
JAN 11 NOTES FROM CSE 599: ONLINE ALGORITHMS

Previously, we saw that the competitive ratio for algorithms on the fractional
online bipartite matching problem is bounded above by 1 − 1

e . Below we will see
an algorithm that achieves this bound.

1. Water Level Algorithm

First, we describe the algorithm. Let xij denote the value placed on edge (i, j)
(the amount of water flowing from j to i). Let yi =

∑
j∼i xij be the sum of the

values of all the edges incident to i (the level of water in bin i).
Now, when a new vertex j arrives, we do the following: While

∑
i∼j xij < 1 and

mini′∼jyi′ < 1, increment xij by dx for each i in argmini′∼jyi′ .

Proposition 1. The algorithm described above has competitive ratio at least 1− 1
e .

Proof. Let αi denote the total money placed on a left vertex i by the algorithm
(ALG) and let βj denote the total money placed on a right vertex j by ALG. Define

the function g(x) = ex−1. Let yfi denote the value of yi at the termination of the

algorithm (similarly for αf
i ,...).

Fix an edge (i, j). If the algorithm assigns value dx to the edge (i, j), then we
increment αi by g(yi)dx and βj by (1− g(yi))dx.

Now if we show that αf
i + βf

i ≥ 1− 1
e for edge (i, j), the proof will be complete.

Note that

αf
i =

∫ yf
i

0

g(yi)dyi = g(yfi )− 1

e

By the monotonicity of g, we have that g(yi) ≤ g(yfi ) throughout the process.

Hence βf
j ≥ 1− g(yfi ). Thus we have that αf

i + βf
i ≥ 1− 1

e . �

Remark 2. The g in the above proof can be derived from the properties we desire
it to have. If we let G(y) =

∫ y

0
g(x)dx and γ be the target competitive ratio, then

we have the desired properties G(1)−G(0) = γ and G(yfi )−G(0) + 1− g(yfi ) = γ.
From these equations, we can get a differential equation (by differentiating the
second equation) and boundary conditions. Solving these, we obtain the function
g.

We can also look at this from the viewpoint of linear programming (LP). Written
as an LP, the fractional bipartite matching problem has the form:

max
∑

(i,j)∈E xij such that

•
∑

j∼i xij ≤ 1 for every i ∈ L
•
∑

i∼j xij ≤ 1 for every j ∈ R
• xij ≥ 0

This LP has the following dual:
min

∑
i αi +

∑
j βj such that

• αi + βj ≥ 1 for all (i, j) ∈ E
• αi, βj ≥ 0
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Above, we showed that αi + βj ≥ γ = 1− 1
e . Thus, if we scale the constraints in

the dual problem by γ (i.e. we require ≥ γ instead of ≥ 1 ), then we obtain a feasible
dual problem. This scaling corresponds to multiplying the objective function in the
primal problem by γ. Thus, using weak duality we have the following inequality:

γPRIMAL ≤ γOPT ≤ FEASIBLE DUAL

Now by noting that our algorithm determines an instance of FEASIBLE DUAL and
by dividing by OPT, we see a proof that the competitive ratio is bounded below
by γ.

2. Budget Allocation (Adwords) Problem

For this problem, we introduce the following notation. Let L (the left vertices)
be a set of advertisers. Each i ∈ L has a budget Bi. Let R (the right vertices)
be a set of “queries.” For every j ∈ R and i ∈ L, we have a bid bij . Now each
query can be matched to at most one advertiser. Then the quantity that we want
to maximize is: ∑

i

min

 ∑
j:j→i

bij , Bi


For the adwords case of this problem, we make the additional assumption that
bij
Bi
� 1.

The fractional version of this problem is easier to work with and, under the
adwords assumption, produces similar results. In the fractional setting we define
xij to be the weight that we place on an edge bij . Then the problem becomes the
following LP:

max
∑

(i,j) bijxij such that

•
∑

i xij ≤ 1 for every j ∈ R
•
∑

j bijxij ≤ Bi for every i ∈ L
• xij ≥ 0

This problem has the dual:
min

∑
i αiBi +

∑
j βj such that

• αibij + βj ≥ bij for all (i, j)
• αi, βj ≥ 0


