result.

Before we formalize the above, we need to introduce some
more notations. The general rule is that a function with
subscript i refers to those terms that correspond to bidder
i, and an argument of S defines the restriction of the func-
tion to the queries in S. This includes scaling the budgets
appropriately, wherever relevant. Thus, we define

Ri(α, S) :=
∑
j∈S

uijxij(α).

R(α) =
∑
i

Ri(α)

Pi(α) := min{Bi,
∑
j

uijxij(α)} = min{Bi, Ri(α)},

Pi(α, S) := min{|S|Bi/m,Ri(α, S)},

P (α, S) :=
∑
i

Pi(α, S),

Di(α) := αiBi + (1− αi)Ri(α)

Di(α, S) := αi|S|Bi/m+ (1− αi)Ri(α, S).

With the above definitions, D(α) =
∑
iDi(α) andD(α, S) =∑

iDi(α, S). Let Sc denote the complement of our sampled
set, namely, {1, . . . ,m}\S. We now formally prove the claim
above in the following lemma.

Lemma 2. If for all i, |Ri(α∗, S)− εRi(α∗)| ≤ ti, and∑
i ti ≤ ε

2 max{OPT, R(α∗)} then P (α∗, Sc) ≥ (1−O(ε))OPT.

Proof: The main idea is that the hypothesis of the lemma
translates to the fact that α∗ satisfies the complementary
slackness conditions for the entire set, approximately. This
guarantees that P (α∗) is close to OPT. In the proof, for
simplicity of notation, we drop α∗ from the arguments, since
that is the only α we consider. Also let ai = ti/ε.

We first show that P ≥ (1−O(ε))OPT. A sufficient con-
dition for this is that

max{R,D} − P ≤
∑
i

ai. (1)

Let us see why. Note that P ≤ OPT ≤ D, by weak duality.
Therefore replacing max{R,D} by R and P by OPT in (1)
and using the hypothesis of the lemma implies that R −
OPT ≤ εR, and so R ≤ OPT/(1−ε). Thus max{OPT, R} ≤
OPT/(1 − ε). (1) can now be used once again to conclude
that OPT− P ≤ εOPT/(1− ε). This establishes sufficiency
of (1).

We now prove that for all i, max{Ri, Di}−Pi ≤ ai which
implies (1). Recall that Di = α∗iBi + (1− α∗i)Ri, and Pi =
min{Bi, Ri}. We consider two cases:

Case 1 α∗i > 0.

max{Di, Ri} − Pi ≤ max{Bi, Ri} − min{Bi, Ri} =
|Bi − Ri|. Since α∗i > 0, from complementary slack-
ness conditions on the LP restricted to queries in S,
we have that Ri(S) = εBi. Now from the hypothesis
in the lemma we have that |εBi − εRi| ≤ εai, which is
the same as |Bi −Ri| ≤ ai.

Case 2 α∗i = 0. Di = Ri ≤ Ri(S)/ε + ai. Ri(S) ≤ εBi,
so Di ≤ Bi + ai. Di = Ri and Di ≤ Bi + ai implies
Di − Pi ≤ ai.

We now prove that P (Sc) ≥ (1 − ε)P −
∑
i ti. The hy-

pothesis of the lemma says that Ri(S
c) > (1− ε)Ri− ti and

so

Pi(S
c) = min{(1− ε)Bi, Ri(Sc)}
≥ min{(1− ε)Bi, (1− ε)Ri − ti}
≥ (1− ε)Pi − ti.

Since
∑
i ti ≤ ε

2 max{OPT, R}, this only contributes second
order error terms. 2

We will use the following concentration inequality on the
sum of a random subset of a set of real numbers, which is
an easy variant of Bernstein’s inequality.

Lemma 3. Let Y = (Y1, . . . , Ym) be a vector of real num-
bers, and let 0 < ε < 1. Let S be a random subset of [m] of
size εm, and set YS :=

∑
j∈S Yj. Then, for every 0 < δ < 1,

Pr

(
|YS −EYS | ≥

2

3
‖Y ‖∞ ln

(
2

δ

)
+ ‖Y ‖2

√
2ε ln

(
2

δ

))
≤ δ.

Proof: Let X1, X2, . . . , Xεm be εm i.i.d. random variables
each of which is equal to one of the Yj ’s uniformly at random.
Let X =

∑εm
i=1 Xi. Note that ε‖Y ‖22 is an upper bound on

the variance of X, and |Xi| ≤ maxj |Yj | = ‖Y ‖∞. X and
YS are both sums of εm random values that are sampled
with and without replacement respectively from the same
set. Thus, Theorems 3 and 4 in [11] imply that for all t > 0,

Pr(|YS −EYS | ≥ t) ≤ 2 exp

(
−t2

2(ε‖Y ‖22 + (‖Y ‖∞t/3))

)
.

The desired value for t can be found by setting the right-
hand side equal to δ and applying the quadratic formula.
The slightly simpler expression in the conclusion of the Lemma
follows from the inequality

√
a2 + b ≤ a +

√
b, valid for all

a, b ≥ 0. 2

We want to use the above lemma to argue that all the
Ri(α

∗, S)’s are concentrated around their expected value as
required by Lemma 2. However, since α∗ is itself a function
of the sample S, we cannot directly apply the lemma. In-
stead we apply the lemma to all possible values of α∗ and
the take a union bound on the failure probability. But then,
there are infinitely many possible values of α∗, so we can-
not quite do this. Instead, we apply a union bound on a
sufficiently dense, but finite subset of α’s and argue that
this is sufficient. For this purpose we define the following,
analogous to the notion of ε-nets in real analysis.

Definition 4. Λ ⊆ [0, 1]n is an (x, ε)-net for an allo-
cation rule xij() and an ε > 0, if for all α ∈ [0, 1]n, there
exists an α′ ∈ Ω such that |xij(α)− xij(α′)| ≤ ε for all i, j.

We now prove our main lemma which guarantees that
α∗ satisfies the hypothesis in Lemma 2, and which in turn
implies that the revenue of the algorithm is close to the opti-
mum, given an appropriate ε-net. We defer the construction
of the ε-net to Section 4.

Lemma 5. If Λ is an (x, ε)-net and

OPT

bmax
≥ Ω

(
n log(n|Λ|/ε)

ε3

)
then ALG ≥ (1− ε)OPT.

Proof: For each 1 ≤ i ≤ n and α ∈ Λ, we define corre-
sponding “bad” events, Bi,α, which are of the form

|Ri(α, S)− εRi(α)| > ti,α

where ti,α is such that Pr(Bi,α) ≤ δ = ε/n|Λ|. The appro-
priate value of ti,α is given by Lemma 3.

ti,α =
2

3
bmax ln

(
2

δ

)
+ ‖Ri(α)‖2

√
2ε ln

(
2

δ

)
,

where by abuse of notation we let ‖Ri(α)‖2 be the l2 norm
of (uijxij(α))j .

We first show that this choice of ti,α satisfies the hypoth-
esis in Lemma 2. When you sum the ti,α’s, the first terms
in the above expression contribute O

(
nbmax ln

(
1
δ

))
which

is less than ε3OPT given OPT
bmax

≥ Ω
(
n log(1/δ)

ε3

)
. In order

to bound the contribution of the second terms, we use the
following two inequalities:

‖Ri(α)‖2 ≤
√
bmaxRi(α) and

∑
i

√
Ri(α) ≤

√
n
∑
i

Ri(α) =
√
nR(α).

The second inequality is obtained by applying the Cauchy-

Schwarz inequality to the vector of all ones and
(√

Ri(α)
)
i
.

Now combining these,

∑
i

‖Ri(α)‖2

√
2ε ln

(
2

δ

)
≤
√
O(nbmaxε log(1/δ)R(α)).

Once again using the fact that OPT
bmax

≥ Ω
(
n log(1/δ)

ε3

)
, we

obtain ∑
i

ti,α ≤ O(ε2) max{OPT, R(α)},

which is as per the hypothesis of Lemma 2.
If α∗ ∈ Λ, then by simply applying a union bound over

all α ∈ Λ and i, we get that with probablity ≥ 1 − ε, none
of the events Bi,α happen. Thus we can apply Lemma 2, to
conclude that P (X(α∗), Sc) ≥ (1−O(ε))OPT(Sc).

Suppose α∗ /∈ Λ. However, because Λ is an (x, ε)-net,
there exists α̂ ∈ Λ such that, for all i, j, |xij(α̂)−xij(α∗)| ≤
ε. Now, assuming the bad event Bi,α̂ does not occur, we
have, by the triangle inequality,

|Ri(α∗, S)− εRi(α∗)| ≤ |Ri(α̂, S)− εRi(α̂)|
+ |Ri(α̂, S)−Ri(α∗, S)|
+ ε|Ri(α̂)−Ri(α∗)|
≤ ti,α̂ + εRi(α

∗, S) + ε2Ri(α
∗)

and this is,

≤ ti,α̂ +O
(
ε2Ri(α

∗)
)
.

Summing over i, we find that we can again apply Lemma 2
to obtain the desired result.

2

4. AVOIDING TIES
In the description of our algorithm, we assumed that there

are never any ties, where arg maxi uij(1−α∗i) is not uniquely

defined. In fact, it is important to our arguments that such
ties not be allowed to occur. However, in practice, such
ties might occur frequently, for various possible reasons. We
present two approaches to resolve this issue. One is based on
introducing random perturbations, and the other involves a
smoothing technique from convex programming.

4.1 Random perturbations
Our first approach to resolving this problem is based on

the observation that, if the bid vectors uj are in general
position in Rn, then for any α, there can be at most n − 1
ties. Since nbmax < εOPT, it doesn’t really matter how we
break these ties. Unfortunately, we cannot assume the bid
vectors are in general position.

To get around this, suppose we choose, in advance, a tiny
perturbation ξi,j to be added to each bid uij . These will be
chosen independently and uniformly at random from the in-
terval [0, ζ], where ζ = O(ε/m). Because the perturbations
are chosen independently from continuous distributions, the
perturbed bid vectors will be in general position with prob-
ability one. Because the perturbations are small, the exact
amounts of the perturbations will have a negligible effect on
the profit for any α. Indeed, if so desired, this effect can be
made exactly zero by instead defining ζ as an infinitessimal.

Effectively, the perturbations, by breaking ties, may split
some degenerate facets of the feasible polytope for the dual
LP into possibly very many small non-degenerate facets.
Whereas such an original degenerate facet may have a much
larger profit achievable than its neighboring facets, after the
perturbations, two adjacent facets can differ in their assign-
ment for at most n items, which means the profit function
makes small jumps across neighboring facets.

Note that, since the perturbations are independently sam-
pled, it makes no difference whether we think of these per-
turbations as being chosen before or after the query order is
randomized.

The only remaining question is how these random pertur-
bations affect our earlier lemmas regarding the concentration
of P (α∗). Here is one answer.

Theorem 6. Suppose the bids are such that

OPT

bmax
≥ Ω

(
n2 log(nm)

ε3

)
.

Then, with probability 1, the random perturbations are such
that our basic algorithm is 1−ε competitive on the perturbed
input. Moreover, as long as the perturbations are multiplica-
tive and chosen continuously from a range [1−O(ε), 1+O(ε)],
this implies our modified “with perturbations” algorithm is
1−O(ε) competitive on the original input.

Proof:
Note that the optimum α∗ for D(α, S) always occurs at

the projection of some vertex of the feasible polytope for
D(α). Since this polytope is defined by nm linear inequal-
ities, which project down to linear inequalities in n dimen-
sions, the number of vertices they define is at most

(
nm
n

)
≤

(nm)n. Since this set is actually guaranteed to contain α∗, it
is an (x, 0)-net, and in particular an (x, ε)-net. The desired
result now follows by Lemma 5. 2

Unfortunately, the above bound depends on the number
of keywords, m. It is not obvious to us whether this de-
pendence is a necessary part of the above perturbation ap-

Algorithm 4.1: Learn-Weights-Perturbed(ε, η)

for j ← 1 to εm
Observe the bids uij .
For each i, sample ξi,j randomly from [0, η].
Record ũij = uij(1− ξi,j).
Allocate item j arbitrarily (e.g. all xij = 0).

Let α∗ be the α ≥ 0 minimizing∑n
i=1 αiBi +

∑εm
j=1 maxi(1− αi)ũij

for j ← εm+ 1 to m
Observe the bids uij .
For each i, sample ξi,j randomly from [0, η].
Let ũij = uij(1− ξi,j).
Give item j to the bidder i maximizing ũij(1− α∗i).

proach. In the next section, we will present a different ap-
proach which does avoid a dependence on the number of
keywords.

4.2 Smoothing
Another approach to breaking ties is to use a smoothed

version of the dual LP to determine α∗, and the allocation
rule. Actually, uijxij(α) can be thought of as a sub-gradient
of the function max{uij(1 − αi)}, and when there are ties,
the sub-gradient is not unique, because the function is not
differentiable at that point. The smoothed version of this
is guaranteed to be convex and differentiable. By going
to a smoothed version, we make sure that there there is
a uniquely determined gradient at all points. This gradient
now determines the allocation. We also need to make sure
that this smoothing has some additional properties: it sat-
isfies the complementary slackness conditions, it does not
introduce substantial error, and the rate of change of the
allocation itself is bounded appropriately.

Consider the following convex program, where for all j,
Cj is some large constant. This is a smoothed version of the
dual LP. We let the constraints pj ≥ uij(1−αi) be violated,
but add a penalty for the violation.

min
∑
i

αiBi +
∑
j

pj +
∑
i,j

Cj
2
θ2
ij

s.t. ∀ i, j, pj ≥ uij(1− αi − θij),
αi, pj ≥ 0.

We obtain the dual of this convex program (which will be
the smoothed version of the primal LP), using Lagrangian
duality. Define the Lagrangian function, with multipliers
xij ,

L̃(α,p,Θ, X) =
∑
i

αiBi +
∑
j

pj +
∑
i,j

Cj
2
θ2
ij

+
∑
i,j

xij (uij(1− αi − θij)− pj) .

Now define the smoothed version of the primal LP by con-
sidering minα,p,Θ L̃. Consider the terms involving pj , that
is, pj(1 −

∑
i xij). If the second term is negative, then the

minimum is −∞ since we can make pj go to ∞. Otherwise
the minimum is 0. Similarly, consider the terms involving
αi, that is, αi(Bi−

∑
j uijxij). The minimum is either −∞

or zero depending on whether the second term is negative
or positive. Finally, consider the terms involving θij , that

is,
Cj

2
θ2
ij − uijxijθij . This is minimized at θij = uijxij/Cj ,

and the minimum value is − (uijxij)2

2Cj
. Therefore the primal

convex program is

max
∑
i,j

uijxij −
(uijxij)

2

2Cj

s.t. for all i,
∑
j

uijxij ≤ Bi

and for all j,
∑
i

xij ≤ 1.

xij ≥ 0.

The KKT conditions3, that guarantee that a given pair of
feasible solutions to the above programs are optimal, are

xij > 0⇒ pj = uij(1− αi − θij).

pj > 0⇒
∑
i

xij = 1.

αi > 0⇒
∑
j

uijxij = Bi.

θij = uijxij/Cj .

The restriction of the dual convex program to the sample
S is defined as before. The algorithm now uses the α that
minimizes this convex program.

min
∑
i

εαiBi +
∑
j∈S

pj +
∑
i,j∈S

Cj
2
θ2
ij (2)

s.t. ∀ i, ∀ j ∈ S, pj ≥ uij(1− αi − θij),
αi, pj ≥ 0.

As before, the dual convex program is really a function of
just the αi’s. This is because given the αi’s, one can sepa-
rately solve for each j, the pj ’s and the θij ’s by the following
smaller convex program.

min pj +
∑
i

Cj
2
θ2
ij (3)

s.t. ∀ i, pj ≥ uij(1− αi − θij),
pj ≥ 0.

This can be thought of as a smoothed version of maxi{uij(1−
αi)}. Once again, we can take the dual of (3), to get

max
∑
i

uij(1− αi)xij −
(uijxij)

2

2Cj
(4)

s.t. for all j,
∑
i

xij ≤ 1.

xij ≥ 0.

We define x̃ij(α) to be the optimum solution to (4), which
is the smoothed version of the earlier definition of xij(α).
These define the allocations for a given α. Note that x̃ij is
uniquely defined by α. As earlier, we define the functions
R̃i(α) =

∑
j uij x̃ij(α). Then P̃i(α) = min{Bi, R̃i(α)} is the

profit extracted from bidder i.

3 These are a generalization of the LP complementary slack-
ness conditions to convex programs.

Algorithm 4.2: Learn-Weights-Smoothed(ε)

for j ← 1 to εm
Observe the bids uij .
Allocate item j arbitrarily (e.g. all xij = 0).

Let α∗ be the minimizer of Convex Program (2)
for j ← εm+ 1 to m

Observe the bids uij .
Give x̃ij(α

∗) fraction of item j to bidder i.

Define D̃i(α) = αiBi+(1−αi)R̃i(α). Notice that D̃(α) =∑
i D̃i(α) is not the dual objective function. They differ by∑
i

(uijxij(α))2

2Cj
. We define D̃ this way so that the relation

between D̃i, Bi and R̃i is the same as that for the non-
smoothed versions. Also note that the KKT conditions are
essentially the same as the complementary conditions with
the smoothed versions.

However, the relation that D(α) ≥ OPT is no longer true
with the smoothed version. We now show that if we pick
Cj appropriately, then an approximate version of the same

relation is true. Let Cj =
maxi{uij}

2ε
. Then

∑
i

(uijxij)2

2Cj
≤

ε
∑
i uijxij . This implies that D̃(α) ≥ (1 − ε)OPT for all

α. With this, the competitive analysis of the algorithm goes
through almost unchanged, with the smoothed versions of
the functions replacing their original versions, with the in-
troduction of an extra εOPT.

We now argue that if Λ is a grid of size δ = ε2

λ2 , then
moving α to the nearest point in Λ changes x̃ij(α) by at
most O(ε). Note that for any given query j, moving α to
the nearest point in Λ changes the optimum solution to (3)
itself by O(δmaxi{uij}). This implies that the change in θij

is O(δmaxi{uij}/uij) for any i. Since x̃ij =
Cjθij

uij
, we get

that the change in x̃ij is at most

O

(
Cjδmaxi{uij}

u2
ij

)
= O

(
δ(maxi{uij})2

εu2
ij

)
,

which is less than ε if δ = ε2

λ2 . Thus Λ is an (x̃, ε)-net and
log(|Λ|) = O(n log(λ/ε)). This along with Lemma 5 implies
Theorem 1.

5. CONCLUSION AND OPEN PROBLEMS
We solve an open problem of [19] by giving a 1−o(1) com-

petitive algorithm for the adwords problem under a random
permutation. Our result further opens other problems. In
particular,

• Can the guarantee required in Theorem 1 be improved
to require a smaller dependence on n and ε? The cur-
rent algorithm itself might need a weaker guarantee.

• Can similar results be obtained with a richer model,
incorporating other aspects of sponsored search, such
as, multiple slots, pay-per-click schemes, second price
payments, and so on?

• Can similar results be obtained for alternate objective
functions? In particular, are there natural measures of
fairness that can be approximated well?

• The random permutation model is applicable to other
online problems as well. What other impossibilities in
the worst case can be circumvented by going to the
random permutation model?

6. REFERENCES
[1] Gagan Aggarwal, Ashish Goel, and Rajeev Motwani.

Truthful auctions for pricing search keywords. In EC
’06: Proceedings of the 7th ACM conference on
Electronic commerce, pages 1–7, 2006.

[2] Moshe Babaioff, Nicole Immorlica, and Robert
Kleinberg. Matroids, secretary problems, and online
mechanisms. In SODA ’07: Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 434–443, 2007.

[3] Maria-Florina Balcan, Avrim Blum, Jason D.
Hartline, and Yishay Mansour. Mechanism design via
machine learning. In FOCS, pages 605–614, 2005.

[4] Christian Borgs, Jennifer Chayes, Nicole Immorlica,
Mohammad Mahdian, and Amin Saberi. Multi-unit
auctions with budget-constrained bidders. In EC ’05:
Proceedings of the 6th ACM conference on Electronic
commerce, pages 44–51, 2005.

[5] Niv Buchbinder, Kamal Jain, and Joseph Naor. Online
primal-dual algorithms for maximizing ad-auctions
revenue. In ESA, pages 253–264, 2007.

[6] E. B. Dynkin. The optimum choice of the instant for
stopping a markov process. Sov. Math. Dokl., 4, 1963.

[7] Benjamin Edelman and Michael Ostrovsky. Strategic
bidder behavior in sponsored search auctions. Decis.
Support Syst., 43(1):192–198, 2007.

[8] Benjamin Edelman, Michael Ostrovsky, and Michael
Schwarz. Internet advertising and the generalized
second-price auction: Selling billions of dollars worth
of keywords. American Economic Review,
97(1):242–259, March 2007.

[9] Jon Feldman, S Muthukrishnan, Martin Pal, and Cliff
Stein. Budget optimization in search-based advertising
auctions. In EC ’07: Proceedings of the 8th ACM
conference on Electronic commerce, pages 40–49, 2007.

[10] Gagan Goel and Aranyak Mehta. Online budgeted
matching in random input models with applications to
adwords. In SODA ’08: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete
algorithms, pages 982–991, 2008.

[11] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[12] Bala Kalyanasundaram and Kirk R. Pruhs. An
optimal deterministic algorithm for online b-matching.
Theor. Comput. Sci., 233(1-2):319–325, 2000.

[13] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
STOC ’90: Proceedings of the twenty-second annual
ACM symposium on Theory of computing, pages
352–358, 1990.

[14] Robert Kleinberg. A multiple-choice secretary
algorithm with applications to online auctions. In
SODA ’05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
630–631, Philadelphia, PA, USA, 2005. Society for
Industrial and Applied Mathematics.

[15] Erik Krohn and Kasturi Varadarajan, 2007. Private
Communication.

[16] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra.
Algorithmic Game Theory, chapter Sponsored Search.
Cambridge University Press, 2007.

[17] Sébastien Lahaie. An analysis of alternative slot
auction designs for sponsored search. In EC ’06:
Proceedings of the 7th ACM conference on Electronic
commerce, pages 218–227, 2006.

[18] Mohammad Mahdian, Hamid Nazerzadeh, and Amin
Saberi. Allocating online advertisement space with
unreliable estimates. In EC ’07: Proceedings of the 8th
ACM conference on Electronic commerce, pages
288–294, 2007.

[19] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and
Vijay Vazirani. Adwords and generalized online
matching. J. ACM, 54(5):22, 2007.

[20] Hal R. Varian. Position auctions. International
Journal of Industrial Organization, 25(6):1163–1178,
December 2007.

	Introduction
	Our Results and Techniques
	Other Related Work

	Algorithm
	Competitive Analysis
	Avoiding Ties
	Random perturbations
	Smoothing

	Conclusion and Open Problems
	References

