
Online Algorithms

LECTURE 7

Inscribed by: Amin Jalali

1. Review

Recall from previous lectures that we have already covered the following
models:

Adversarial Model
Random Order Model where unlike the adversarial model, the order

is random and we have a near 1 approximation of the optimal value as the
result. This is in fact equivalent to sampling without replacement.

Today, we will discuss a model where we perform sampling with replace-
ment and, as we will see, it will lead to better approximation results.

2. i.i.d. model with unknown distribution

Recall the bipartite matching problem where an offline vertex set L is given.
Moreover, the vertices in R are sampled (independently and identically)

from a given probability distribution with finite support R̂ to which the
algorithm is blind.

- Each j ∈ R̂ is identified by its neighbors in L
- The probability of picking vertex j is p(j) with

∑
j∈R̂ p(j) = 1

This probability distribution corresponds to the so called distribution
graph with left hand nodes L and right hand nodes R̂ with corresponding
probabilities from p(·) . We will have the actual graph via m i.i.d. samples
of this distribution graph.

Remark. We assume that m, the number of vertices that arrive, is known
to the algorithm.
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Notice that in this analysis, both OPT and ALG are random variables.
In fact, the value of OPT depends on the arriving vertices. Thus, we will
look for a guarantee of the form

(2.1) E[ALG] ≥ γ · E[OPT]

as well as a statement in the concentration form as

(2.2) ALG ≥ γ ·OPT holds with high probability.

Definition 1. Define the expected instance similar to distribution graph
where each node j has a supply of p(j) ·m which is equal to the expected
number of the times we see j in the online process.

Definition 2. Denote the deterministic value OPT as the OPT value over
the expected instance such that

OPT ≥ E[OPT] .

This definition allows us to only prove the following sufficient condition
to ensure (2.1),

(2.3) E[ALG] ≥ γ ·OPT .

With these definitions we have the following expected LP,

(2.4)

OPT = max
∑

i,j xij

s.t
∑

j xij ≤ 1 for all i ∈ L∑
i xij ≤ m · p(j) for all j ∈ R̂

xij ≥ 0 for all i, j .

Lemma 3 (Main result). OPT ≥ E[OPT] .

Proof. In OPT, define the following set of indicator variables

Xij =

{
1 if some copy of j is matched to i

0 otherwise .

Xij is a random variable because it depends on the sample we got. Moreover,
define xij = E[Xij ] . This implies{

∀i :
∑

j Xij ≤ 1⇒
∑

j xij ≤ 1

∀j :
∑

iXij ≤ #of times j appears in R ⇒
∑

i xij ≤ p(j) ·m.

Thus, {xij}i,j is a feasible solution to the LP in (2.4) and we have∑
i,j

xij = E[
∑
i,j

Xij ] = E[OPT] ≤ OPT .

�

Theorem 4. Greedy is (1− 1
e )−competitive in the i.i.d. model with unknown

(to the algorithm) distribution.
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Proof. Consider dividing L into the set of matched (U) and unmatched
vertices.

Notice that the probability that a new vertex in R can be matched is
equal to the probability of that vertex having neighbor in U . Following this
definition, we present an auxiliary algorithm.

Hypothetical Algorithm: Given j , match it to i with probability
Xij

p(j)·m .

This is clearly worse than a greedy approach and we will use this fact later.
Now, consider j which arrives with probability p(j) . Thus, for a given i ,
the probability that i gets matched in one step is∑

j

p(j) · Xij

p(j) ·m
=
Xij

m
.

Therefore, the probability that this hypothetical algorithm matches some-

thing to U is equal to
∑

i∈U , j
Xij

m . This, from definition of Xij , gives,

ALG(t) = |L\U| ≥
∑
i∈U , j

Xij

which together with OPT =
∑

i, j Xij gives OPT − ALG(t) ≤
∑

i∈U , j Xij .
Thus, we have

E [ALG(t+ 1) | ALG(t)] = ALG(t) + P[Greedy matches a vertex in U ]

≥ ALG(t) + P[Hypothetical algorithm matches a vertex in U ]

≥ ALG(t) + (
∑

i∈U , j∈R̂Xij)/m

≥ ALG(t) + (OPT−ALG(t))/m

and results in

E
[
OPT−ALG(t+ 1) | ALG(t)

]
≤ OPT−ALG(t)− (OPT−ALG(t))/m

= (OPT−ALG(t))(1− 1/m)

which finally yields

E
[
OPT−ALG

]
≤ OPT(1− 1

m)m ≤ OPT
e ⇒ E[ALG] ≥ (1− 1

e )OPT

�

Suggested Exercise. Generalize the presented approach to (Integral) Bud-
geted Allocation problem without the assumption bij � Bi .

3. B-Matching

Consider the B-Matching problem in which each vertex i ∈ L can be
matched Bi times and each j ∈ R only once. We assume Bi ≥ K .

Remark. We will show that as Bi increases, the guarantee goes to 1. How-
ever, on the contrary to the guarantees we saw before, where we get the
improvement only for large enough Bi’s, the guarantee kicks in from the
beginning in here.
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Assumptions: For the sake of simplicity assume |R̂| = m , and p(j) = 1/m

for all j ∈ R̂ . In this case, the expected instance is simply an integral
matching problem. Further, suppose that there exists a perfect matching
in the expected instance; i.e. each j is matched to M(j) and each i ∈ L is
matched Bi times. This implies OPT =

∑
iBi = m and we need this to

make sure that all the budgets get exhausted.

Pure Random Algorithm P : This algorithm,

- knows the expected instance and the perfect matching,
- is non-adaptive; makes all the decisions ahead of time; makes its choice

even if the vertex i has exhausted its budget (corresponding to throw-
ing it away),

- always matches j to M(j) , but gets credit only if it makes at most Bi

matches.

In fact, for all steps,

P[i is matched in 1 step] =
Bi

m
=

# of j’s matched to i

total number of j’s

which is a uniform distribution.

This algorithm is in fact a Balls and Bins process and is independent of
the graph and

- each i corresponds to a bin with capacity i, with
∑

iBi = m ,

- in each round we throw a ball into bin i with probability Bi
m ,

- repeat m times.

Therefore, denoting by Xi the number of balls thrown into bin i, we have
E[Xi] = Bi which is not considering the capacities. In fact, we are looking
for E[min{Xi, Bi}] instead. Considering

P[Xi = `] =

(
m

`

)
·
(
Bi

m

)`

·
(

1− Bi

m

)(m−`)

we can calculate the desired expectation from

E[min{Xi, Bi}] =

Bi∑
`=1

` · P[Xi = `] +
m∑

`=Bi+1

Bi · P[Xi = `] .

Observe that E[min{Xi, Bi}] is monotonically decreasing in m considering
the fact that E[Xi] = Bi is fixed. Thus, we can look at the limit as

lim
m→∞

E[min{Xi, Bi}] = Bi −
√
Bi

2π
= Bi(1−

1√
2πBi

) ≥ Bi(1−
1√

2πK
)

which implies

E[P] =
∑
i

Bi(1−
1√

2πK
) = OPT(1− 1√

2πK
) ≥ OPT(1− ε)
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for ε ≥ 1/
√

2πK that is equivalent to

(3.1) K ≥ 1√
2πε2

.

Remark. Compare this result to what we had before as

Bi

bmax
i

≥ o(n log(mn))

ε2
.

However, we started out with unknown distribution. As we will see in
the sequel, we can get similar guarantees by designing an algorithm that
does not know about the distribution.

3.1. Main Algorithm

We will define the algorithm inductively. Suppose we could magically start
using the Pure Random algorithm (P) after the tth step and denote such an
algorithm by hybrid algorithm; i.e.

Ht = A1,A2, . . . ,At−1, ? ,Pt+1,Pt+2, . . .Pm .
Consider the following procedure: given j in the tth step, for any choice

of i that is an unmatched neighbor of j, evaluate the expected number of
matches in the remaining time for Ht . Match j to i that maximizes this;
i.e. match j to

arg max
i: i∼j

{
E[Ht] | At = i,A1,A2, . . . ,At−1

}
where At = i is equivalent to matching j to i at step t . This defines At and
hence the algorithm. Considering,

Ht = A1,A2, . . . ,At−1,At,Pt+1,Pt+2, . . . ,Pm
Ht−1 = A1,A2, . . . ,At−1,Pt,Pt+1,Pt+2, . . . ,Pm .

we have E
[
Ht
]
≥ E

[
Ht−1] from the definition where At is always trying to

do better than pure random algorithm. Listing the values from every step
yields

(3.2) E[ALG] = E [Hm] ≥ E
[
Hm−1] ≥ . . . ≥ E

[
H0
]

= E[P].

Notice that even though we do not know the distribution, the adaptiveness
of our algorithm leads to getting E[ALG] in the end.

However, the remaining question is how we can perform the aforemen-
tioned magical step. In fact, we can estimate the expected number of
matches by its equivalence to a balls and bins procedure. To perform this
calculation, we need the remaining capacity, the probability of match in one
step, and the number of remaining steps.

Suggested Exercise. Extend the presented algorithm and analysis to
Budgeted Allocation Problem with integral parameters. Here is the sketch
of analysis: denote by Xi the sum of bij ’s where E[Xi] = Bi and for each
time step we have E[Xt

i ] = Bi/m . Then, E[min{Xi, Bi}] is the smallest
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when bij ∈ {0, bmax
i }. The algorithm is as follows: evaluate profit in the

current step plus the expected remaining profit (assuming the condition on
bij ’s). The final guarantee is in the form

ALG ≥ OPT(1− 1√
2πK

)

where Bi/b
max
i ≥ K . Observe that the analysis works for non-uniform

distributions.
For this, look at the remaining budget plus to what we have in every

step because in this case bij ’s are not equal to one as above.


