
Online Set Cover

CS 599I Online Algorithms

February 27

1 The Set Cover Problem

We are given a universe of elements U , where |U| = n, and m subsets of U : S1, . . . , Sm, such that⋃
i Si = U . A set cover for this instance is defined as any I ⊆ [m] such that

⋃
i∈I Si = U . The goal

of the problem is to find the set I of minimum size.

This is the unweighted version of set cover, since each set has an equal weight of 1. It is known
that the offline instance of Set Cover is NP-hard.

2 Offline Approximation Algorithms

We present two algorithms for the offline version of Set Cover that both give a O(log n) approxi-
mation ratio.

2.1 The Greedy Algorithm

The first algorithm, Greedy, works by greedily choosing the set that covers most of the elements
that are still not covered by any set. More formally:

1. I ← {}

2. While U 6= ∅:

(a) Pick j = arg maxi |Si| and let I ← I ∪ {j}.
(b) U ← U \ Sj .

(c) ∀i ∈ [m] : Si ← Si \ Sj .

Theorem 2.1. Greedyis an O(log n) approximation algorithm for Set Cover.

Proof. (sketch) Let T1, . . . , Tr be the sets picked by Greedy. Let us also denote by ti the number
of elements covered for the first time by the set Ti, where i = 1, . . . , r. Finally, assume that the
optimum solution (OPT) has size O.

At the first iteration, since Greedychooses the set of maximum size, t1 will be at least as
large as the average set size chosen by OPT. Hence, t1 ≥ n/O. Following similar reasoning, for

1



i = 1, . . . , r, we have that ti ≥ (n−
∑i−1

j=1 tj)/O. After some calculations, we conclude that indeed
r ≤ O(log n)O.

2.2 The LP Algorithm

The second algorithm is based on linear programming and randomized rounding. First, we express
Set Cover as an integer linear program. For this, we use an indicator variable xi which denotes
whether set Si is chosen in the cover (value 1) or not (value 0).

minimize
∑
i∈[m]

xi

subject to ∀e ∈ U :
∑

i:e∈Si

xi ≥ 1

∀i ∈ [m] : xi = {0, 1}

We obtain the relaxed version of the program by allowing xi to take any real value between
[0, 1]; hence, for the LP the last condition becomes xi ≥ 0. By solving the relaxed LP, we obtain a
fractional solution x∗, where

∑
i∈[m] x

∗
i ≤ OPT . We then round the fractional solution to obtain

an integer one. The algorithm, Randomized Rounding, can be summarized as follows:

1. Solve the relaxed LP to obtain the optimum solution x∗. Let I ← ∅.

2. For 4 log n times repeat:

(a) ∀i ∈ [m], let I ← I ∪ {i} with probability x∗i .

Theorem 2.2. Randomized Rounding gives:

1. a feasible solution with probability ≥ 1− 1/n2.

2. E[I] = O(log n)
∑

i x
∗
i ≤ O(log n)OPT .

Proof. We first show (2). Fix some iteration k = 1, . . . , 4 log n. Let Xi be the indicator random
variable that denotes whether we pick set Si during iteration k. We have that Pr[Xi = 1] = x∗i
and Pr[Xi = 1] = 1− x∗i . If X =

∑
i∈[m] Xi, by linearity of expectation:

E[X] =
∑
i∈[m]

E[Xi] =
∑
i∈[m]

x∗i

Summing over all rounds, we obtain that the expected size of I will be at most (4 log n)
∑

i∈[m] x
∗
i .

In order to show (1), we fix some element f ∈ U and some iteration k. We then compute the
probability that the element is not covered in this iteration:

Pr[f not covered at k] =
∏

i:f∈Si

(1− x∗i ) ≤
∏

i:f∈Si

e−x
∗
i = e−

∑
i:f∈Si

x∗i ≤ e−1

where the first inequality comes from the fact that for any x ≥ 0, 1 − x ≤ e−x and the second
inequality from the fact that x∗ is a feasible solution for the LP. Now, since every iteration has
independent choices, the probability that f is not covered at all is:

Pr[f not covered] ≤ (1/e)4 logn ≤ 1/n3

We have proven this bound for a fixed element f . We next apply the union bound to conclude that
the probability that there exists some element f not covered at all is at most n(1/n3) = 1/n2.

2



3 Online Algorithms

In the online setting of Set Cover, we are initially given the m sets, but we do not know which
elements they contain. At any time t, we get a new element et and learn which sets contain et.
We then have to irrevocably pick a set that will cover et if it is not already covered. The goal is
again to minimize the number of sets we pick.

We first give a lower bound on the competitive ratio of Online Set Cover. Consider an instance
where U = {1, . . . , n} and S1, . . . , Sm are all the sets of size

√
n. The adversary will repeat the

following strategy for
√
n iterations: pick any element that is not covered by the current solution.

This implies that any deterministic algorithm will construct a solution with cost
√
n. On the other

hand, some set Sj will cover all the elements chosen by the adversary and thus OPT = 1. This
gives a lower bound of

√
n. However, notice that the number of sets in this case is m =

(
n√
n

)
.

We next present an online algorithm with competitive ratio that depends on both m,n. As a
first step, we will give an algorithm for the fractional version of Set Cover.

1. For every i ∈ [m], initialize xi ← 1/m2.

2. At time t, when et arrives

(a) Set ye ← 0.

(b) While
∑

i:et∈Si
xi < 1:

• ∀i s.t.et ∈ Si : xi ← 2xi

• yet ← yet + 1.

The lines in blue explain how we construct in parallel with the primal solution for the LP a
solution for the dual LP, which is the following:

maximize
∑
e∈U

ye

subject to ∀i ∈ [m] :
∑
e∈Si

ye ≤ 1

∀e ∈ U : ye ≥ 0

The dual variables will only be used for the analysis of the algorithm.

Theorem 3.1. The Online Fractional algorithm has a O(logm) competitive ratio.

Proof. The analysis is based on a primal-dual argument. In particular, we will show how to con-
struct a feasible dual solution y∗ such that the total cost of the algorithm is at most O(logm)

∑
e y
∗
e .

Since the cost of a feasible dual is at most the cost of the optimal primal solution, this proves the
theorem. To show this, we will prove two claims. Let Ut be the set of elements that appear through
time t.

Claim 1. At any time t,
∑m

i=1 xi ≤
∑

e∈Ut ye + 1/m.

We will show this using induction. Before the first iteration, we have that
∑m

i=1 xi =∑m
i=1 1/m2 = 1/m, whereas

∑
e∈Ut ye = 0; so this holds with equality. Now, consider some time

t. If the constraint is satisfied, then nothing changes. Otherwise, we have that
∑

i:et∈Si
xold
i < 1,

where xold
i is the value of the variable before time t. In this case, the new value will be xi = 2xold

i .

3



Hence, the change on the LHS of the inequality will be
∑m

i=1(xi − xold
i ) =

∑m
i=1 x

old
i < 1, whereas

the change on the RHS is exactly 1.

Claim 2. The solution y∗e = ye/(2 logm) is a feasible dual solution.

To show this claim, we have to prove that for any set Si,
∑

e∈Si
ye ≤ 2 logm. Indeed, notice

that one of the ye increases only in the case where the variable xi doubles. Moreover, once xi

reaches 1, it does not need to double again. Since the starting value of xi is 1/m2, xi can be
doubled at most O(logm) times.

Thus, we can compute online a fractional solution with competitive ratio O(logm). To obtain
an online integer solution for Set Cover, we can use the randomized rounding technique from the
previous section, which will give an additional O(log n) factor in the competitive ratio.

Theorem 3.2. The competitive ratio for Online Set Cover is O(log n logm).

4


	The Set Cover Problem
	Offline Approximation Algorithms
	The Greedy Algorithm
	The LP Algorithm

	Online Algorithms

