
Online Algorithms: Feb 20, 2013

1 Last Lecture

1. Game Theory (MinMax)

2. Online Load balancing:
Machines and jobs. Each job has a different load in each machine. As
soon as the job arrives we have to assign it somewhere. We have keep the
load as balanced as possible. We used the exponential potential function.
We arrived at a O(log(m)) approximation. We knew an upper bound on
OPT. How is that justified?

2 Today

We get rid of the assumption that we have an upper bound on OPT. We lose
a constant but we still get O(log(m)). We will use the “doubling trick”. It
converts any algorithm that has to know OPT to one that doesn’t have to.
Suppose that you are given an ALG that has to know an upper bound on OPT.
The algorithm is a γ approximation when it knows an upper bound Λ ≥ OPT .
Then there exists an algorithm that is 4γ competitive. What is the algorithm?

1. First guess of OPT: Assume that the first observation is the only one.
Initialize a run of ALG with that upper bound for OPT.

2. While there exists a job j, use run(ALG) with Λ unless it fails. A run
fails when the cost of ALG is bigger than γΛ.

3. When the run fails double Λ. Initialize a new run of the algorithm with
the new guess 2Λ. Start over from (1).

We will have to do this potentially many times. Every time we double Λ we
forget everything. The new run does not use any of the history.

2.1 Properties of this “new” algorithm

1. The values of Λ are Λ0, 2Λ0, ..., 2
hΛ0.

2. OPT ≥ 2h−1Λ0

That’s because the algorithm doubled when Λ = 2h−1Λ0 so OPT ≥ Λ.

3. Consider the cost ALG2kΛ0
. We do not let the job that caused the run to

fail to get assigned somewhere. Therefore the cost of this algorithm is at
most γ2kΛ0:

4. Conclusion: The total cost of the algorithm is:

ALG ≤ γΛ0 + γ2Λ0 + ...+ γ2hΛ0 =

1



γΛ0(2h+1 − 1) ≤ 4γΛ02h−1 ≤ 4γOPT

It might be smaller actually but it never exceeds that quantity.

2.2 General Resource Allocation

We have resources i ∈ {1...n} and requests j ∈ {1...m}. For every request j
there is a feasible set of options Fj and each option k ∈ Fj consumes a(i, j, k)
of the resource i. Goal: min(maxi(

∑
j,j→k a(i, j, k))). Standard examples of

problems that can be modeled as such are:

1. Load Balancing with permanent jobs.

2. In network routing we have a graph G = (V,E) where the resources are
the edges. The requests are s-t vertices and the options are s-t paths. The
goal here is to avoid congestion.

3. Load Balancing with temporary jobs. Here jobs have both a load and
a duration that can depend on the machine (di,j). The job has to be
scheduled immediately. When it is scheduled to a machine, it runs there
for the associated duration. Suppose job i is scheduled to machine j. Now
the machine incurs a load of li,j for a duration di,j till finishing time fj .
The load of a machine is:

L(i, t) =
∑

j→i,t∈[Mj ,fj ]

li,j

Here we want to minimize the maximum load at a machine at any given
time (minimize the maximum L(i, t) over all i, t). Time here is discrete and
all durations are integers. We assume that we know an upper bound on
the duration T ≥ di,j . The algorithm will initialize a resource allocation
instance Ik for all jobs j with Rj ∈ ((k − 1)T, kT ] (release time is in that
interval). If you assign a job j to a machine i it consumes li,j of resources
i, t for every time moment t in the interval of execution (Rj , fi,j ]. We know
that ALG(Ik) ≤ O(log(nT ))OPT (Ik). Notice that for t ∈ ((k − 1)T, kT ]:

L(i, t) ≤ load of (i, T + t) in Ik−1 + load of (i, t) in Ik

≤ O(log(nt))[OPT (Ik−1) +OPT (Ik)]

Notice that ∀k,OPT ≥ OPT (Ik), therefore:

L(i, t) ≤ 2O(log(nT ))OPT

2.3 Suggested Exercise

A single machine and jobs. Each job has a release time Rj , a deadline Sj and a
weight wj . Time is discrete and each job takes one time slot in (Rj ,Sj ]. We have
to maximize the weight of scheduled jobs. We have the option of not scheduling
a job.

2



2.4 Secretary Problem

Setting:

• There are n secretaries, s1 through sn.

• There is an ordering on the secretaries σ : [n]→ {s1, ..., sn}

• Secretaries arrive online. When si arrives:

– Determine whether she/he is the best one you’ve seen so far.

– Hire or don’t hire immediately and irrevocably.

The goal is to hire the best secretary (Pointwise, not in expectation of rank).
Notice that if we pick one at random then we will get the best one w.p. ≤ 1

n .
Now let’s assume that the secretaries arrive in a random permutation. Algo-
rithm with parameter r: Sample the first r secretaries. Afterwards hire the first
secretary whose rank exceeds the maximum rank of the sample:

Pr[hire = σ(1)] =

n∑
i=1

Pr[best = si]Pr[hire = si|best = si] =

1

n

n∑
i=r+1

Pr[hire = si|best = si]

What is the probability that the best in 1..i− 1 is the best in 1..r? It is r
i−1

Pr[hire = σ(1)] =
r

n

n∑
i=r+1

1

i− 1
=
r

n
(Hn−1 −Hr)⇔

Pr[hire = σ(1)] ' r

n
ln(

n

r
)

We will pick the r that maximizes this probability:

∂ALG

∂r
=
r

n
(−1

r
) +

1

n
ln(

n

r
) = 0⇔

r =
n

e

Therefore we sample 1
e fraction of the input. Is this optimal? Yes. Let’s see

why. W.l.o.g. any algorithm will only pick the best secretary so far (otherwise
it gets no credit). Let pi = Pr[hire = si|bestsofar = si]Pr[bestsofar = si].
Notice that Pr[bestsofar = si] = 1

i . Moreover:

Pr[hire = si|bestsofar = si] ≤ Pr[¬(hire = s1∨...∨hire = si−1)] = 1−(p1+...pi−1)

Therefore:
ipi ≤ 1− (p1, ..., pi−1)

3


