
FEBRUARY 1 NOTES FROM CSE 599: ONLINE ALGORITHMS

We continue with the i.i.d. model with unknown distributions.

1. Budgeted Allocation Problem

Last time, we worked on Bipartite Matching. A suggested exercise was to extend
the technique to the Budgeted Allocation problem. We now discuss how this works.

First, we change the problem from Bipartite Matching to Budgeted Allocation:

• affine side L, where we have a budget Bi for each i ∈ L (each advertiser)

• There’s a probability distribution with support R̂
– j ∈ R̂ (query) is a “vertex” identified by its neighbors in L with bids
bij

– p(j) is the probability of j
–
∑
j∈R̂ p(j) = 1

Continuing, the LP for OPT (defined on the “expected instance”) changes slightly
to:

OPT = max
∑
i,j

bijxij

s.t.
∑
j

bijxij ≤ Bi, ∀i

∑
i

xij ≤ mpj , ∀j

xij ≥ 0

The lemma from before (OPT ≥ E[OPT]) still holds, and the proof is only
slightly altered.

Proof Sketch. Xij = number of times a copy of j is matched to i
xij = E[Xij ]

∀i,
∑
j

bijXij ≤ Bi ⇒
∑
j

bjxij ≤ Bi

etc. . . .

∑
ij

bijxij = E
[∑

bijXij

]
= E[OPT] ≤ OPT

�

The theorem (greeedy is 1− 1/e competitive) still holds, but the details change.
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2. Resource Allocation Problem

We return to the Resource Allocation Problem and give a new algorithm.

• Resources: i ∈ L, capacity Ci, |L| = n
• Requests: j arrive online with set of feasible options given by Fj
• Options: for each option k ∈ Fj , ∀i, consumption is a(i, j, k) and profit is
w(j, k)

max
∑
j,k

wjkxjk

s.t.
∑
k

xjk ≤ 1, ∀j∑
j,k

a(i, j, k)xjk ≤ Ci, ∀i

xjk ≥ 0

Similarly, for the i.i.d. model, we have a distribution on j’s (requests), say with

support R̂. For simplicity, assume as before that p(j) = 1
m ∀j ∈ R̂.

This time,
Goal: Design algorithm s.t. ∀ε, δ > 0, w.p. 1− δ, ALG ≥ (1− ε)OPT.
Assume:

• know m
• (for simplicity) know OPT

• ∀i, j, k, Ci
a(i,j,k) ≥ κ ≥

c lg(nδ )

ε2 for some universal constant c

• OPT
w(j,k) ≥ κ

First, consider Pure Random Algorithm

• knows R̂
• knows optimal solution to LP, x
• non-adaptive (makes decisions ahead of time)
• will satisfy goal

Algorithm:
Given j, pick option k w.p.

xjk
1+ε (a scaling of the LP solution)

Xi = total consumption of resource i
=
∑m
t=1Xit (they are independent)

∀i,∀t,E[Xit] =
∑
j

1
m

∑
k
xjk
1+εa(i, j, k) ≤ Ci

m(1+ε)

E[Xi] ≤ Ci
1+ε

want to conclude that Pr[Xi ≥ Ci] ≤ δ
2n (with high probability, we are not over

capacity)
for simplicity,

a(i, j, k) ∈ [0, 1]

w(j, k) ∈ [0, 1]

Ci ≥ κ
OPT ≥ κ

This follows from Chernoff bounds, but we prove them.
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2.1. Chernoff Bounds.

Pr[Xi ≥ Ci] = Pr[(1 + ε)Xi ≥ (1 + ε)Ci ]

≤ E[(1 + ε)Xi ]

(1 + ε)Ci

The inequality is due to Markov’s Inequality: Pr[X ≥ a] ≤ E[x]
a

E
[
(1 + ε)Xi

]
= E

[
(1 + ε)

∑m
t=1Xit

]
(1)

= E

[∏
t

(1 + ε)Xit

]
(2)

=

m∏
t=1

E
[
(1 + ε)Xit

]
(3)

≤
m∏
t=1

E [1 + εXit](4)

≤
m∏
t=1

(
1 +

εCi
m(1 + ε)

)
(5)

≤
m∏
t=1

e
εCi

m(1+ε)(6)

= e
εCi
1+ε(7)

Line 3 is because of the independence of the Xits. Line 4 is because (1 + ε)x ≤
(1 + εx)∀x ∈ [0, 1]. Line 6 is because 1 + x ≤ ex, based on the Taylor series of ex.

Pr[Xi ≥ Ci] ≤
e
εCi
1+ε

(1 + ε)Ci
(8)

=

[
eε

(1 + ε)1+ε

] Ci
1+ε

(9)

≤ e
−ε2Ci
2(1+ε)(10)

≤ e
−ε2Ci

4(11)

≤ e− log( 2n
δ )(12)

=
δ

2n
(13)

Line 10 is because ex

(1+x)1+x ≤ e
−x2
2 . Line 12 is because ε2Ci

4 ≥ log 2n
δ (see inequality

in assumptions).

2.2. Back to Pure Random. Let W be the profit of Pure Random,
∑
tWt.

E[Wt] =
∑
j

1

m

∑
k

Xjk

1 + ε
w(j, k) =

OPT

m(1 + ε)
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E[W ] =
OPT

1 + ε

Pr

[
W ≤ OPT

1 + ε
(1− ε)

]
≤ δ

2n

Therefore, w.p. 1− δ,

• no capacity is exceeded

• w ≥ OPT(1−ε)
1+ε ≥ OPT(1− 2ε)

Proof.

Pr

[
W ≤ OPT

1 + ε
(1− ε)

]
= Pr[(1− ε)w ≥ (1− ε)...]

≤ E[(1− ε)W ]

(1− ε)...

E[(1− ε)W ] = E[(1− ε)
∑
tWt ]

=
∏
t

E[(1− ε)Wt ]

≤
∏
t

E[1− εWt ] =
∏
t

(
1− εOPT(1− ε)

m(1 + ε)

)

≤
m∏
t=1

e
−ε...
m = e

−εOPT(1−ε)
(1+ε)

Pr

[
W ≤ OPT(1− ε)

1 + ε

]
≤ e

−εOPT(1−ε)
1+ε

(1− ε)
OPT(1−ε)

1+ε

· · · ≤ δ

2n

The last dots are where we should do a similar approximation. �

2.3. An Alternative.

Pr[Xi ≥ Ci] ≤ Pr[(1 + ε)Xi ≥ (1 + ε)Ci ]

= Pr[(1 + ε)
KXi
Ci ≥ (1 + ε)K ]

≤ E[(1 + ε)
KXi
Ci ]

(1 + ε)K
≤ δ

2n
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Suppose we showed

∑
i

E[(1 + ε)
KXi
Ci ] ≤ (1 + ε)K

δ

2

E[max
i

(1 + ε)
KXi
Ci ] ≤ E[

∑
i

(1 + ε)
KXi
Ci ]

≤ (1 + ε)K
δ

2

Pr[max
i

KXi

Ci
≥ K] ≤ δ

2

Pr[max
i

Xi

Ci
≥ 1] ≤ δ

2

Equivalently, Pure Random can be thought of as minimizing

Φ =

∑
i(1 + ε)

KXi
Ci

(1 + ε)K
+

(1− ε) KWOPT

(1 + ε)K

E[ΦP ] ≤ δ
We will show that E[Φt] ≤ δ.

Ht = A1 . . . AtPt+1 . . . Pm

E[φH
t

|A1 . . . At−1] ≤ E[φH
t−1

|A1 . . . At−1]


