
Asymptotically Optimal Algorithm for Stochastic Adwords

Nikhil R. Devanur, Microsoft Research, Redmond. nikdev@microsoft.com.

Balasubramanian Sivan, Computer Sciences Dept., University of Wisconsin-Madison.

balu2901@cs.wisc.edu.

Yossi Azar, School of Computer Science, Tel-Aviv University. azar@tau.ac.il.

In this paper we consider the adwords problem in the unknown distribution model. We consider the case
where the budget to bid ratio k is at least 2, and give improved competitive ratios. Earlier results had
competitive ratios better than 1 − 1/e only for “large enough” k, while our competitive ratio increases con-
tinuously with k. For k = 2 the competitive ratio we get is 0.729 and it is 0.9 for k = 16. We also improve the
asymptotic competitive ratio for large k from 1 − O(

p

log n/k) to 1 − O(
p

1/k), thus removing any depen-
dence on n, the number of advertisers. This ratio is optimal, even with known distributions. That is, even
if an algorithm is tailored to the distribution, it cannot get a competitive ratio of 1 − o(

p

1/k), whereas our
algorithm does not depend on the distribution. The algorithm is rather simple, it computes a score for every
advertiser based on his original budget, the remaining budget and the remaining number of steps in the
algorithm and assigns a query to the advertiser with the highest bid plus his score. The analysis is based
on a “hybrid argument” that considers algorithms that are part actual, part hypothetical, to prove that our
(actual) algorithm is better than a completely hypothetical algorithm whose performance is easy to analyze.
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1. INTRODUCTION

Consider the following problem faced by a search engine: a sequence of queries arrive
online and have to be allocated immediately upon arrival to one of several competing
advertisers who are interested in the query. Different advertisers could have differ-
ent bids for a given query, and the search engine needs to determine which advertiser
to choose, and how much payment to charge him. This has been a source of many
interesting problems, and there have been a large number of papers on it, modeling
various aspects of this problem, and abstracting out certain characteristics while ig-
noring others. One such formalization that captures the online algorithmic aspect is
the “adwords” problem introduced by Mehta et al. [Mehta et al. 2005]. In this model, a
query is characterized by the vector of revenues obtained if matched to an advertiser
(called bids). When allocated a query, an advertiser simply pays his bid for that query
(ignoring the game theoretic aspects that go into advertiser bidding). The problem asks
for the online query allocation algorithm that maximizes the search engine’s revenue,
subject to the constraint that the revenue from any given advertiser is capped by his
budget.
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We consider the adwords problem in the stochastic unknown distribution model. In
this model, each query in the sequence is sampled independently from an underly-
ing distribution but the algorithm does not know this distribution. In other words the
algorithm is independent of the distribution but its performance is measured in expec-
tation over the draws from the distribution.

The performance of an algorithm is measured by the competitive ratio: the ratio of
the revenue of the algorithm to the optimal revenue1 on hindsight. The competitive ra-
tio for the adwords problem typically depends on a key parameter, called the smallest
budget to bid ratio, denoted here by k. [Devanur et al. 2011] gave near tight bounds
for the adwords problem (and for a more general class of problems called resource al-
location problems) in the stochastic unknown distribution model. If k = 1 then2 the
competitive ratio is 1 − 1/e, or if k = log n/ǫ2 for some ǫ > 0 and n is the number of
advertisers, then the competitive ratio is 1 − O(ǫ).

The second ratio is better than the first only for k large enough. This left a gap
where for a large range of k the best competitive ratio was still 1 − 1/e. This raises
the question, what can we say if k = 2? Or k = 3? Is there an algorithm for which
the competitive ratio gradually increases with k? This was left as an open question in
[Devanur et al. 2011].

We answer this question in the affirmative in this paper. We give an algorithm with

a competitive ratio of 1 − kk

k!ek ≥ 1 − 1√
2πk

. This gives significant improvements right

away, for instance for k = 2 it is 0.729, and it is already 0.9 for k = 16. The competitive
ratio for a range of small k is summarized in Table I.

Table I. Competitive ratio for
small k.

k 1 − kk

k!ek

1 0.63
2 0.73
3 0.77

10 0.87
20 0.91
50 0.94
100 0.96

Somewhat surprisingly, this result also gives an improvement over [Devanur et al.
2011] for large k. In particular, k only needs to be larger than 1/ǫ2 in order to get a
1 − O(ǫ) competitive ratio, getting rid of a factor of log n, and more importantly, any
dependence on n. This competitive ratio is optimal, up to constant factors; no algorithm
can get a competitive ratio of 1 − o(1/

√
k). In fact this upper bound even applies to

algorithms that know the distribution. In other words even if an algorithm could be
tailored to the underlying distribution, one cannot get a better competitive ratio.

The algorithm we present addresses another unpleasant nature common in previous
algorithms for this problem. The competitive ratio of the earlier algorithms typically
depends on the worst budget to bid ratio. That is, the budget to bid ratio is defined for
each advertiser and the competitive ratio depends on the smallest of these. This means
that introducing even one advertiser with a small budget can completely destroy the
competitive ratio guaranteed by the analysis. Our algorithm does not suffer from this

1Some care is needed to define this in the stochastic model; see Section 2 for a precise definition.
2 The budget is always greater than any bid w.lo.g., so k ≥ 1.



and the guarantee given by the analysis gracefully degrades with such changes. The
details are presented in Section 2.

These improvements in the competitive ratio come at a price, though. Our guaran-
tees are only “in expectation” whereas the ones in [Devanur et al. 2011] were “with
high probability”. This seems unavoidable though. Another point to note is that the al-
gorithms in [Devanur et al. 2011] are applicable to more general “resource allocation”
problems, whereas our algorithm does not generalize. This is just as well since for
these general resource allocation problems, it is unlikely that the factor of log n can be
avoided. Finally, we have to assume that in the corresponding distribution instance3,
either all the budgets are saturated, or, the algorithm knows the consumption of the
budgets in an optimal solution to the distribution instance, whereas the algorithms
in [Devanur et al. 2011] do not depend on any distributional parameters at all. We
note here that knowing the optimal consumption is information theoretically a strictly
weaker requirement than knowing the entire distribution. Knowing the optimal con-
sumption Ci for advertiser i = 1 . . . n, requires knowledge of n parameters, as against
the knowledge of the entire distribution, which could have a very large (even infinite)
support.

On the other hand our algorithm also works when the distribution is changing
over time, in particular, in the Adversarial Stochastic Input (ASI) model (introduced
by [Devanur et al. 2011]), just like the algorithms in [Devanur et al. 2011]. In fact,
under the assumption that the budgets are saturated, this model simply allows a dif-
ferent distribution to be picked in each step. (See Section 6 for a precise definition.)

In summary, this algorithm almost closes the last few gaps left open for the adwords
problem in the stochastic unknown distribution model.

1.1. Related Work

As mentioned earlier, in the stochastic unknown distribution model [Devanur et al.
2011] gave a 1 − O(ǫ) competitive algorithm for k = log n/ǫ2, improving upon earlier
work by [Devanur and Hayes 2009; Charles et al. 2010].

There has been a lot of work done on the special case of online bipartite match-
ing. This is a special case of adwords where all the budgets are 1 and the bids are
either 0 or 1. In this case, the budget to bid ratio, k, is 1. Most of the results have
focused on showing that the bound of 1 − 1/e can be beaten in the known distribution
model [Feldman et al. 2009; Bahmani and Kapralov 2010; Manshadi et al. 2011]. The
best competitive ratio achieved in this line of work is 0.7036 [Haeupler et al. 2011].
These results are incomparable to ours: they relax the stochastic model by allowing
the algorithm to be tailored to the underlying distribution whereas we relax the bud-
get to bid ratio. We also consider the more general adwords problem. We show that
allowing even slightly larger budget to bid ratios can give a significantly better com-
petitive ratio. Since the main motivation for these problems originate in advertising,
this seems like a natural relaxation.

More recently [Karande et al. 2011; Mahdian and Yan 2011] consider the online bi-
partite matching problem in the unknown distribution model. The best competitive ra-
tio in this series is 0.69 [Mahdian and Yan 2011]. While the stochastic model in these
papers coincides with ours, we consider the more general weighted version and the
range k > 1.

The competitive ratio in the worst case model with k = 1 is still only 1/2, while
with large k the competitive ratio tends to 1−1/e [Mehta et al. 2005; Buchbinder et al.
2007]. Moreover 1−1/e is optimal, so the interesting range in the worst case is [1/2, 1−
1/e].

3See Section 2.2 for a definition.



1.2. The Algorithm

The main idea behind the algorithm is as follows. In each step we would like to match
the query to the advertiser that maximizes the sum of the revenue obtained in this
step and the residual revenue that can be obtained in the rest. The problem of course
is that the naı̈ve way to estimate the residual revenue requires knowledge of the dis-
tribution. The key insight is that we can however estimate this residual revenue in a
distribution independent way, knowing only the consumption of the advertisers in an
optimal solution to the distribution instance.

The “magical” estimate comes from the analysis of a hypothetical algorithm that
knows the distribution. It boils down to analyzing the following simple balls and bins
process: in every step a ball is thrown into one of n bins with certain capacities and
according to some probability distribution. If this is repeated for m steps then what is
the expected number of balls that “overflow”?

In the rest of this section, we show an almost complete proof for a special case of
the problem. This already contains some of the main ideas used for the more general
results. Consider a bipartite graph G = (L, R, E), with |L| = n and |R| = m. Suppose
we repeat m times the following procedure P : a vertex is chosen uniformly at random
from R (with replacement) and is matched to one of its neighbors in L. For each vertex
i in L the number of times it can be matched is at most Bi.

Now suppose that the matching has to be done without knowing the bipartite graph.
In each step we only see the neighbors of the vertex in R chosen at that step. The
Bi’s are known in advance. We wish to maximize the number of matches. Call such a
procedure PU .

Suppose that G has a perfect matching, that is every vertex j in R can be matched to
one of its neighbors, say M(j) in L such that every vertex i in L is matched exactly Bi

times. Consider a version of procedure P that does the following: if in a given step the
vertex chosen is j then it is matched to M(j). If i = M(j) is already matched Bi times,
then it is discarded. Call this procedure PK. In this procedure, for a given i ∈ L the
probability that it is matched in a given step is exactly Bi/m. Therefore the expected

number of times i is matched throughout the entire procedure is at least Bi −
√

Bi/2π.
(See Lemma 3.1.)

We now define procedure PU inductively. Suppose that we have defined PU up to
step t−1. Consider step t. Now consider a hybrid procedure Ht that runs PU for t steps
and PK for the remaining steps. Step t of PU is chosen so that the expected number of
matches in Ht is maximized. This can be done without knowing G since the expected
number of matches for a vertex i in L in the remaining steps of PK only depends on
the number of times i is already matched, the probability of a match in one step, Bi/m,
and the number of remaining steps, m − t.(See Section 3.2.1)

Now consider the expected number of matches in Ht and Ht−1. These two differ only
in step t. The choice of the vertex to match to in step t in Ht was defined to maximize
the expected number of matches in the remaining steps. However, for Ht−1 this was
simply a fixed choice given by M . Hence the expected number of matches is only higher
in Ht.

It is easy to see that H0 is identical to PK and Hm is identical to PU . Thus the
expected number of matches in PU is only higher than that in PK. For the latter, this
number is at least

∑

i Bi −
√

Bi/2π.

2. PRELIMINARIES AND MAIN RESULTS

2.1. Adwords problem

In the adwords problem, there are n advertisers, with advertiser i having a budget of
Bi. There are m queries that arrive in a sequence. When query j arrives, the bid bij



of each advertiser i is revealed to the algorithm. Upon assigning query j to advertiser
i, the algorithm gets a revenue of bij , and the budget of advertiser goes down by bij .
The algorithm is allowed to assign a query to an advertiser even if his remaining bud-
get at that point is strictly less than his bid for the query, but get a revenue of just
the remaining budget and not the full bid. Each query can be assigned to at most one
advertiser, a query has to be assigned without knowing which queries arrive in the
future, and an assignment once made cannot be changed. The objective is to maxi-
mize the total revenue subject to the budget constraints. For a given fixed sequence of
queries 1, 2, . . . , m, the optimal objective value of the following LP is an upper bound
on the maximum revenue obtainable.

maximize
∑

j

bij · xij s.t. (1)

∀ i,
∑

j

bij · xij ≤ Bi

∀ j,
∑

i

xij ≤ 1.

∀ i, j, xij ≥ 0

Since queries arrive online, the LP gets revealed one column at a time. The optimum
solution to the full LP only depends on the set of queries and not on the order of arrival.

Let γi = maxj
bij

Bi
be the maximum bid-to-budget ratio for advertiser i, and let

γ = maxi γi be the global largest bid-to-budget ratio. The algorithm knows m and γi’s.
Note that knowing γi’s is same as knowing the maximum bid bi = maxj bij of every
advertiser i.

2.2. Distribution instance

We consider the unknown distribution model for the adwords problem. In this model
each query is drawn i.i.d from a distribution unknown to the algorithm.

The benchmark for all the competitive ratios in this paper is an upper bound on the
expected optimal (fractional) solution to LP 1, where the expectation is over the distri-
bution from which queries are drawn, i.e., expectation over all possible sequences of m
queries. We emphasize that the optimal solution refers to the solution obtained after
knowing the bid values of all the queries that have arrived, i.e., after the full LP has
been revealed. In order to describe the benchmark, we first describe the distribution
instance — an offline instance which is a function of the distribution. Every query in
the support of the distribution is a query in this instance. The budgets of the advertis-
ers in this instance are the same as in the original instance. The bid of advertiser i for
query j is given by mpjbij , where pj is the probability with which query j is drawn. The
intuition is that if queries were drawn from a distribution, then the expected number
of times query j will be seen is exactly mpj, and this is reflected in the distribution
instance by scaling the bids. In sum, the distribution instance is the following:



maximize
∑

j in the support

mpjbij · xij s.t. (2)

∀ i,
∑

j

mpjbij · xij ≤ Bi

∀ j,
∑

i

xij ≤ 1.

∀ i, j, xij ≥ 0

It turns out that the fractional optimal solution to the distribution instance is an
upper bound on the expectation of OPT, where OPT is the offline fractional optimum
of the actual sequence of queries.

LEMMA 2.1. ([Devanur et al. 2011]) OPT[Distribution instance] ≥ E[OPT]

The competitive ratio of an algorithm is defined as the ratio of the expected profit of
the algorithm to the fractional optimal profit for the distribution instance.

2.3. Results

2.3.1. Main result. Our main result for the adwords problem is with an extra assump-
tion that the algorithm is given the amounts of budget consumed (for each advertiser)
by some optimal solution to the distribution instance. As discussed in the introduction,
this requirement is information theoretically strictly weaker than requiring to know
the entire distribution. We prove that given this, there is a simple online algorithm
that achieves the asymptotically optimal competitive ratio of 1 − O(

√
γ). As a corol-

lary we also get a result without this extra assumption in the case where the optimal
solution saturates all the budgets.

THEOREM 2.2. Given the budget consumption Ci from every advertiser i by some
optimal solution to the distribution instance, the adwords problem has an online algo-
rithm that achieves a revenue of

∑

i Ci(1 −
√

γi

2π ).

Remark 2.3. We note the following about Theorem 2.2

(1) Often it could be the case that many advertisers have small γi’s but a few adver-
tisers have large γi’s, thus driving the maximum γ up. But our algorithm’s compet-
itive ratio doesn’t degrade solely based on the maximum γ. Rather, it depends on
all γi’s and is robust to a few outliers.

(2) Our algorithm performs slightly better than what is stated. Let ki = 1
γi

. Then our

algorithm attains a revenue of
∑

i Ci(1 − k
ki
i

ki!eki
) ≥ ∑

i Ci(1 − 1√
2πki

) =
∑

i Ci(1 −
√

γi

2π ).

An immediate corollary of Theorem 2.2 is the following. Note that γ = maxi γi.

COROLLARY 2.4. Given the consumption information for every advertiser i, the ad-
words problem has an online algorithm with a competitive ratio of 1 − O(

√
γ).

Remark 2.5. We note the following about Corollary 2.4.

(1) The competitive ratio of 1 − O(
√

γ) is asymptotically optimal. A simple example
proving this claim is shown in Section 3.3.

(2) This corollary also improves on the best competitive ratio possible in the stochastic
setting from 1 − O(

√
γ log n) [Devanur et al. 2011] to 1 − O(

√
γ).



(3) Another way of stating Corollary 2.4 is that when γ ≤ ǫ2, there is an online algo-
rithm that achieves a 1 − O(ǫ) competitive ratio.

Another corollary of Theorem 2.2 is its application to the special case of online
stochastic matching problem introduced by [Feldman et al. 2009]. In this problem,
all the budgets are equal to 1, and all the bids are either 0 or 1. [Feldman et al.
2009] showed a competitive ratio of 0.67, and this has been improved to 0.702
by [Manshadi et al. 2011]. The corollary is that if the budgets are increased to 2 from
1, the competitive ratio can be improved to 0.729, assuming that the algorithm is given
the number of matches to every left-hand-side (LHS) vertex. It increases even further
for the B-matching problem, to a competitive ratio of 1 − 1√

2πB
. More generally for the

B-matching problem, where LHS vertex i can accept Bi matches, the matching size ob-
tained is

∑

i Ci(1 − 1√
2πBi

) thus giving a factor of at least 1 − 1√
2πB

where B = mini Bi.

COROLLARY 2.6. For the online stochastic B-matching problem, there is an online
algorithm that achieves a revenue of

∑

i Ci(1 − 1√
2πBi

), and thus a competitive ratio of

at least 1 − 1√
2πB

, where B = mini Bi, provided the algorithm is given the number of

matches Ci to every LHS vertex in some optimal solution to the distribution instance.

Note that this shows an interesting trade-off w.r.t. the results of [Feldman et al.
2009]. There is a big improvement possible by just letting the number of possible
matches in the LHS to 2 instead of one, and this is evidently the case for most ap-
plications of matching motivated by online advertising. On the other hand, instead of
having to know the distribution it is enough to know the optimal expected consump-
tions.

2.3.2. Saturated instances. We call an adwords instance a saturated instance when-
ever there exists some optimal solution to the distribution instance such that all adver-
tisers’ budgets are fully consumed, i.e., Ci = Bi. Since Bi’s are known to the algorithm
anyway, this means that for saturated instances the dependence on any distributional
parameter is removed. That is, Theorem 2.2 when specialized to a saturated instance,
will give us an algorithm that achieves a revenue of

∑

i Bi(1−
√

γi

2π ) without the knowl-
edge of any distributional parameter.

THEOREM 2.7. For all γ, any saturated instance of the adwords problem in the
unknown distributional model has an online algorithm that achieves a revenue of
∑

i Bi(1 −
√

γi

2π ) and thus a competitive ratio of at least 1 − O(
√

γ).

On similar lines, Corollaries 2.4 and 2.6 can be specialized to saturated instances,
and hence we can remove in them the knowledge of budget consumption assumption.
We don’t state them here.

2.3.3. Unweighted instances. The most fulfilling result would be to eliminate depen-
dence on any distributional parameter at all, not just for saturated instances (as we
did in Section 2.3.2) but for general instances. We make some progress toward this
goal for a special case of the adwords problem. We show that when every advertiser’s
bid is either b or zero, there is an online algorithm that achieves a competitive ratio of

1 − O(
√

γ
P

i
Bi

OPT
), where, OPT =

∑

i Ci <
∑

i Bi is the total consumption. This is an im-

provement over the factor of 1−O(γ1/7
P

i
Bi

OPT
) given by [Mirrokni et al. 2012] using the

Balance algorithm of [Kalyanasundaram and Pruhs 1998]. Besides, their definition of
γ is always at least as large as ours, and in some cases, could be strictly larger. On the
other hand, their result holds for random permutations, whereas our proof is for i.i.d
with unknown distributions.



We state the result below formally. We call an instance an unweighted instance when
the bids are all of the form 1 or 0. Any result for such instances automatically carry
forward to instances where the bids are of the form b or 0.

THEOREM 2.8. The unweighted instance of the adwords problem in the unknown
distributional model has an online algorithm that achieves a competitive ratio of 1 −
√

γ
2π

P

i
Bi

OPT

Organization. Section 3 deals with saturated instances and proves Theorem 2.7. We
use this result in Section 4 that deals with general instances where the algorithm
is given the budget consumption of every advertiser in some optimal solution to the
distribution instance, and proves Theorem 2.2. Section 5 deals with the special case of
unweighted instances with no knowledge of distribution and proves Theorem 2.8.

3. SATURATED INSTANCES

In this section we describe the algorithm for saturated instances of the adwords prob-
lem.

3.1. Hypothetical-Oblivious algorithm

Before presenting our algorithm, we describe a hypothetical algorithm called
Hypothetical-Oblivious that also achieves a revenue of

∑

i Bi(1 −
√

γi

2π ). The
Hypothetical-Oblivious algorithm uses the solution to the distribution instance (which
is an offline instance) to perform the online allocation of queries. Note that since the
distribution is unknown to the algorithm designer, the distribution instance cannot
be computed, and thus Hypothetical-Oblivious is a hypothetical algorithm. Let {xij}
denote some optimal solution to the distribution instance. When query j arrives, the
algorithm Hypothetical-Oblivious assigns it to advertiser i with probability xij . Thus
Hypothetical-Oblivious is a non-adaptive algorithm that follows the same assignment
probabilities irrespective of the previously arrived queries and their assignments.
Even if the budget of an advertiser has been fully consumed, Hypothetical-Oblivious
does not make any alterations to the said assignment rule, i.e., it will get zero revenue
of such allocations.

3.1.1. Hypothetical-Oblivious algorithm on single-bid instances. In this section, we
restrict attention to instances where advertiser i’s bids are either bi or zero, and relax
this assumption in Section 3.1.2. The Hypothetical-Oblivious algorithm, at any given
time-step, assigns a query to advertiser i with probability

∑

j pjbijxij = Bi/m, where

bij ∈ {0, bi}, and the equality follows from the fact that the solution {xij} consumes
the entire budget in the distribution instance. When bids are 0 or bi, observe that the
Hypothetical-Oblivious algorithm is simply a balls and bins process which, in each
time-step throws a ball into bin i with probability Bi

bim
. Note that full consumption

implies that m ≥ ∑

i
Bi

bi
. We now show that the expected number of balls(queries) in

bin(advertiser) i at the end of this process is at least Bi

bi

(

1 −
√

bi

2πBi

)

= Bi

bi
(1 −

√

γi

2π ).

Since each ball is worth bi, this proves that the revenue in bin i at the end is Bi(1 −
√

γi

2π ).

LEMMA 3.1. In a balls and bins process where a given bin with capacity k receives
a ball with probability k/m at each step, the expected number of balls in the given bin
after m steps is at least k(1 − 1√

2πk
).

PROOF. Let Xm be the binomial random variable denoting the number of balls
thrown at the bin, when m is the total number of balls, and k/m is the probability



with which a ball is thrown at the bin . Clearly E[Xm] = k. The quantity we are inter-
ested in, that is the expected number of balls in the bin after m steps, is E[min(Xm, k)].
This quantity, as proved in [Yan 2011], monotonically decreases in m. In other words,
more balls get wasted (due to overflow) if we throw m + 1 balls with probability k

m+1

each, instead of m balls with probability k
m each. Therefore the quantity E[min(Xm, k)]

attains its minimum as m → ∞, and equals k(1 − kk

k!ek ) ≥ k(1 − 1√
2πk

) [Yan 2011].

Thus the competitive ratio achieved by Hypothetical-Oblivious is at least 1 − kk

k!ek

where k = ⌊1/γ⌋.

COROLLARY 3.2. For any single-bid instance of the adwords problem that is satu-
rated, the Hypothetical-Oblivious algorithm achieves a revenue of

∑

i Bi(1 −
√

γi

2π ).

3.1.2. Extending Hypothetical-Oblivious to arbitrary bids. We now show that the
Hypothetical-Oblivious algorithm can actually achieve the same revenue of

∑

i Bi(1 −
√

γi

2π ) for arbitrary bids.
In the arbitrary bids case, advertiser i’s bids are in [0, bi] (instead of {0, bi} of the

previous section). That is, bi is just the maximum bid and several other smaller bids
are also possible. The Hypothetical-Oblivious algorithm for such instances is like a
balls and bins process albeit the balls can be fractional balls. That is in each step, a ball
of size s ∈ [0, bi] is thrown into the bin i, where s = bij with probability pjxij , and thus,
the expected “amount” of ball aimed at bin i in a single step is

∑

j pjbijxij = Bi/m.

Our argument is that for every bin, any arbitrary bid instance (which we also refer
to as fractional bid instance) never performs worse in expectation compared to the
corresponding single-bid instance (which we also refer to as integral bid instance).
Thus, from now on we fix some particular bin, say i, and the random variables we
define in the rest of this section 3.1.2 are with respect to this particular bin i, though
we drop this index.

Let the random variables Xj
F and Xj

I denote respectively, the amount of ball aimed
at a given bin in step j, when the bids are in [0, b] and {0, b}. Since budgets are fully

consumed, we have that for a given bin of capacity k, the expectations of Xj
F and Xj

I

are equal, i.e., E[Xj
F ] = E[Xj

I ] = k/m.
Let the random variables XF and XI denote respectively, the total amount of balls

aimed at the given bin over all the steps, in the fractional bid and the integral bid
case. That is, XF =

∑

j Xj
F , and XI =

∑

j Xj
I . The amount of ball that has landed in

the given bin (in the fractional bid case) is given by min(k, XF ), and thus E[min(k, XF )]
is the quantity we are interested in. Similarly E[min(k, XI)] is the quantity of interest
for integral bid case. By Lemma 3.1, we know that in the integral bid case the expected

number of balls landed in the bin is E[min(k, XI)] ≥ k(1− kk

k!ek ). If we prove this inequal-
ity for XF also, that completes the proof. For a given expected amount of ball in the
balls and bins process (in this case we have k/m amount of ball thrown in expectation
in each step), the maximum wastage of balls (due to overflow) occurs when the distri-
bution of ball size is extreme, i.e., either b or zero. Thus, the wastage for the [0, b] case is
at most the wastage for {0, b} case, and hence E[min(k, XF )] ≥ E[min(k, XI)]. This fact
follows immediately, for example, from Corollary 4 of [León and Perron 2003]. Thus we
have the following:

COROLLARY 3.3. For any saturated instance of the adwords problem, the
Hypothetical-Oblivious algorithm achieves a revenue of

∑

i Bi(1 −
√

γi

2π ).



ALGORITHM 1: Distribution independent algorithm for saturated instances

Input : Budgets Bi for i ∈ [n], maximum possible bids bi = maxj bij for i ∈ [n] and the total
number of queries m

Output: An online assignment of queries to advertisers

1 Initialize R0
i = Bi for all i;

2 for t = 1 to m do
(1) Let j be the query that arrives at time t

(2) For each advertiser i, compute using Equation (3)

∆t
i = min(bij , R

t−1
i ) + R

“

Bi

bim
, bi, R

t−1
i − min(bij , R

t−1
i ), m − t

”

−R
“

Bi

bim
, bi, R

t−1
i , m − t

”

(3) Assign the query to the advertiser i∗ = argmaxi∈[n] ∆
t
i

(4) Set Rt
i = Rt−1

i for i 6= i∗ and set Rt
i∗ = Rt−1

i∗ − min(bi∗j , R
t−1
i∗ )

3.2. A distribution independent algorithm for saturated instances

We now proceed to construct a distribution independent algorithm for saturated in-
stances of the adwords problem that achieves at least as much revenue as achieved
by the hypothetical algorithm Hypothetical-Oblivious. While our algorithm, given by
Algorithm 1, remains the same for integral and fractional bids case, the argument is
easier for integral bid case. Therefore, we begin with the integral case first.

3.2.1. Single-bid instances (or Integral instances). The idea of our algorithm is quite
simple. When a query arrives, do the following: assuming that the Hypothetical-
Oblivious algorithm will be implemented for the rest of steps, find the advertiser i,
who when assigned the query will maximize the sum of the revenue obtained in this
step together with the residual expected revenue that can be obtained in the remaining
steps (where the residual expected revenue is calculated taking the remaining steps to
be Hypothetical-Oblivious). Since the Hypothetical-Oblivious algorithm is just a balls
and bins process that throws balls of value bi into bin i with probability Bi

bim
, the al-

gorithm is the following: assuming that the remaining steps follow the simple and
non-adaptive balls and bins process that throws a ball of value bi into bin i with prob-
ability Bi

bim
, compute the bin that when assigned the ball will maximize the sum of this

step’s revenue and expected residual revenue.
More formally, let j be the t-th query. We compute the difference in the expected

revenue contributed by i, when it is assigned query j and when it is not assigned query
j. That advertiser who maximizes this difference is assigned the query. The expected
residual revenue R(p, b, k, l) is a function of the following four quantities:

— the probability p with which a ball is thrown into this bin in the balls and bins
process;

— the value b of each ball;
— the remaining space k in the bin;
— the remaining number of balls l;

Let Rt−1
i denote the remaining budget of advertiser i, when the t-th query/ball ar-

rives. Then for each advertiser i, we compute the difference

∆t
i = min(bij , R

t−1
i )+R

(

Bi

bim
, bi, R

t−1
i − min(bij , R

t−1
i ), m − t

)

−R
(

Bi

bim
, bi, R

t−1
i , m − t

)

,

and assign the query to the advertiser i∗ ∈ argmaxi ∆t
i. This is precisely what Algo-

rithm 1 describes.



The quantity R(p, b, k, l) is computed as follows. The residual expected revenue can
be seen as the difference of two quantities

— the expected amount of balls to be aimed at the bin in the remaining steps = blp;
— the expected amount of wasted balls, where waste occurs when ⌈k

b ⌉ or more balls are

thrown, and is given by
∑l

r=⌈ k
b
⌉(rb − k)

(

l
r

)

pr(1 − p)l−r.

Thus we have

R(p, b, k, l) = blp−
l

∑

r=⌈ k
b
⌉

(rb − k)

(

l

r

)

pr(1 − p)l−r (3)

LEMMA 3.4. Algorithm 1 obtains an expected revenue at least as much as the
Hypothetical-Oblivious algorithm.

PROOF. We prove the lemma by a hybrid argument. Let ArPm−r represent a hy-
brid algorithm that runs our algorithm 1 for the first r steps, and the Hypothetical-
Oblivious algorithm for the remaining m − r steps. If for all 1 ≤ r ≤ m we prove that
E[ArPm−r] ≥ E[Ar−1Pm−r+1], we would have proved that E[Am] ≥ E[Pm], and thus the
lemma. But E[ArPm−r] ≥ E[Ar−1Pm−r+1] follows immediately from the definition of
A which makes the expected revenue maximizing choice at any given step assuming
Hypothetical-Oblivious on integer bids for the remaining steps.

3.2.2. Arbitrary bid instances (or fractional instances). We now move on to frac-
tional instances. Our algorithm is the same as for the integral instances, namely 1.
However, the hybrid argument here is a bit more subtle. Let Pm

F denote running the
Hypothetical-Oblivious algorithm on fractional bids for m steps, and let Pm

I denote the
same for integral bids. That is, Pm

I is a balls and bins process where bin i receives a ball

of value bi with probability Bi

bim
and zero otherwise, whereas Pm

F is a fractional balls

and bins process where the expected amount of ball thrown into bin i is Bi

m as in the in-
tegral Hypothetical-Oblivious, but the value of the balls can be anywhere in [0, bi]. Our
proof is going to be that E[Am] ≥ E[Pm

I ]. Note that we do not compare the quantities
that one would want to compare on first thought: namely E[Am] and E[Pm

F ], and the
inequality could possibly go either way in this comparison. Instead we just compare
our algorithm with Hypothetical-Oblivious working on integral instances. Since, we
know from Corollary 3.2 we know that Pm

I has a good competitive ratio, it is enough to
prove that E[Am] ≥ E[Pm

I ].

LEMMA 3.5. E[Am] ≥ E[Pm
I ]

PROOF. We prove this lemma, like Lemma 3.4, by a hybrid argument, albeit with
two levels. Let ArPF Pm−r−1

I denote a hybrid which runs our algorithm 1 for the first
r steps (on the actual instance, which might be fractional), followed by a single step
of Hypothetical-Oblivious on the actual instance (again, this could be fractional), fol-
lowed by m−r−1 steps of Hypothetical-Oblivious on the integral instance (an integral
instance which throws the same expected amount of ball into a bin in a given step as
the fractional instance does). For all 1 ≤ r ≤ m, we prove that

E[ArPm−r
I ] ≥ E[Ar−1PF Pm−r

I ] ≥ E[Ar−1Pm−r+1
I ] (4)

Chaining inequality (4) for all r, we get the Lemma.
The first inequality in (4) follows from the definition of A because it chooses that

bin which maximizes the expected revenue assuming the remaining steps are integral
Hypothetical-Oblivious.



The second inequality has a bin-by-bin proof. Fix a bin, and the proof follows from a
discussion similar to that in Section 3.1.2, namely the maximum wastage occurs when
the distribution of ball size is extreme, i.e., bi or zero. Formally let Xr

F be the ran-
dom variable representing the amount thrown by fractional Hypothetical-Oblivious
in the r-th step, and let the corresponding integral variable Xr

I . If λr−1 is the re-
maining budget after r − 1 steps of A in the given bin, we are interested in how
E[min(λr−1, X

r
F +

∑m
t=r+1 Xt

I)] compares with E[min(λr−1,
∑m

t=r Xt
I)]. Among all dis-

tributions with a fixed expectation, Xr
I is the distribution with extreme ball size

and hence results in maximum wastage due to overflow (and hence minimum ex-
pected revenue), and thus we have the second inequality. This follows from Corollary
4 of [León and Perron 2003].

Lemma 3.5 together with Corollary 3.2 proves Theorem 2.7.

3.3. A tight example showing asymptotic optimality

We now show a simple example that shows that even when the distributions are
known, no algorithm can give a 1 − o(

√
γ) approximation. Consider two advertisers

1 and 2. Advertiser 1 has a budget of 2B and 2 has a budget of B. There are four types
of queries: 0-query, 1-query, 2-query and 1 − 2 query.

(1) The 0-query is worth nothing to both advertisers
(2) The 1-query is worth 1 to advertiser 1 and zero to advertiser 2
(3) The 2-query is worth 2 to advertiser 2 and zero to advertiser 1
(4) The 12-query is worth 1 to advertiser 1 and 2 to advertiser 2

There are totally m queries that arrive online. The 2-query occurs with probability B
2m ,

the 1-query with probability B−
√

B
m , the 12-query with probability

√
B

m and the 0-query

with remaining probability. Notice that the γ for this instance is 1
B . Thus it is enough

to show that a loss of Θ(
√

B) cannot be avoided.

First the distribution instance has B
2 2-queries, B −

√
B 1-queries,

√
B 12-queries

and remaining zero queries. This means that the distribution instance has a revenue
of 2B, which is our benchmark.

Now consider the 12 queries. By Chernoff bounds, with a constant probability at
least a Θ(

√
B) of such queries occur in an instance. In such instances, at least a con-

stant fraction of these 12-queries, i.e., Θ(
√

B) 12-queries, occur at such a point in the
algorithm where,

— with a constant probability the remaining 2-queries could completely exahust ad-
vertiser 2’s budget,

— and with a constant probability the remaining 2-queries could fall short of the bud-
get of advertiser 2 by Θ(

√
B)

Note that by Chernoff bounds these events occur with a constant probability. This is
the situation that confuses the algorithm. Whom to assign such a 12-query to? Giving it
to advertiser 2 will fetch one unit of revenue more, but then with a constant probability
situation 1 occurs in which case it is correct in hindsight to have assigned this query to
advertiser 1, thus creating a loss of 1. On the other hand if the algorithm assigns this
12-query to advertiser 1, with a constant probability situation 2 occurs, thus making
it necessary for each of these Θ(

√
B) queries to have been given to advertiser 2. Thus

for Θ(
√

B) queries, there is a constant probability that the algorithm will lose one unit



of revenue irrespective of what it decides. This costs the algorithm a revenue loss of
Θ(

√
B), thus proving asymptotic tightness.

4. GENERAL INSTANCES WITH CONSUMPTION INFORMATION

In this section, we describe our algorithm for arbitrary instances of adwords, assum-
ing that the algorithm is given with the budget consumption from every advertiser, by
some optimal algorithm for the distribution instance. Let Ci denote the budget con-
sumption from advertiser i by the optimal solution. The Ci’s are part of the input to
the algorithm. Note that Ci ≤ Bi and

∑

i Ci ≤ m.

4.1. Hypothetical-Oblivious algorithm

Like in Section 3, before presenting our algorithm, we first describe the hypothetical
Hypothetical-Oblivious algorithm and show that it also achieves a revenue of

∑

i Ci(1−
√

γi

2π ) =
∑

i Ci

(

1 −
√

bi

2πBi

)

.

4.1.1. Hypothetical-Oblivious algorithm on single-bid instances. Like in Section 3,
we begin with the integral instances, i.e., advertiser i has bids of bi or 0. Let ki =
Bi

bi
. To prove that Hypothetical-Oblivious achieves a revenue of

∑

i Ci(1 −
√

γi

2π ) =
∑

i Ci

(

1 −
√

bi

2πBi

)

, it is enough to prove that the expected revenue from advertiser

i is at least Ci(1 − k
ki
i

ki!eki
) ≥ Ci(1 − 1√

2πki
).

Note that when interpreted as a balls and bins process, Hypothetical-Oblivious cor-
responds to throwing a ball of value bi with probability Ci

bim
into bin i at every step (and

not with probability Bi

bim
). To prove that this process achieves a revenue of Ci(1− k

ki
i

ki!eki
)

is equivalent to proving that the value of wasted balls is at most Ci
k

ki
i

ki!eki
. Dropping

subscripts, and setting bi = 1 since it doesn’t affect analysis below, this means we have
to prove that in a bin of capacity B, when a ball is thrown at every step with probabil-

ity C/m, the expected number of wasted balls is at most BB

B!eB ×C, i.e., BB+1

B!eB × C
B . From

Section 3 Lemma 3.1 we know that BB+1

B!eB is the expected number of wasted balls when
a ball is thrown with probability B/m at every step. All we have to prove now is that
when a ball is thrown with probability C/m, the expected number of wasted balls is at
most C/B fraction of the same when the probability was B/m.

LEMMA 4.1. In a balls and bins process where a given bin with capacity B receives
a ball with probability C/m at each step, the expected number of balls in the given bin

after m steps is at least (1 − BB

B!eB ) × C.

PROOF. Let the random variable Y denote the number of balls wasted after m steps.

Then our goal is to prove that E[Y ] ≤ BB

B!eB × C = BB+1

B!eB × C
B . We have

E[Y ] =

m
∑

r=B+1

(r − B)

(

m

r

) (

C

m

)r (

1 − C

m

)m−r

=

m
∑

r=B+1

(r − B)

(

m

r

) (

B

m

)r (

1 − B

m

)m−r

×
(

C/m

B/m

)r (

1 − C/m

1 − B/m

)m−r

(5)



ALGORITHM 2: Partially distribution dependent algorithm for general instances

Input : Budgets Bi for i ∈ [n], Consumption Ci for i ∈ [n], maximum possible bids
bi = maxj bij for i ∈ [n] and the total number of queries m

Output: An online assignment of queries to advertisers

1 Initialize R0
i = Bi for all i;

2 for t = 1 to m do
(1) Let j be the query that arrives at time t

(2) For each advertiser i, compute using Equation (3)

∆t
i = min(bij , R

t−1
i ) + R

“

Ci

bim
, bi, R

t−1
i − min(bij , R

t−1
i ), m − t

”

−R
“

Ci

bim
, bi, R

t−1
i , m − t

”

(3) Assign the query to the advertiser i∗ = argmaxi∈[n] ∆
t
i

(4) Set Rt
i = Rt−1

i for i 6= i∗ and set Rt
i∗ = Rt−1

i∗ − min(bi∗j , R
t−1
i∗ )

By Lemma 3.1 we know that

m
∑

r=B+1

(r − B)

(

m

r

) (

B

m

)r (

1 − B

m

)m−r

≤ BB+1

B!eB
.

Thus, it’s enough if we prove that for all r ≥ B+1, f(r) =
(

C/m
B/m

)r (

1−C/m
1−B/m

)m−r

≤ C/B.

Since C ≤ B and hence(C
B )(1−B/m

1−C/m ) ≤ 1, the function f(r) decreases with r, and thus

it’s enough to prove that f(B + 1) ≤ C/B.

f(B + 1)

C/B
=

(

C

B

)B (

1 +
B − C

m − B

)m−(B+1)

≤
(

C

B

)B (

1 +
B − C

m − B

)m−B

≤
(

C

B

)B

eB−C

We now have to prove that
(

C
B

)B
eB−C ≤ 1. Let B = tC, and thus t ≥ 1. Thus, what

we need to prove is that e(t−1)C ≤ ttC for t ≥ 1. It is a straight forward exercise in
calculus to prove that et−1 ≤ tt for all t ≥ 1.

Thus f(B + 1) ≤ C/B, and this proves the lemma.

4.1.2. Extending Hypothetical-Oblivious to general bids. Extending Hypothetical-
Oblivious to general bids is identical to the discussion in Section 3.1.2, and we omit
it here.

4.2. An algorithm for general instances with Ci’s as input

We now proceed to give an algorithm that has reduced dependence on distributions,
namely, it uses just the Ci’s as inputs as against the entire distributional knowledge.
The algorithm is very similar to the one presented in Section 3.2 and is presented
below as Algorithm 2.

The only difference from Algorithm 1 is that the calculation of ∆t
i is done using

a probability of Ci

bim
instead of Bi

bim
. Apart from this difference, the two algorithms are

identical, and Lemmas analogous to Lemmas 3.4 and 3.5 can be proven, and combining
them we get Theorem 2.2.

5. UNWEIGHTED INSTANCES WITHOUT HELP OF ANY DISTRIBUTIONAL PARAMETERS

In this section, we prove Theorem 2.8 for unweighted instances. The algorithm used
here is the same as that used for saturated instances, namely Algorithm 1. Since the
revenue of the distribution instance is OPT =

∑

i Ci, to prove Theorem 2.8, i.e., to show



an competitive ratio of 1−
√

γ
2π

P

i Bi

OPT
, it is enough to show that the expected number of

wasted queries in Algorithm 1 is at most
P

i
Bi√

2πk
where k = 1/γ. But note that since

the expected revenue of Hypothetical-Oblivious algorithm for a saturated instance
is at least

∑

i Bi(1 − 1√
2πk

), the expected number of queries wasted by Hypothetical-

Oblivious when working on a saturated unweighted instance is at most
P

i Bi√
2πk

. We now

show that this quantity is an upper bound on the expected number of queries wasted by
our algorithm (Algorithm 1) for any unweighted instance (saturated or unsaturated).

LEMMA 5.1. For any unweighted instance, the expected number of queries wasted
by Algorithm 1 is at most the expected number of queries wasted by Hypothetical-
Oblivious for a saturated instance.

PROOF. We prove this lemma by a hybrid argument. Let PB denote the
Hypothetical-Oblivious algorithm for a saturated instance, and let PC denote the
Hypothetical-Oblivious algorithm for our instance (which might be unsaturated). Let
ArPm−r

B represent a hybrid algorithm that runs our algorithm 1 on the given instance
for the first r steps, and the Hypothetical-Oblivious algorithm on the saturated in-
stance for the remaining m − r steps. Note that A and PB are not just two different
algorithms, but the instances they work on are also different. Let Ar−1PCPm−r

B repre-
sent a hybrid algorithm that runs our algorithm 1 on the given instance for the first
r−1 steps, and the Hypothetical-Oblivious algorithm on the given instance for the next
step, and Hypothetical-Oblivious algorithm on a saturated instance for the remaining
m− r steps. Let W [ArPm−r

B ] denote the expected number of wasted balls when we run

ArPm−r
B . For all 1 ≤ r ≤ m, we prove that

W [ArPm−r
B ] ≤ W [Ar−1PCPm−r

B ] ≤ W [Ar−1Pm−r+1
B ].

Chaining these inequalities for all r, we get the lemma. The first inequality follows by
the definition of A because, it maximizes expected revenue assuming the rest of the
steps follow Hypothetical-Oblivious on a saturated instance. This also means that A
minimizes the expected the number of wasted queries assuming the rest of the steps
follow Hypothetical-Oblivious on a saturated instance. The second inequality follows
trivially because the expected number of wasted queries is no smaller for Hypothetical-
Oblivious on a saturated instance, than on an unsaturated instance.

Lemma 5.1 proves Theorem 2.8.

6. ADVERSARIAL STOCHASTIC INPUTS

One feature of our algorithm is that the underlying distribution from which queries
are drawn need not be the same throughout the algorithm. Even if the distribution
changes over time, all our competitive ratios continue to hold, as long as the dis-
tributions are not “bad”. This notion of time varying distributions was introduced
in [Devanur et al. 2011] and was called as the Adversarial stochastic input model
(ASI). In the ASI model, at every step an adversary picks the distribution from which a
query is to be drawn. The adversary can tailor the distribution based on how the algo-
rithm has performed so far, but it is bound to pick only distributions whose distribution
instance have a minimum consumption Ci from advertiser i. This consumption guar-
antee is the benchmark

∑

i Ci with respect to which the competitive ratio is defined.
The algorithm, as before, is given the consumption information Ci, and the maximum
bid bi possible for each advertiser.

We show here for one of our theorems, how the competitive ratio holds under ASI
model. Other results can be similarly extended and we skip the proofs here. Consider



the saturated instances setting in Section 3. The ASI model for this setting simply
means that the adversary is free to pick any distribution at every step, but the distri-
bution instance must have an optimal solution that saturates budgets. Our algorithm 1
picks the advertiser in each step who maximizes the expected revenue assuming that
the remaining steps look like a balls and bins process where bin i receives a ball with
probability Bi/m. Note that the assumption our algorithm is making is just related to
the budget consumption Bi and is therefore oblivious to the exact distribution that can
guarantee a budget consumption of Bi. A similar argument can be extended for the
general consumption Ci case: the algorithm is oblivious to the exact distribution that
realizes a consumption of Ci for the distribution instance.

7. CONCLUSION

In this paper, we consider the adwords problem in the unknown distribution model and
provide improved competitive ratios for the entire range of budget-to-bid ratios. A sig-
nificant aspect of our results is that asymptotically, the guarantee we get matches the
best guarantee possible even with known distributions, while requiring significantly
less information about the distribution, as we only need to know the Ci’s. With this, we
almost close the last few remaining gaps for the adwords problem in the unknown dis-
tribution model. Some small gaps still remain, however. The most interesting of these
is to remove the assumption that the algorithm needs to know the Ci’s. In fact the al-
gorithm for the saturated instances should just work even for unsaturated instances.
The intuition behind this is that the saturated instances are in fact the worst cases for
this problem. The danger that the algorithm has to avoid is that of “overflow” and the
resulting wastage, that is, assigning too much to a given advertiser so that some of the
queries have to be then wasted. An unsaturated instance has less “stuff” to assign to
begin with, in comparison to a saturated instance. Thus the danger of overflow should
only be smaller for an unsaturated instance. The inability to extend our analysis to un-
saturated instances seems to be more due to technical reasons than due to something
fundamental. Hence we make the following conjecture.

CONJECTURE 7.1. The adwords problem has an online algorithm that achieves a
competitive ratio of 1 − O(

√
γ) for the stochastic unknown distribution model.

A weaker conjecture is that Theorem 2.8 can be extended to the weighted case. The
proof of Lemma 5.1 relied on counting the revenue through the expected number of
wasted queries. This worked because each query was worth either 1 or zero (or more
generally b or zero). Such an accounting scheme will not work for general instances
where different advertisers could value queries at different non-zero values. The ques-
tion is can we still get the ratio obtained for Theorem 2.8. We conjecture that this is
possible.

CONJECTURE 7.2. The adwords problem has an online algorithm that achieves a

competitive ratio of 1 −
√

γ
2π

P

i Bi

OPT
for the stochastic unknown distribution model.
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