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ABSTRACT
Tatonnement is a simple and natural rule for updating prices
in Exchange (Arrow-Debreu) markets. In this paper we de-
fine a class of markets for which tatonnement is equivalent
to gradient descent. This is the class of markets for which
there is a convex potential function whose gradient is always
equal to the negative of the excess demand and we call it
Convex Potential Function (CPF) markets. We show the
following results.

• CPF markets contain the class of Eisenberg Gale (EG)
markets, defined previously by Jain and Vazirani.

• The subclass of CPF markets for which the demand
is a differentiable function contains exactly those mar-
kets whose demand function has a symmetric negative
semi-definite Jacobian.

• We define a family of continuous versions of taton-
nement based on gradient descent using a Bregman
divergence. As we show, all processes in this family
converge to an equilibrium for any CPF market. This
is analogous to the classic result for markets satisfying
the Weak Gross Substitutes property.

• A discrete version of tatonnement converges toward
the equilibrium for the following markets of comple-
mentary goods; its convergence rate for these settings
is analyzed using a common potential function.

– Fisher markets in which all buyers have Leontief
utilities. The tatonnement process reduces the
distance to the equilibrium, as measured by the
potential function, to an ε fraction of its initial
value in O(1/ε) rounds of price updates.

– Fisher markets in which all buyers have comple-
mentary CES utilities. Here, the distance to the
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equilibrium is reduced to an ε fraction of its initial
value in O(log(1/ε)) rounds of price updates.

This shows that tatonnement converges for the entire
range of Fisher markets when buyers have complemen-
tary CES utilities, in contrast to prior work, which
could analyze only the substitutes range, together with
a small portion of the complementary range.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Algorithms; Economics

Keywords
Market; Equilibria; Gradient Descent; Tatonnement

1. INTRODUCTION
One of the central questions in economics regarding equi-

librium models such as the Walrasian model of a market
is, “do markets reach an equilibrium”, and if so, “how”. In
particular the question, when does the tatonnement process
converge to an equilibrium, has been widely studied [1, 18,
16, 5, 7]. The tatonnement process is a natural, simple and
distributed family of price adjustment rules. It is broadly
defined in terms of the following criteria: if the demand for a
good is more than the supply, increase the price of the good
and vice versa, decrease the price when the demand is less
than the supply. The price adjustment for each good is in
the direction of its own excess demand and is independent
of the demand for other goods. Classically, tatonnement has
been thought of as a continuous process, with price adjust-
ments and demand responses happening continuously and
instantaneously. A computer science approach is to con-
sider updates at discrete time intervals and to bound the
number of updates required (though discrete updates were
also considered in the economics literature as early as the
60s [16]).

What is known to date is essentially that the tatonnement
process converges whenever the market satisfies the (weak)
gross substitutes (WGS) property. A market satisfies the
weak gross substitutes property if increasing the price of one
good does not decrease the demand for any other good.1 The

1 The (strict) gross substitutes property says that increasing



seminal paper of [1] showed this for a continuous version of
the tatonnement process. In recent years a discrete version
of the process has been shown to converge quite fast as well,
by [7]. This paper is motivated by the quest for other broad
classes of markets for which the same holds true. Of partic-
ular interest are markets that exhibit complementarity, such
as the Constant Elasticity of Substitution (CES) utilities and
Leontief utilities. (See Section 2 for formal definitions.)

For the WGS case, all the results rely on very strong prop-
erties of WGS markets that are naturally helpful in show-
ing that tatonnement converges. One example of such a
property is that the extreme prices always move in, i.e., the
bound on the ratio of the current price to the equilibrium
price is guaranteed to shrink [7]. Another example is that for
some markets (called Fisher markets) the equilibrium can be
reached by starting with very small prices and monotonically
increasing them. It is easy to show that such strong proper-
ties cease to hold in the complementary regime. Therefore
new techniques are needed to handle such markets.

In this paper we relate the tatonnement process to another
simple and natural process: gradient descent. Gradient de-
scent is a family of algorithms used to minimize convex func-
tions. It works by starting at some point and moving in the
direction of the negative of the gradient. We consider the
class of markets for which the tatonnement process is for-
mally equivalent to performing gradient descent on a convex
function. In particular, we define the class of Convex Poten-
tial Function (CPF) markets to be those markets for which
there is a convex potential function whose gradient2 is al-
ways equal to the negative of the excess demand. We show
that this class contains the class of Eisenberg-Gale (EG)
markets introduced by Jain and Vazirani [12].

The subclass of CPF markets for which the demand is dif-
ferentiable can be characterized in terms of the Jacobian3 of
the demand function. These are exactly those markets for
which the Jacobian of the demand function is always sym-
metric and negative semi-definite.4 We call this class the
Convex Conservative Vector Field (CCVF) markets, since
functions that have a symmetric Jacobian are called conser-
vative vector fields. The aforementioned CES and Leontief
utilities along with many other interesting markets (in the
Fisher market model) are contained in the intersection of
EG markets and CCVF markets.

The equivalence with gradient descent opens up the entire
tool box developed to analyze gradient descent and provides
a principled approach to show convergence of the taton-
nement process. For the entire class of CPF markets, we
show that a continuous version of tatonnement converges
to an equilibrium. For the special cases of CES and Leon-
tief utilities, we show stronger convergence results by prov-

the price of one good strictly increases the demand for any
other good.
2More generally, the potential function need not be differ-
entiable and the demand need not be unique, in which case
the equivalence is between the sub-gradient of the potential
function and the set of excess demand vectors.
3 Recall that the Jacobian of a differentiable function from
Rn to Rn is the matrix whose (i, j) entry is the rate of change
of the ith component of the function with respect to a change
in the jth co-ordinate.
4 By contrast, if the off-diagonal entries of the Jacobian
are all positive, then the market satisfies the weak gross
substitutes property.

ing certain structural properties of the corresponding convex
functions for these markets.

We now summarize the main contributions of the paper.

• The class of Eisenberg-Gale (EG) markets contains all
Fisher markets for which the equilibrium allocation is
captured by a certain type of convex program called
the Eisenberg-Gale-type (EG-type) convex program.
We show that EG markets are CPF markets, by explic-
itly constructing a convex potential function (Theorem
3.1). In fact, the potential function is essentially the
dual of the corresponding EG-type convex program.

• We show that a family of continuous versions of the
tatonnement process converges to the equilibrium for
any CPF market. This family is derived by consid-
ering gradient descent with respect to any Bregman
divergence and taking the limit as the step size goes
to zero (Theorem 4.1). This mirrors the classic result
of [1] that shows a similar result for gross substitutes
markets.

• For Leontief utilities, we show a linear convergence for
a discrete version of the process, that is, the number
of time steps required to reduce the distance from the
equilibrium to an ε fraction of its initial value, as mea-
sured by the potential function, is O(1/ε) (Theorem
5.1).5 This follows from a general result of [3] that
shows a linear convergence of gradient descent with
Bregman divergences whenever the convex function
satisfies a certain sandwiching property.6 We show
that the potential function in this case satisfies this
sandwiching property for an appropriate choice of pa-
rameters with respect to the KL-divergence.

• For CES utilities we show a log convergence, that is,
the number of time steps required to reduce the dis-
tance from the equilibrium to an ε fraction of its ini-
tial value, again as measured by the potential func-
tion, is O(log(1/ε)) (Theorem 6.4). This is obtained
by showing that the potential function in this case sat-
isfies a stronger sandwiching property. This stronger
property is reminiscent of strong-convexity but to the
best of our knowledge, this particular property has not
been used before. We also note that when reasonably
near to equilibrium, the potential function has value
Θ(
∑
j z

2
j pj), where zj is the excess demand for good j

and pj is its price (Lemmas 6.2 and 6.3).

Related work
The stability of the tatonnement process has been consid-
ered to be one of the most fundamental issues in general
equilibrium theory. The tatonnement process was originally
defined by Walras [19] in the same paper in which he defined
the first equilibrium model. The textbook of Mas-Colell,
Whinston and Green [15] contains a good summary of the
classic results. The two most important results are that of
Arrow, Block and Hurwitz [1], who showed that a continuous
version of the tatonnement process converges to an equilib-
rium for gross substitutes markets and that of Scarf [18],

5 The O() hides market dependent parameters.
6 Actually we observe that a slightly weaker version of the
property suffices.



who showed an example of a market where the tatonnement
does not converge; in fact, it exhibits cyclic behavior.

More recently discrete versions of tatonnement have been
studied. Codenotti et al. [5] consider a tatonnement-like pro-
cess that required some coordination among different goods
and showed polynomial time convergence for WGS markets.
Cole and Fleischer [7] were the first to establish fast conver-
gence for a truly distributed discrete version of the taton-
nement, once again for a class of WGS markets. Cheung,
Cole and Rastogi [4] extend this result slightly beyond WGS
markets, to CES utilities for a limited range of parameters.7

In comparison, our results cover the entire range of parame-
ters for CES utilities. Fleischer et al. [10] also consider price
dynamics that are similar to tatonnement but they also need
coordination and further, the results concern the average
price throughout the process rather than convergence of the
sequence.

In a similar spirit to this paper, Birnbaum, Devanur and
Xiao [2] considered another distributed process called the
Proportional Response (PR) dynamics for the linear utili-
ties case, showed its equivalence to gradient descent with
KL-divergence for a different convex function and obtained
convergence rates for the process. The PR dynamics works
in the space of offers rather than the space of prices, which
is why the corresponding convex function is different. For
linear utilities, the PR dynamics are more appropriate than
tatonnement, especially since the demand function is not
continuous. [2] prove a certain convergence result (Theorem
2.1) which we use in this paper to show convergence for the
case of Leontief utilities.

EG markets were defined by Jain and Vazirani [12], after
observing that many markets in the Fisher model had sim-
ilar convex programs that captured the equilibrium. The
following is a brief list of such markets: Eisenberg and Gale
[9] gave a convex program for the linear utilities case, [6]
gave one for Leontief utilities and for CES utilities, [13] for
homothetic utilities with production, and [14] for certain
network-flow markets. [12] showed many algorithmic and
structural properties of such markets.

2. PRELIMINARIES
A Walrasian market model has m divisible goods and n

agents. Each agent i has a utility function ui : Rm+ → R that
specifies the agent’s utility for a given bundle of goods. Each
agent i has an initial endowment of eij amount of good j.
The supply of good j, wj :=

∑
i eij is the total endowment

of good j among all the agents. W.l.o.g. we choose the units
of measurement such that the supplies are all 1. Suppose we
assign a price pj to each good j, then the demand of agent
i is a bundle of goods (xi1, xi2, . . . , xim) that maximizes her
utility subject to the budget constraint, that she does not
spend more than the value of her endowment. It is the
solution to the following optimization problem:

maximize ui(xi1, xi2, . . . , xim)

s.t.
∑
j

pjxij ≤
∑
j

pjeij ,

∀ j, xij ≥ 0.

7 CES utilities are parameterized by an exponent, ρ. When
0 < ρ ≤ 1 the market is WGS, and ρ < 0 is when the goods
are complementary. [4] analyzed the range −1 < ρ ≤ 0.

If the utility function is strictly concave, then there is a
unique utility maximizing bundle when the prices are all
positive, so we can talk of the demand of an agent. The
market demand for a good j is xj =

∑
i xij , the total de-

mand for that good. This is viewed as a function of the price
vector p = (p1, p2, . . . , pm). A price p is an equilibrium price
if the market clears, that is

∀ j, xj = wj = 1.

For notational convenience, we define the excess demand for
good j as zj = xj − 1. The equilibrium condition is that
every excess demand be zero. It is known that equilibrium
prices exist if the utility functions are all strictly concave.

An alternate mode is the Fisher market model, where
there is a fixed endogenous supply of each good (which is
again chosen to be 1 unit). The agents have a fixed endow-
ment of money, which defines their budget constraint. Let
the endowment of agent i be ei units of money. The budget
constraint for agent i is

∑
j pjxij ≤ ei. The Fisher model is

actually a special case of the exchange model.
We now define some interesting sub-classes of markets. A

market satisfies the Weak gross substitutes (WGS) property
or equivalently a market is a WGS market if increasing the
price of any one good does not decrease the demand for
any other good. If the demand function is continuous and
differentiable, then this property can be written as

∂xj
∂pj′

≥ 0, ∀ j 6= j′.

In terms of the Jacobian of the demand function, for a WGS
market all the off-diagonal entries are non-negative.

The Leontief utilities are of the form ui = minj{xij/bij}.
One needs bij units of good j, for each good, in order to get
one unit of utility. Thus Leontief utilities capture the case
of perfect complements. It is easy to see that the demand
for good j is xij = βibij , where βi = ei/

∑
j bijpj .

Utilities with a Constant Elasticity of Substitution (CES)
or in short, CES utilities, are of the form

ui = (ai1x
ρi
1 + ai2x

ρi
2 + · · ·+ aimx

ρi
m)1/ρi ,

with ρi ≤ 1 and aij ≥ 0. If 0 < ρi ≤ 1 then the goods
are substitutes; the goods are complementary when ρi < 0.
Leontief utilities are obtained in the limit, as ρ→ −∞. The
utility function obtained in the limit, as ρ→ 0, is called the
Cobb-Douglas utility.

An Eisenberg-Gale-type convex program is a convex pro-
gram of the form

maximize
∑
i

ei log ui(xi1, xi2, . . . , xim)

s.t. ∀ j,
∑
i

xij ≤ 1, (supply constraints)

∀ i, j, xij ≥ 0.

An Eisenberg-Gale (EG) market is a Fisher market for which
the optimal solution and the (corresponding) Lagrange mul-
tipliers of the supply constraints in the above convex pro-
gram are respectively equilibrium demand and prices for
the market. Vice-versa, an equilibrium demand and prices
are respectively an optimal solution and Lagrange multipli-
ers of the supply constraints to the above convex program.
Note that any strictly monotone transformation of the util-
ity function leaves the market unchanged, since the demand



function is invariant under such transformations. Thus one
may need to apply suitable monotone transformations to the
utility functions in order to make it into an EG market. It
is known that buyers with Leontief and CES utilities in the
Fisher model form EG markets.

We next present a generalized version of gradient descent
and a convergence result for this version. For any strictly
convex differentiable function h, the Bregman divergence
with kernel h is defined as

dh(p, q) = h(p)− h(q)−∇h(q) · (p− q).

For example, the square of the Euclidean distance is ob-
tained as a Bregman divergence, ‖p − q‖2 = dh(p, q), if
h(p) = 1

2
‖p‖2. Another well-known example is the KL-

divergence,
∑
j pj log(pj/qj) which is obtained when h(p) =∑

j pj log pj − pj .
For a convex function φ, define the tangent hyperplane at

a given point q, thought of as a linear approximation to the
function, as

`φ(p; q) = φ(q) +∇φ(q) · (p− q),

where∇φ(q) denotes an arbitrary subgradient of φ at q. The
generalized gradient descent w.r.t. a Bregman divergence dh
on the convex function φ is a sequence p0, p1, . . . , pt . . . , de-
fined inductively (for any given starting point p0) as

pt+1 = arg min
p
{`φ(p; pt) + dh(p, pt)}. (1)

Note that if the subgradient is not unique, then this sequence
need not be unique either.

For the quadratic kernel, h(p) = 1
2
‖p‖2, the above update

rule reduces to the usual gradient descent rule:

pt+1 = pt −∇φ(pt).

If the kernel is weighted entropy, h(p) =
∑
j γj(pj log pj−pj)

for some weights γj , the update rule is

pt+1
j = ptj exp

(
−∇jφ(pt)

γj

)
∀j. (2)

Birnbaum, Devanur and Xiao [2] showed the following
convergence result for gradient descent (1).

Theorem 2.1 ([2]). Suppose that the convex function
φ and the kernel h are such that ∀ p, q,

φ(p) ≤ `φ(p; q) + dh(p, q). (3)

Let p∗ be the minimizer of φ. Then for all t,

φ(pt)− φ(p∗) ≤ dh(p∗, p0)

t
.

We need a slightly more general version of this theorem
where we require (3) to hold only for consecutive pairs pt, pt+1

for all t, instead of requiring it for all pairs p, q. It is easy to
see that the proof only needs this weaker condition.

The discrete version of the tatonnement process we con-
sider will be equivalent to the gradient descent (1) where
h is the weighted entropy function, i.e., the update (2) for
a suitable choice of weights γj . The potential function φ
will be such that ∇jφ = −zj . The continuous versions we
consider are obtained by introducing a multiplier 1/ε to the
divergence term dh and taking the limit as ε→ 0. This will
be presented in more detail in Section 4.

2.1 New Definitions
We now define the new classes of markets introduced in

this paper. A market is said to be a Convex Potential Func-
tion (CPF) market if there is a convex potential function φ
of the prices such that for all prices p, ∇φ(p) = −z(p). By
abuse of notation, we let ∇φ denote the set of sub-gradients
when φ is not differentiable8 and we let z(p) denote the set of
excess demand vectors when the demand is not unique. The
subclas of CPF markets for which the demand function is
differentiable is called the Convex Conservative Vector Field
(CCVF) markets. The following characterization of CCVF
markets follows essentially immediately from Green’s Theo-
rem [11, 17].

Lemma 2.2. A market with a differentiable demand func-
tion is CCVF if and only if the Jacobian of its demand func-
tion is always a negative semi-definite symmetric matrix.

Proof. For a CCVF market, the potential function sat-
isfies ∇φ(p) = −z(p). As x(p) and hence z(p) are differen-
tiable, it is now easy to check that the Jacobian is symmet-
ric. Negative semi-definiteness follows because the potential
function φ associated with the CCVF market is convex, and
hence the Jacobian of −z(p) is positive semi-definite.

If the Jacobian of x(p) is symmetric, by Green’s Theo-
rem [11, 17], there is a function f : Rn → R such that ∇f =
x. Let φ =

∑
j pj − f(p). Then ∇φ(p) = 1− x(p) = −z(p).

φ(p) is convex as its Jacobian is positive semi-definite, and as
∇φ(p) = −z(p), it follows that the market is a CPF market
with a differentiable demand, i.e. it is a CCVF market.

Markets with Leontief utilities and those with CES util-
ities are both CCVF markets. By contrast, markets with
linear additive utilities are not CCVF.

3. EG MARKETS
In this section we prove the following theorem.

Theorem 3.1. All EG markets are CPF markets.

The proof is by an explicit construction of a convex potential
function φ for which ∇φ(p) = −z(p). φ is actually the dual
of the corresponding EG-type convex program. Recall that
the EG-type convex program has variables xij for all i and
j. We let X denote the set of all these variables. Also recall
that the optimum solution gives the equilibrium allocation
and the optimal Lagrangian multipliers of the supply con-
straints in the program are the equilibrium prices. The KKT
conditions characterize the optimal solution to a convex pro-
gram and the corresponding Lagrange multipliers. We now
write the KKT conditions in terms of the Lagrangian func-
tion, which is obtained by multiplying the supply constraints
by the prices and adding them to the objective function.

L(X, p) :=
∑
i

ei log(ui)−
∑
i,j

pjxij + p · 1,

on the domain {X, p: ∀i, j, xij ≥ 0; ∀j, pj ≥ 0}. X∗ and
p∗ are said to satisfy the KKT conditions if

1. X∗ ∈ arg maxX≥0 L(X, p∗) and

2. p∗ ∈ arg minp≥0 L(X∗, p), which is equivalent to: for
all j, p∗j · (1−

∑
i x
∗
ij) = 0.

8We assume throughout that φ is continuous.



We define the potential function to be the dual objective
of the EG-type convex program.

φ(p) := max
X

L(X, p).

For common EG markets, such as the markets with linear,
CES and Leontief utilities, it turns out that this function
can also be written as

φ(p) =
∑
j

pj −
∑
i

ei log(νi) (4)

where νi is the minimum cost buyer i has to pay to obtain
one unit of utility [8]. We note this for future reference.
φ is convex by construction. Theorem 3.1 follows by show-

ing that the gradient of φ is equal to the negative of the
excess demand (Lemma 3.3). However, the key property of
EG markets is captured in the following lemma.

Lemma 3.2. For an EG market, for all p, the demand set
x(p) is exactly equal to arg maxX L(X, p).

Proof. Suppose that the market is an EG market. Con-
sider an equilibrium price p∗, and the equilibrium demand
x(p∗). Since this is an EG market, these must correspond to
an optimal solution to the corresponding convex program.
They must therefore satisfy the corresponding KKT con-
ditions, which imply that x(p∗) ∈ arg maxX L(X, p∗). Now
note that every price p and every demand x(p) form an equi-
librium for some given supply; indeed simply define the sup-
ply to be equal to x(p). Thus the above holds for all prices
and for all demand vectors. Similarly, since any optimal so-
lution to the convex program must also be an equilibrium,
it follows from a similar argument that arg maxX L(X, p∗)
is contained in the demand set.

In fact it is easy to see that the converse is also true, that
if for all p the demand is equal to arg maxX L(X, p) then
the market is an EG market. The KKT conditions are then
essentially the same as the equilibrium conditions.

Lemma 3.3. ∇φ(p) = 1− x(p) = −z(p).

Proof. It is well known that if a convex function is de-
fined as the maximum of many linear functions then the
gradient is given by the arg max. φ is indeed defined as such
and by Lemma 3.2 the arg max’es are given by the demands.
Hence the lemma follows.

4. CONVERGENCE OF CONTINUOUS
TIME TATONNEMENT

A continuous version of the tatonnement rule is a trajec-
tory in the price space which, to be notationally consistent
with the discrete version, is denoted by pt for all t ∈ R+.
The trajectory is defined by specifying dp

dt
for all t, which

we also call the “update rule”. We define a family of update
rules derived from the gradient descent. As before, let h
be a strictly convex differentiable function. The continuous
update rule w.r.t dh is defined as follows. Let

p(ε) := arg min
p

{
∇φ(pt) · p+ 1

ε
dh(p; pt)

}
. (5)

dp
dt

:= lim
ε→0

p(ε)− pt

ε
. (6)

Note that as the subgradient ∇φ(pt) need not be unique, dp
dt

may not be unique either. However, we can simply choose

any of the legal subgradient values, as our analysis holds for
every choice.

From now on, we consider the special case where h is a
separable function, i.e., it is of the form

∑
j h(pj), for a 1-

dimensional function h : R → R. Now the minimization in
(5) separates out into independent minimization problems
for each good j. We will use dh(pj , qj) to denote h(pj) −
h(qj) − h′(qj)(pj − qj), the one dimensional version of the
divergence.

Theorem 4.1. For any separable strictly convex function
h, any convex function φ : Rn → R and pt ∈ Rn defined by
(5) and (6) with any starting point p0,

lim
t→∞

pt = p∗

where p∗ is a minimizer of φ.

For any CPF market, by definition, there exists a φ such
that −∇φ(p) = z(p). Substituting z for −∇φ in (5) and
(6) gives a tatonnement update rule that, by Theorem 4.1,
converges to an equilibrium for these markets.

Lemma 4.2.

dpj
dt

=
−∇jφ(pt)

h′′(ptj)
, ∀ j.

Proof. The minimizer in (5) must have a zero derivative:

∇jφ(pt) + 1
ε

d(dh(pj ;ptj))
dpj

= 0. (7)

Since
d(dh(pj ;ptj))

dpj
= h′(pj) − h′(ptj), substituting in (7) and

solving for pj gives

pj(ε) = h′−1 (h′(ptj)− ε∇jφ(pt)
)
.

Note that since h is strictly convex, h′ is strictly increas-
ing and hence is invertible. For notational convenience, let
g(y) = h′−1(y). Then h′(g(y)) = y, h′′(g(y)) · g′(y) = 1,
therefore g′(y) = 1

h′′(g(y))
. Also note that g(h′(y)) = y.

Using these we get

g′(h′(y)) =
1

h′′(y)
. (8)

dpj
dt

= lim
ε→0

pj(ε)− ptj
ε

= lim
ε→0

g(h′(ptj)− ε∇jφ(pt))− g(h′(ptj))

ε
.

= −g′(h′(ptj)) · ∇jφ(pt)

= −∇jφ(pt)/h′′(ptj). (by (8))

We can use this lemma to derive the update rules for two
special cases. First, when h(pj) = 1

2
p2
j , h

′′(pj) = 1; hence,
dpj
dt

= −∇jφ(p). Next, when h(pj) = pj log pj − pj , h′(pj) =

log pj and h′′(pj) = 1/pj ; so,
dpj
dt

= −∇jφ(p) · pj .
For the following lemma and the subsequent proof, for

simplicity of exposition only, we assume that the minimizer
of φ is unique.

Lemma 4.3.
∑
j
d
dt
dh(p∗j ; pj) < 0, unless p = p∗, where

p∗ is the minimizer of φ.



Proof. dh(p∗j ; pj) = h(p∗j )− h(pj)− h′(pj)(p∗j − pj). So,

d
dt
dh(p∗j ; pj) = − dh(pj)

dt
− dh′(pj)

dt
(p∗j − pj) + h′(pj)

dpj
dt

= −h′′(pj) · dpjdt · (p
∗
j − pj)

(since
dh(pj)

dt
= h′(pj)

dpj
dt

)

= ∇jφ(p) · (p∗j − pj) (from Lemma 4.2).

Therefore,∑
j

d
dt
dh(p∗j ; pj) =

∑
j

∇jφ(p) · (p∗j −pj) ≤ φ(p∗)−φ(p) < 0,

(9)
unless p = p∗. The middle inequality above follows from the
convexity of φ: φ(p∗) ≥ φ(p) +∇φ(p)(p∗ − p).

Proof of Theorem 4.1. Since dh(p∗; pt) is monotoni-
cally decreasing, and is bounded below by 0, limt→∞ dh(p∗; pt)

exists. Consequently, the derivative ddh(p∗;pt)
dt

tends to zero.

By (9) this implies that φ(pt) tends to φ(p∗) and by conti-
nuity of φ this implies that pt tends to p∗.

5. LEONTIEF UTILITIES
In this section we consider Fisher markets in which every

buyer has a Leontief utility. We analyze the update rule (1)
with dh = γ · dKL where dKL is the KL-divergence, and γ is
a market dependent parameter. This update rule amounts
to

pt+1
j = ptj exp(zj/γ). (10)

We show an O(1/ε) convergence rate as specified in The-
orem 5.1. The proof follows essentially from showing that
the sandwiching property (3) required by Theorem 2.1 is
satisfied, which is done in Lemma 5.2.

Here, using Equation (4), we see that φ is given by

φ(pt) =
∑
j

pt −
∑
i

ei log
∑
k

bikp
t
k.

Notation.
We let xt denote the demands following the price update

at time t, and x◦ denote the initial demands. We also let
∆pj = pt+1

j − ptj for all j.

Theorem 5.1. For a Leontief market, for a sequence of
price updates defined by (10), for all t,

φ(pt)− φ(p∗) ≤ 12γdKL(p∗, p0)

t

where γ = 5 ·maxj{x◦j + 2 ·
∑
i maxk

bij
bik
}.

Lemma 5.2. If |∆pj | ≤ pj/4, then

φ(pt+1)− `φ(pt+1; pt) ≤ 12γdKL(pt+1, pt).

To ensure that |∆pj | ≤ pj/4, we require that γ ≥ 5 ·
maxj,t{1, xtj}, where we are maximizing the xtj over all the
time steps of the algorithm. Of course, γ has to be picked at
the beginning, at which point one may not know the value of
maxj,t{1, xtj}. In the following lemma, we show that picking

γ = 5 · maxj{x◦j + 2 ·
∑
i maxk

bij
bik
} suffices. However, if a

better bound is known, that could be used instead.

Lemma 5.3. xtj ≤ x◦j +2 ·
∑
i maxk

bij
bik

for all goods j and

all time t.

Proof. We drop the superscript t when the meaning is
clear from the context. Suppose that xij = ei·bij/

∑
k bikpk ≥

1; then xj ≥ 1 and so pj can only increase. If minl ei ·
bi`/

∑
k bikpk ≥ 1, or equivalently if ei/

∑
k bikpk ≥ 1/minl bi`,

then every pk for which bik 6= 0 can only increase, and
hence the xik for which bik 6= 0 can only decrease; i.e. if
xij = ei · bij/

∑
k bikpk ≥ bij/minl bi` = maxk bij/bik, xij

can only decrease. Now, in one round of price changes, the
prices drop by at most exp( 1

5
), and hence the demands in-

crease by at most exp( 1
5
) ≤ 2. Thus, unless initially larger,

xij < 2 · maxk bij/bik
9. Thus xij ≤ maxk{x◦ij , 2 · bij/bik}.

Consequently, xj =
∑
i xij ≤ x

◦
j + 2 ·

∑
i maxk

bij
bik

.

Before proving Lemma 5.2, we state the following claims.
We let ∆pj denote pt+1 − pt. In the following claims, the t
index on the prices and demands is implicit.

Claim 5.4. For all j,

1

ei

∑
j,k

xijxik∆pj∆pk ≤
∑
l

xi`
p`

(∆p`)
2.

Claim 5.5. Suppose that for all j, |∆pj | ≤ pj/4. Then

(∆pj)
2

pj
≤ 6dKL(pj + ∆pj , pj).

Proof. (of Lemma 5.2.) We write φ(pt) and φ(pt+1) as
functions of the pj , and then upper bound these terms using
the inequalities x(1+x)−1 ≤ x+2x2 for |x| ≤ 1

2
and log(1+

y) ≤ y for |y| ≤ 1, along with Claims 5.4 and 5.5.

φ(pt+1)− `φ(pt+1)

=
∑
j

(pj + ∆pj)−
∑
i

ei log
∑
k

bik(pk + ∆pk)

−
∑
j

pj +
∑
i

ei log
∑
k

bikpk +
∑
j

zj∆pj

=
∑
j

xj∆pj +
∑
i

ei log

∑
k bikpk∑

k bik(pk + ∆pk)

=
∑
j

xj∆pj +
∑
i

ei log

[
1−

∑
k bik∆pk∑
k bikpk

(
1 +

∑
l bi`∆p`∑
l bi`p`

)−1
]
.

Next we use the bound x(1 + x)−1 ≤ x + 2x2 for |x| ≤
1
2
, noting that |

∑
l bi`∆p`∑
l bikp`

| ≤ 1
2
, as every |∆p`| ≤ 1

2
p` by

assumption. Thus:

φ(pt+1)− `φ(pt+1) ≤
∑
j

xj∆pj

+
∑
i

ei log

[
1−

∑
k bik∆pk∑
k bikpk

+ 2

∑
k bik∆pk

∑
l bi`∆p`∑

k bikpk
∑
l bi`p`

]
.

Now we use the bound log(1 + y) ≤ y, which applies as the
second and third terms in the log are each bounded by 1

2

9A more careful argument shows the multiplier of 2 is not
needed.



(recall that |
∑

l bi`∆p`∑
l bikp`

| ≤ 1
2
). Hence:

φ(pt+1)− `φ(pt+1)

≤
∑
j

xj∆pj −
∑
i

ei

∑
k bik∆pk∑
k bikpk

+ 2ei

∑
k bik∆pk

∑
l bi`p`∑

k bikpk
∑
l bikp`

≤
∑
j

xj∆pj −
∑
k

xk∆pk + 2
∑
i

1

ei

∑
k

xik∆pk
∑
l

xi`∆p`

≤ 2
∑
i,j

xij
pj

(∆pj)
2 = 2

∑
j

xj
pj

(∆pj)
2 (by Claim 5.4)

≤ 12
∑
j

xjdKL(pj + ∆pj , pj) (by Claim 5.5)

Proof. (of Claim 5.4.) This result follows by rewriting
ei as

∑
k xikpk.

ei
∑
l

xil
p`

(∆p`)
2

=
∑
l

xil
(∑

k xikpk
)

p`
(∆p`)

2 =
∑
l,k

xilxik
pk
p`

(∆p`)
2

=
∑
l

x2
il(∆p`)

2 +
∑
k,l:k 6=l

xikxil
pk
p`

(∆p`)
2

=
∑
l

x2
il(∆p`)

2 +
∑
k<l

xikxil

(
pk
p`

(∆p`)
2 +

p`
pk

(∆pk)2

)
.

Now, we apply the AM-GM inequality:

ei
∑
l

xil
p`

(∆p`)
2 ≥

∑
l

x2
il(∆p`)

2 +
∑
k<l

xikxil · 2|∆p`||∆pk|

=
∑
j,k

xijxik|∆pj ||∆pk|.

Proof. (of Claim 5.5.) We use the bound log x ≥ x− 2
3
x2

for |x| ≤ 1
4
.

dh(pj + ∆pj , pj)

=(pj + ∆pj) log(pj + ∆pj)

− (pj + ∆pj)− pj log pj + pj − (log pj)∆pj

=−∆pj + (pj + ∆pj) log

(
1 +

∆pj
pj

)
≥−∆pj + (pj + ∆pj)

(
∆pj
pj
− 2

3

(∆pj)
2

p2
j

)
=

1

3

(∆pj)
2

pj

(
1− 2

∆pj
pj

)
≥1

6

(∆pj)
2

pj
.

6. CES UTILITIES
In this section we consider the weighted update rule,

pt+1
j = ptje

(zj/γ
t
j), (11)

for markets in which every buyer has a complementary CES
utility, i.e. the ith buyer has a parameter ρi in the range
−∞ < ρi < 0. (The markets in which all buyers have sub-
stitutes CES utility functions have been analyzed in previ-
ous work.) In addition, the weights γtj are allowed to change
from one time step to the next; our updates to price pj will

use the weight γtj = 5 ·max{1, xtj}.10 This seems a very nat-
ural distributed rule, and indeed a linearization of this rule,
pt+1
j = ptj [1+λmax{1, zj}]11 was used in the prior works by

Cole et al. [7] and Cheung et al. [4].
For these markets we will show that φ(pt)−φ(p∗) reduces

by at least a 1−µ factor at each time step, where 0 < µ < 1
depends on the initial price and the market parameters we
will specify.

Henceforth, the t index on all the parameters except prices
will be implicit.

Notation.
Recall that ei denotes buyer i’s budget, and define

ci := ρi/(ρi − 1).

Note that ci = 1 − σi, where σi is the demand elasticity
of the associated CES utility function, and let c′ = maxi ci.
Finally, set γ = maxj γj . Again, we let ∆pj denote pt+1

j −ptj .
As is well known, the demand for good j when buyer i

optimizes her utility is given by

xij = eibijp
ci−1
j S−1

i ,

where bij := aci−1
ij and Si =

∑
` bi`p

ci
` . The optimal utility

equals eiS
−1/ci
i .

Now, using Equation (4), we see that φ is given by

φ(pt) =
∑
j

ptj −
∑
i

ei logS
1/ci
i .

In the next two subsections we show that the the poten-
tial function in this case satisfies a stronger sandwiching
property, as specified in Lemmas 6.2 and 6.3. This stronger
property immediately yields the claimed bound on the con-
vergence rate (Theorem 6.4).

Claim 6.1. |pt+1
j − ptj | ≤ 1

4
ptj.

Proof. |pt+1
j − ptj | ≤ (e1/5 − 1)ptj ≤ 1

4
ptj .

Lemma 6.2. Suppose that |pt+1
j − ptj | ≤ 1

4
ptj for all j.

Then

φ(pt)− φ(pt+1) ≥ 1

2

∑
j

z2
j p
t
j

γj
.

Lemma 6.3.

φ(pt)− φ(p∗) ≤ max
j

{
10,

5

2mj

}∑
j

z2
j p
t
j

γj
,

where mj =
1−rc

′
j +c′(rj−1)

c′(rj−1)2
and rj = p∗j/p

t
j.

We can now deduce our main result.

Theorem 6.4. For all CES markets, for the sequence of
prices pt defined by the update rule (11), for all t,

φ(pt)− φ(p∗) ≤ [(1−Θ(1)]tdKL(p∗, p0)

In other words, for any ε > 0, φ(pt)− φ(p∗) ≤ εdKL(p∗, p0),
if t = Ω(log(1/ε)).

10Any greater value for γj would work too.
11The λ replaces the constant of 5 used here, as a greater
range of values for this parameter is needed in markets of
substitutes.



Proof.

φ(pt+1)− φ(p∗) = φ(pt)− φ(p∗)− [φ(pt)− φ(pt+1)]

≤φ(pt)− φ(p∗)− 1

2

∑
j

z2
j p
t
j

γj
(by Lemma 6.2)

≤[φ(pt)− φ(p∗)]

[
1− 1

2

(
max
j

{
10,

5

2mj

})−1
]

(by Lemma 6.3)

= (1−Θ(1))[φ(pt)− φ(p∗)].

As we will see, mj is a decreasing function of rj = p∗j/pj .
Consequently, we will need to show that p∗j/pj remains bounded
throughout the tatonnement process in order to prove con-
vergence. This is done in Section 6.3.

6.1 The Upper Bound: Good Progress on a
Price Update

The proof of Lemma 6.2 proceeds in two steps. First, we
show that φ(pt+1)−φ(pt)+

∑
j zj [p

t+1
j −ptj ] ≤ 2

∑
j

xj
pj

[pt+1
j −

ptj ]
2. We then choose γj = 5·max{1, xj}. Finally, we deduce

the bound in Lemma 6.2. Our first bound uses the following
result.

Lemma 6.5. Suppose that for all j, |∆pj |/pj ≤ 1
4

. Then
φ(p+ ∆p)− `φ(p+ ∆p; p)

.
= φ(p+ ∆p)− φ(p)

+
∑
j zj∆pj ≤ 2

∑
j

xj
pj

(∆pj)
2.

Proof. As in the proof of Lemma 5.2, we use two bounds:
First, a bound on log(1 + ε), namely:

log(1 + ε) ≥ ε− 2

3
ε2, when |ε| ≤ 7

18
. (12)

And second, a bound on the following polynomial, which
follows from simple calculus: if |∆pj/pj | ≤ 1/4 and 0 ≤ c ≤
1,

(pj + ∆pj)
c ≥ pcj + cpc−1

j (∆pj)−
2

3
cpc−2
j (∆pj)

2. (13)

We let Dφ denote φ(p + ∆p) − `φ(p + ∆p; p), for short.
Recall that Si(p) =

∑
` bi`p

ci
` . Then:

Dφ = φ(p+ ∆p)− φ(p) +
∑
j

zj∆pj

=
∑
j

∆pj +
∑
j

zj∆pj −
∑
i

ei
ci

log
Si(p+ ∆p)

Si(p)
.

=
∑
j

xj∆pj −
∑
i

ei
ci

log

(∑
` bi`(p` + ∆p`)

ci

Si(p)

)
.

As ρ < 0, 0 < ci < 1. So we can apply (13), yielding:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 +

∑
` bi`cip

ci−1
` (∆p`)

Si(p)

−
2
3

∑
` bi`cip

ci−2
` (∆p`)

2

Si(p)

)
.

Recalling that xi` = eibi`p
ci−1
` /Si(p), yields:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 +

∑
`

ci
xi`
ei

(∆p`)

− 2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)
.

On applying (12), and noting that
∑
` xi`p` ≤ ei, ci ≤ 1,

and |∆p`|/p` ≤ 1
4
, we obtain the bound:

Dφ

≤
∑
j

xj∆pj −
∑
i

ei
ci

(∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

cixi`
p`ei

(∆p`)
2

)

+
∑
i

ei
ci

2

3

(∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)2

=
2

3

∑
`

x`
p`

(∆p`)
2

+
2

3

∑
i

ci
ei

(∑
`

xi`(∆p`)−
2

3

∑
`

xi`
p`

(∆p`)
2

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`(∆p`)

(
1− 2∆p`

3p`

))2

.

Now recall that ∆p`/p` ≤ 1
4
, to give the bound:

Dφ ≤
2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`|∆p`| ·
7

6

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

49

54

∑
i

1

ei

(∑
`

xi`|∆p`|

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

49

54

∑
i

1

ei

∑
j,k

xijxik|∆pj ||∆pk|

≤
(

2

3
+

49

54

)∑ x`
p`

(∆p`)
2 (by Claim 5.4)

≤ 2
∑ x`

p`
(∆p`)

2.

Proof. (of Lemma 6.2.) Recall that ∆pj = pt+1
j −ptj and

that pt+1
j = ptje

(zj/γj). By Lemma 6.5,

φ(pt)− φ(pt+1) ≥
∑
j

zj [p
t+1
j − ptj ]− 2

∑
j

xj
ptj

[pt+1
j − ptj ]2.

Next, using the formula for pt+1 and the fact that γj ≥ 5xj
gives the bound:

φ(pt)− φ(pt+1)

≥
∑
j

zjp
t
j [e

(zj/γj) − 1]− 2

5

∑
j

γjp
t
j [e

(zj/γj) − 1]2

≥
∑
j

zjp
t
j [e

(zj/γj) − 1]

(
1− 2

5

γj
zj

[e(zj/γj) − 1]

)

≥
∑
zj≥0

z2
j

γj

(
1− 2

5
· 10

9

)
+
∑
zj<0

z2
j

γj

9

10

(
1− 2

5

)

≥1

2

∑
j

z2
j p
t
j

γj
.

6.2 Upper Bound on Distance to Equilibrium
Before proving Lemma 6.3, we list a few facts which can

be easily proved by calculus.

Fact 6.6. i. For 0 < c < 1, hc(r) := 1−rc+c(r−1)

(r−1)2
is a

decreasing function of r.



ii. hc(r)/c is a decreasing function of c.

iii. If |s| ≤ 1, then es − 1 ≥ s+ s2/3.

Lemma 6.7. Suppose that p∗j/pj ≤ rj for all j, where rj ≥
1. Let c′ = maxi ci. Then

φ(p∗)− `φ(p∗; p) ≥
∑
`

hc′(r`)

c′
x` ·

(p∗` − p`)2

p`
.

Proof. As with previous lemmas, we use a bound on the
polynomial (p∗j − pj)

ci , but now we use the bound given
by Fact 6.6i. Specifically, if p∗j/pj ≤ rj and 0 < c ≤ 1,

(p∗j )
c ≤ pcj + cpc−1

j (p∗j − pj)− hc(rj)pc−2
j (p∗j − pj)2. We also

use a simple bound on the log function, namely log(1+ε) ≤ ε
for ε ≥ −1. To avoid clutter, we omit the superscript t on
the prices.

Let ∆∗pj = p∗j − pj . Then

φ(p∗)− `φ(p∗; p) =
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
` bi`(p

∗
l )
ci

Si(p)

)
.

Using the upper bound on (p∗j )
ci gives:

φ(p∗)− `φ(p∗; p)

≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(
1 +

∑
` bi`cip

ci−1
` (∆∗p`)

Si(p)

−
∑
` bi`hci(r`)p

ci−2
` (∆∗p`)

2

Si(p)

)

=
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(
1 +

∑
`

ci
xi`
ei

(∆∗p`)

−
∑
`

hci(r`)
xi`
p`ei

(∆∗p`)
2

)
On noting that the argument for the log is positive (as it is an
upper bound for p∗j ), we can apply the bound ε ≥ log(1 + ε)
for ε ≥ −1 to give:

φ(p∗)− `φ(p∗; p)

≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

(∑
`

ci
xi`
ei

(∆∗p`)

−
∑
`

hci(r`)
xi`
p`ei

(∆∗p`)
2

)

=
∑
i

∑
`

hci(r`)

ci
xi`

(∆∗p`)
2

p`

≥
∑
i

∑
`

hc′(r`)

c′
xi`

(∆∗p`)
2

p`
(by Fact 6.6 ii.)

=
∑
`

hc′(r`)

c′
x`

(∆∗p`)
2

p`
.

Proof. (of Lemma 6.3.) Let mj denote hc′(rj)/c
′. Then,

by Lemma 6.7:

φ(pt)− φ(p∗) ≤
∑
j

zj(p
∗
j − ptj)−

∑
j

mjxj
(p∗j − ptj)2

ptj)

≤ max
p′

∑
j

(
zj(p

′
j − ptj)−mjxj

(p′j − ptj)2

ptj

)
.

There are two cases.

Case 1: 0 ≤ xj ≤ 1/2.
Then −1 ≤ zj ≤ −1/2 and hence zj ≥ −2z2

j .

zj(p
′
j − ptj)−mjxj

(p′j − ptj)2

ptj
≤ −zjptj ≤ 2z2

j p
t
j = 2γj

z2
j p
t
j

γj
.

As xj ≤ 1/2 < 1, 2γj = 10. Hence

zj(p
′
j − ptj)−mjxj

(p′j − ptj)2

ptj
≤ 10

z2
j p
t
j

γj
.

Case 2: xj ≥ 1/2.

zj(p
′
j−ptj)−mjxj

(p′j−p
t
j)2

ptj
is a quadratic function of (p′j−

ptj). The quadratic function is maximized when (p′j − ptj) =
zjp

t
j

2mjxj
, with its maximum value being

z2j p
t
j

4mjxj
=

γj
4mjxj

z2j p
t
j

γj
.

As xj ≥ 1/2 and γj = 5 ·max {1, xj}, γj/xj ≤ 10. Hence

zj(p
′
j − ptj)−mjxj

(p′j − ptj)2

ptj
≤ 5

2mj

z2
j p
t
j

γj
.

Combining the two cases yields the result.

6.3 Bounding mj

Let pU = maxj{p◦j}, the maximum initial price, U =
max{pU,M}, and L∗ = minj{p∗j}.

Lemma 6.8. p∗j/p
t
j ≤ max{2p∗j/p◦j , 2(L∗/2U)mini ρi}

Proof. Observation 1. No price will exceed 2U during
the entire tatonnement process.

Reason. Suppose not, then let t = τ be the first time when
some price, say pk, exceed 2U . At t = τ − 1, pτ−1

k < 2U .
But pτ−1

k ≥ U , as pk can at most double in one time unit.
Then pτ−1

k ≥ M and xτ−1
k ≤ M/pτ−1

k ≤ 1. By the price
update rule, pk(τ) ≤ pτ−1

k < 2U , a contradiction.

Observation 2. pk ≥ 1
2
·min{p◦k, (2U/L∗)mini ρip∗k} through-

out the entire tatonnement process.

Reason. Suppose that for some k, pk ≤ L∗(2U/L∗)mini ρi .
We claim that xk ≥ 1. At equilibrium prices, all demands
equal 1. If the prices are all raised by a factor of 2U

L∗ , then

all demands equal L∗

2U
. Note that now all prices are at least

2U .
Now reduce the price of pk from 2U

L∗ p
∗
k to

(
2U
L∗

)mini ρi p∗k,

that is, reduce the price by a factor of
(

2U
L∗

)1−mini ρi . By the
elasticity bound, the new demand for good k is

x′k ≥ xk ·

[(
2U

L∗

)1−mini ρi
]1/(1−mini ρi)

=
L∗

2U
· 2U

L∗
= 1.

We just proved that when pk =
(

2U
L∗

)mini ρi p∗k but all other
prices are at least 2U , the demand for good k is at least
1. By Observation 1, no price exceeds 2U during the en-
tire tatonnement process. In complementary markets, since
the demand for one good increases when the prices of other
goods decrease, we have shown that xk ≥ 1 throughout the

entire tatonnement process, if pk ≤
(

2U
L∗

)mini ρi p∗k.

Let L̄k = (1/2) ·min{p◦k, (2U/L∗)mini ρip∗k}. Suppose that
Observation 2 were incorrect, then let t = τ be the first
time when some price, say pj , is below L̄j . At t = τ − 1,



pτ−1
j ≥ L̄j . But pτ−1

j ≤ 2L̄j , as pj can reduce by at most
half in one time unit.

Then xτ−1
j ≥ 1. By the price update rule, pτj ≥ pτ−1

j ≥
L̄j , a contradiction.

The lemma now follows from Observation 2.

7. DISCUSSION
We have shown that discrete versions of tatonnement con-

verge for Leontief and CES utilities. The main open question
is whether these convergence results extend to the Ongo-
ing Market model defined by Cole and Fleisher [7]. In this
model, the market repeats from one time period to the next,
and excess demands and supplies are carried foward to suc-
cessive time periods using finite buffers, which they called
warehouses. The purpose of this model was to provide a
more natural setting for the tatonnement update process.

There are two aspects to the Ongoing Market that our
results do not address.

• Warehouses. There is a separate warehouse for each
good. The price update for each good is adjusted to
take account of whether the warehouse is relatively
full or empty. The goal is to show that, as in [4], the
tatonnement price update converges to the equilibrium
prices and that in addition this can be achieved with-
out having the warehouse either overflow or run out
of stock, and further that it too converges to an ideal
state, namely half-full. We conjecture that this is pos-
sible for the markets with CES utilities at least.

• Asynchrony. This allows the prices to be updated inde-
pendently, at separate times, with the sole constraint
that each price update at least once per time unit. Fur-
ther, each price update uses the accumulated demand
since the previous update, as opposed to the instanta-
neous demand, to determine its size. Again, both the
asynchrony itself, and the price update rule, are in-
tended to provide a process that seems more natural.
We also conjecture that this variant of the price update
will converge for markets with CES utilities.

The previous analyses for the Ongoing Market used non-
trivial amortized arguments. It seems they will not extend to
the present setting, for they were intrinsically linear, whereas
the potential function employed here for the CES utilities is
quadratic. Still, we suspect there may be extensions of the
current analyses that will lead to the conjectured results.

Finally, we ask whether the logarithmic rate of conver-
gence extends to the markets with Leontief utilities.

8. ACKNOWLEDGMENTS
We thank Lin Xiao for his pointers to the literature on

strong convexity and gradient descent.

9. REFERENCES
[1] K. Arrow, H. Block, and L. Hurwicz. On the stability

of the competitive equilibrium: II. Econometrica,
27(1):82–109, 1959.

[2] Benjamin Birnbaum, Nikhil Devanur, and Lin Xiao.
Distributed algorithms via gradient descent for fisher
markets. In ACM Conference on Electronic
Commerce, pages 127–136, 2011.

[3] G. Chen and M. Teboulle. Convergence analysis of a
proximal-like minimization algorithm using Bregman
functions. SIAM Journal on Optimization,
3(3):538–543, August 1993.

[4] Yun Kuen Cheung, Richard Cole, and Ashish Rastogi.
Tatonnement in ongoing markets of complementary
goods. In ACM Conference on Electronic Commerce,
pages 337–354, 2012.

[5] Bruno Codenotti, Benton Mccune, and Kasturi
Varadarajan. Market equilibrium via the excess
demand function. In Proceedings of STOC, pages
74–83, 2005.

[6] Bruno Codenotti and Kasturi Varadarajan. Efficient
computation of equilibrium prices for markets with
leontief utilities. In Proceedings of the Thirty First
International Colloquium on Automata, Languages
and Programming, 2004.

[7] Richard Cole and Lisa Fleischer. Fast-converging
tatonnement algorithms for one-time and ongoing
market problems. In STOC, pages 315–324, 2008.

[8] Nikhil R Devanur. Fisher markets and convex
programs. Working paper available from
http://research.microsoft.com/en-us/um/people/
nikdev/, 2009.

[9] Edmund Eisenberg and David Gale. Consensus of
subjective probabilities: The pari-mutuel method.
Ann. Math. Statist., 30(1):165–168, 1959.

[10] Lisa Fleischer, Rahul Garg, Sanjiv Kapoor, Rohit
Khandekar, and Amin Saberi. A fast and simple
algorithm for computing market equilibria. In WINE,
pages 19–30, 2008.

[11] George Green. An Essay on the Application of
Mathematical Analysis to the Theories of Electricity
and Magnetism. Nottingham, England: T.
Wheelhouse, 1828.

[12] Kamal Jain and Vijay V. Vazirani. Eisenberg-Gale
markets: algorithms and game-theoretic properties.
Games and Economic Behavior, 70(1), 2010.

[13] Kamal Jain, Vijay V. Vazirani, and Yinyu Ye. Market
equilibria for homothetic, quasi-concave utilities and
economies of scale in production. In SODA, pages
63–71, 2005.

[14] F. P. Kelly and V. V. Vazirani. Rate control as a
market equilibrium. Manuscript, 2002.

[15] Andreu Mas-Collel, Michael D. Whinston, and
Jerry R. Green. Microeconomic Theory. Oxford
University Press, 1995.

[16] H. Nikaido and H. Uzawa. Stability and
non-negativity in a Walrasian process. International
Econ. Review, 1:50–59, 1960.

[17] Bernard Riemann. Grundlagen fÃijr einen allgemeine
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