
Online Optimization Notes

Stephen J. Barr
ISOM

Foster School of Business
University of Washington
email: stevejb@uw.edu

January 26, 2013

This Version: January 26, 2013
Initial Version: January 7, 2012

1 Online Bipartite Matching

1.1 Bipartite Matching
INPUT: Bipartite Graph G = (V = (L,R), E) and w.l.o.g. |L| = |R| = n. E ⊆ L×R.

OUTPUT: A matching M ⊆ E such that no vertex has > 1 incident edge in the matching M .
OBJECTIVE: Find a matching of maximum size.
Terminology:

• i is matched to j to denote that (i, j) ∈ M .

• A matching is perfect if every vertex is part of the matching.

In online bipartite matching, the structure of G, specifically the vertices in R, is revealed over
time.

1.2 Online BP Matching
DEFINITION:

1. Vertices in R “arrive” 1-by-1

2. A vertex is matched immediately upon arrival

3. Matches, once made, cannot be reversed

An “instance” I of the O.B.M. consists of G and an ordering of arrival of vertices in R.
Consider an algorithm ALG.

• ALG(I) ≜ number of matches picked by ALG on instance I.

1

Online Opt. Notes, Stephen Jeffrey Barr – 2013-01-11 – commit 8606b4f. URL:

• OPT(I) ≜ size of the max. matching in G.

ALG has a competitive ratio (CR) of α if ∀IALG(I) ≥ α ∗ OPT(I). We say: ALG is α-competitive.
Also, we see that, no matter what algorithm we use, we will get an upper bound a ≤ 1

2 .

Algorithm 1. Greedy Algorithm Match (to an arbitrary neighbor) if possible. There is no “intel-
ligence” as to how to break the ties when there are multiple matches.

• # of vertices matched by Greedy − ALG ≥ # of vertices matched by OPT

• # of edges matched by Greedy − ALG = 1
2 vertices matched by ALG.

• Greedy − ALG(I) ≥ 1
2OPT(I)

Now, consider a random algorithm Rand − ALG that picks matchings by flipping a coin. In
the context of Fig. 2, we see that with probablity (w.p.) 1

2 , Rand − ALG(I) = 2 and w.p.
1
2 , Rand − ALG(I) = 1. Thus, E[Rand − ALG(I)] = 3/2. Thus, for random algorithms we redefine
the competitive ratio as

E[ALG(I)] ≥ α ∗ OPT(I) (1)

For randomized algorithms, the upper bound on the competitive ratio is 1− 1
e .

Consider Fig. 3, where there is a perfect matching 1 − a, 2 − b, 3 − c, etc. Divide both left
and right sides in half, and draw edges from bottom half of L to top half of R. Then, in a purely
random matching, most of Llower matches to Rupper, and Rlower is then impossible to match. So,
we need to be smarter than this.

1.3 Fractional Bipartite Matching

Algorithm 2. Fractional BM ∀ edge (i, j) xij ∈ [0, 1] amount of edge is picked up in the matching.
∀ vertex i

∑
j∈iXij ≤ 1.

OBJECTIVE:
max
(i,j)∈E

xij (2)

We see that

Xij =

{
1 (i, j) ∈ M

0 otherwise

xij = P1[Xij = 1]

∀i
∑

jĩXij ≤ 1 → E[
∑

jĩXij] ≤ 1 ⇒
∑

j xij ≤ 1.∑
(i,j)∈E

xij = E[
∑

(i,j)∈E

Xij] = E[ALG(I)]

From this we see that randomized algorithms can be written as deterministic fractional algo-
rithm (DFA). The upper bound in DFA ⇒ upper bound in randomized algorithm.

2

Online Opt. Notes, Stephen Jeffrey Barr – 2013-01-11 – commit 8606b4f. URL:

1.3.1 Upper Bound on Fractional BM

When we get a vertex j ∈ R, we divide it equally among all of the incident i ∈ L that are not
completely matched. Doing this repeatedly, the vertices in L fill up and reach 1. For large n, we
see that the first n we match fully and the rest we do not match at all. We see that the ith vertex
got

1

n
+

1

n− 1
+ ...+

1

i
= Hn −Hi+1

Setting the above = 1,
In the situation where we do not divide equally, we become strictly worse off. This proves the

upper bound of 1 − 1
e . This means that no fractional algorithm can do better than this, and no

randomized algorithm can do better than this

1.3.2 What about algorithms?

Water Level Algorithm. Objective: find a fractional matching. Consider the water level algo-
rithm. The LHS are bins for water, and the RHS are sources of water. All bins have unit capacity.
When you are filling bins, fill the lowest one. When you have multiple bins at the same lowest
level, divide the water equally.

Terminology:

• Xij = fraction of edge (i, j)

• yi =
∑

jĩ xij ≊ level of water in bin i

• When j arrives, repeate:

– ∀ vertices i ∈ arg mini′{yi′} increment xij by dx

• Until either
∑

ij̃ xij = 1 or arg mini′{yi′} = 1.

How do we analyse this algorithm? Consider the greedy algorithm, which matches to any
arbitrary neighbor which is not yet matched. The algorithm always gets at least half optimal.
Denote by αi to be the total money (50 cents from a dollar) placed on i by ALG. βj ∈ L is the total
money placed on j ∈ R by ALG. Let g(x) = ex−1.

• g(0) = 1/e

• g(1) = 1

•
∫ a
0 g(x)dx = g(a)− (1/e)

In a matching, consider a quantity dx which gets split between i and j. i gets dx∗ g(yi) (and αi

gets incremented by that much), and j gets dx(1− g(yi)) (and βj) gets incremented by that much.
Considering ai as a function,

αi =

∫ yfi

0
g(yi)dyi = g(yfi)− (1/e)

3

Online Opt. Notes, Stephen Jeffrey Barr – 2013-01-11 – commit 8606b4f. URL:

where yfi denotes a “final” value. If yfi = 1, then αi = g(1) − 1/e = 1 − (1/e). OTOH, suppose
yfi < 1, then

∑
ij̃ xij = 1, meaning j was completely matched before i. It must also be the case

that βj ≥ 1− g(yfi). All this means that

αi + βj = g(yfi − (1/e) + 1− g(yfi) = 1− (1/e).

The question is, where did g(·) come from?

1.3.3 Derivation of g(·)

Denote
∫
g(x)dx = G(x). Then

αi =

∫ yfi

0
g(yi)dyi = g(yfi)− (1/e) = G(yfi)−G(0)

If yfi is 1, then αi = 1− (1/e) = G(1)−G(0) ≥ γ.

αi + βj ≥ G(yfi)−G(0)︸ ︷︷ ︸
αi

+1− g(yfi)︸ ︷︷ ︸
βi

≥ γ∀yfi ∈ [0, 1]

Differentiating the above and setting to 0,

g(yfi)−
dg

dyfi
= 0 ⇒ g(yfi) =

dg

dyfi
∀yfi ∈ [0, 1]

which we can solve as ∫
dy =

∫
dg/g

y = lng + c

ey = g ∗ ec

g = ey−c

G = ey−c.1−G(0) ≥ γ

1− e−c ≥ γ

G(1)−G(0) ≥ γ

g(1) ≤ 1

e1−c ≤ 1 ⇒
c · 1

c = 1is the optimal

The above differential equation and boundary condition are what derives the g(·) function.

4

Online Opt. Notes, Stephen Jeffrey Barr – 2013-01-11 – commit 8606b4f. URL:

1.3.4 Fractional Matching LP

max
∑
i,j∈E

xijs.t.

∀i ∈ L
∑
jĩ

xij ≤ 1 (αi)

∀j ∈ R
∑
ij̃

xij ≤ 1 (βi)

∀(i, j) ∈ Exij ≥ 0

The dual of this is

min
∑
i

αi +
∑
j

βj

∀(ij ∈ E)αi + βj ≥ 1

αiβj ≥ 0.

Weak duality says that feasible primal ≤ OPT ≤ feasible dual. We will show that feasible
primal and feasible dual are within γ of each other. We can think of this as that each i makes an
offer, and j picks the best offer.

1.3.5 b−matching (KP-2000)

This is an integral matching. But, every vertex i ∈ L can be matched b times. Every j ∈ R can
be matched only once. They give a 1 − (1/e) competitive algorithm. The assignment is to derive
a proof of 1− (1/e) based on the proof in class. Can prove to analysis to KP 2000.

2 Adwords (Budgeted Allocation) Problem
• Given a set of advertisers

• Each i ∈ L has a budget Bi

• Set of “queries”, R

• ∀j ∈ R, ∀i ∈ L, there is a bid bij .

• Each query can be matched to ≤ 1 advertiser

• Objective: Maximize for each advertiser∑
j

min{
∑
j:j→i

bij , Bi}

In the adwords problem, we assume that bij/Bi << 1, meaning each individual bid is well under
the total budget.

5

Online Opt. Notes, Stephen Jeffrey Barr – 2013-01-11 – commit 8606b4f. URL:

2.1 Fractional Budget Allocation
Assume fractional matching: xij is the fraction of j that is matched to i. Then the matching
constraints become

∑
i xij ≤ 1. The new objective is:

max
∑
i,j

bijxij

Note that is the bids get smaller and smaller, the Budgeted Allocation problem becomes the
fractional budget problem.

2.1.1 Fractional BA LP and Dual

LP:

max
∑
i,j

bijxij s.t.

∀j
∑
i

xij ≤ 1 (βj)

∀i
∑
j

xij ≤ 1 (αi)

xij ≥ 0

Dual:

min
∑
i

αiBi +
∑
j

βjs.t.

∀ijβj + αibij ≥ bij

αi, βj ≥ 0

Suggested exercise: Extend the primal dual analysis from class to the functional BA problem.

6

Online Opt. Notes, Stephen Jeffrey Barr – 2013-01-11 – commit 8606b4f. URL:

	Online Bipartite Matching
	Bipartite Matching
	Online BP Matching
	Fractional Bipartite Matching
	Upper Bound on Fractional BM
	What about algorithms?
	Derivation of g()
	Fractional Matching LP
	b-matching (KP-2000)

	Adwords (Budgeted Allocation) Problem
	Fractional Budget Allocation
	Fractional BA LP and Dual

