FEBRUARY 1 NOTES FROM CSE 599: ONLINE ALGORITHMS

We continue with the i.i.d. model with unknown distributions.

1. BUDGETED ALLOCATION PROBLEM

Last time, we worked on Bipartite Matching. A suggested exercise was to extend
the technique to the Budgeted Allocation problem. We now discuss how this works.
First, we change the problem from Bipartite Matching to Budgeted Allocation:

o affine side L, where we have a budget B; for eac}} i € L (each advertiser)
e There’s aAprobability distribution with support R
— j € R (query) is a “vertex” identified by its neighbors in L with bids
— p(]j) is the probability of j
Continuing, the LP for OPT (defined on the “expected instance”) changes slightly
to:

OPT = max Zbija:ij
,J
s.t. Zbijxij < Bi, Vi

J
i
l‘ij Z 0

The lemma from before (OPT > E[OPT]) still holds, and the proof is only
slightly altered.

Proof Sketch. X;; = number of times a copy of j is matched to ¢
zij = E[Xij]

Vi, Z binij < B; = Z bjxij < B;
J J
etc. ...

Z bijl'ij =E [Z binij]
ij
= E[OPT] < OPT
]

The theorem (greeedy is 1 — 1/e competitive) still holds, but the details change.
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2. RESOURCE ALLOCATION PROBLEM
We return to the Resource Allocation Problem and give a new algorithm.

e Resources: i € L, capacity C;, |L| =n

e Requests: j arrive online with set of feasible options given by F;

e Options: for each option k € Fj, Vi, consumption is a(i, j, k) and profit is
w(j, k)

max ijkxjk
J.k
s.t. Z.rjk <1, Vj
k

> ali g k)a < Ci, Vi
J,k
Tk >0

Similarly, for the i.i.d. model, we have a distribution on j’s (requests), say with
support R. For simplicity, assume as before that p(j) = % Vj e R.

This time,
Goal: Design algorithm s.t. Ve,d > 0, w.p. 1 — ¢, ALG > (1 — ¢)OPT.
Assume:

e know m
(for simplicity) know OPT
Vi, 5, k, ﬁ > K> %(f) for some universal constant ¢

OPT
* WwiH =

First, consider Pure Random Algorithm

knows R

knows optimal solution to LP, x
non-adaptive (makes decisions ahead of time)
will satisfy goal

Algorithm:

Given 7, pick option k w.p. 1%’“6 (a scaling of the LP solution)
X; = total consumption of resource 14

=>"1", X;; (they are independent)

Vi, VEE[Xa] = 30 5 2ok Tralin g, k) < iy

want to conclude that Pr[X; > C;] < 2 (with high probability, we are not over
capacity)
for simplicity,

a(i,j, k) € [0,1] Ci>k

w(j, k) € [0,1] OPT > &

This follows from Chernoff bounds, but we prove them.
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2.1. Chernoff Bounds.
Pr[X; > Cj] = Pr[(1+ )% > (1 + )]
E[(1 + €)%Xi]
(14 €)%

The inequality is due to Markov’s Inequality: Pr[X > a] < @

S
\ \
':l
)—l
+
r'h

(3) =[[E[0+e%]
t=1
(4) < ﬁ E[1+ eXy)
i eC;
(5) <t]:[1(1+ (1+e))
(6) < ﬁ e
(7) _ it

Line 3 is because of the independence of the X;;s. Line 4 is because (1 + €)* <
(14 ex)Vz € [0,1]. Line 6 is because 1+ z < e, based on the Taylor series of e”.

eCy
e E
8 Pr Xz > <
(8) [ i] oo
C;
e€ T+e
®) [(1 + e)HE]
(10) < eTES
(11) <
(12) < e los(F)
5
(13) 5

z z2
Line 10 is because (H—ZW < ez . Line 12 is because <& > log (see inequality
in assumptions).

2.2. Back to Pure Random. Let W be the profit of Pure Random, , W;.

. OPT
Z Zl+e Bk = m(1l+e)




4 FEBRUARY 1 NOTES FROM CSE 599: ONLINE ALGORITHMS

OPT
E =
ug 1+e
PT 1)
< —ql < —
Pr W_1+€(1 €) <5

Therefore, w.p. 1 — 9,

e 10 capacity is exceeded
° w > %ZOPTU—%)

Proof.
OPT w
Pr 1+€(1—6) =Pr[1—-6)" > (1—-¢€)"]
E[(1-¢)"]
S (I—e)-

t
m
—c... —cOPT(1—¢)
S H e m —e (1+e)
t=1

OPT(1 - ¢) == 5

— € e 1+e€

Pr[W< T+e }< OPT(l—e)...ST
(1 —¢)” T+

The last dots are where we should do a similar approximation.

2.3. An Alternative.

Pr[X; > C;] < Pr[(1+¢)% > (14 €)%
—Pr{(1+6) % > (140K



FEBRUARY 1 NOTES FROM CSE 599: ONLINE ALGORITHMS

Suppose we showed

KX;

S B+ < (14955

%

<(1+ e)Kg

iy g

g

Pr[max
K]

IA
[CIRSER CTRSH

X;
Prlmax — > 1] <

K %

Equivalently, Pure Random can be thought of as minimizing

o Til+9T | (1-g%
1+ e (1+4+¢)K
E[®F] <6

We will show that E[®!] < 4.
Ht:Al...AtPt+1...Pm
E[o"'|A1... A1) <E[oM A1 ... Apd]



