
The Spending Constraint Model for Market Equilibrium:
Algorithmic, Existence and Uniqueness Results ∗

[Extended Abstract]

Nikhil R. Devanur
nikhil@cc.gatech.edu

Vijay V. Vazirani
vazirani@cc.gatech.edu

College of Computing,
Georgia Institute of Technology.

801, Atlantic Dr., Atlanta, GA 30332.

ABSTRACT
The traditional model of market equilibrium supports im-
pressive existence results, including the celebrated Arrow-
Debreu Theorem. However, in this model, polynomial time
algorithms for computing (or approximating) equilibria are
known only for linear utility functions. We present a new,
and natural, model of market equilibrium that not only ad-
mits existence and uniqueness results paralleling those for
the traditional model but is also amenable to efficient algo-
rithms.

Categories and Subject Descriptors: F.2 [Analysis
of Algorithms and Problem Complexity]: General;
General Terms: Algorithms, Economics.

1. INTRODUCTION
The mathematical modelling of an economy by Walras

[17], followed by the proof of existence of market equilibria
by Arrow and Debreu [2] are considered of central impor-
tance in mathematical economics. However, the issue of
computing an equilibrium has not had similar success (e.g.,
see Scarf [15]). Recently, Papadimitriou [14] and Deng, Pa-
padimitriou, and Safra [9] have brought this question to the
forefront within the theoretical computer science commu-
nity, and pointed out the paucity of polynomial time algo-
rithms for such questions. [9] gave polynomial time algo-
rithms for computing equilibria for linear utility functions
provided the number of goods or buyers is bounded, and
left the question of extending this to unbounded goods and
utilities.

A partial answer to their question was provided in [7],
who gave a polynomial time algorithm for the linear ver-
sion of Fisher’s problem [15]. [13, 5, 11] gave approximation

∗This paper is based on [16] and [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04 June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

schemes for the linear utilities case of the Arrow and De-
breu model; the first two are based on [7] and the last is an
auction-based algorithm. In the 1950’s Eisenberg and Gale
[10] had given a convex program for computing equilibrium
prices for the linear version of Fisher’s model. Hence, using
the ellipsoid algorithm, equilibrium prices can be approxi-
mated for this case. An exact polynomial time algorithm
follows from a corollary of [7] that equilibrium prices have
small denominators. More recently, Jain [12] gives a convex
program which can be used for computing equilibrium prices
for the linear version of the Arrow-Debreu model using the
ellipsoid algorithm and diophantine approximation, leaving
open the problem of obtaining a combinatorial algorithm.

In this paper we define a new class of utility functions
to deal with the following two deficiencies of linear utility
functions. First, since linear utility functions are additively
separable, a buyer may end up spending all her money on
a single item. Non-separable utility functions, such as those
used by Arrow and Debreu, do not suffer from this problem;
however, such utility functions are not easy to deal with
computationally. To deal with this issue, we will generalize
linear utility functions by specifying a limit on the amount
of money buyer i can spend on good j; buyer i’s total util-
ity function is still additively separable over goods. Second,
linear utility functions do not capture the important condi-
tion of buyers getting satiated with goods, e.g., as done by
concave utility functions. To capture this, we generalize fur-
ther: buyer i has several linear utility functions for good j,
each with a specified spending limit. We may assume that
these functions are sorted by decreasing rates, and hence
capture the condition that buyer i derives utility at decreas-
ing rates on getting more and more of good j. As shown
below, these functions can be written as one deceasing step
function. More generally, spending constraint utilities will
be defined via arbitrary decreasing functions (rather than
decreasing step functions).

Such utility functions are natural – typically, people do
have rough estimates, either implicit or explicit, on the frac-
tion of their budget they are willing to spend on different
items, say milk, meat, and chocolates. The exact amounts
spent on these items will of course depend on their relative
prices. Sometimes spending constraints are also imposed
from outside, e.g., mortgage companies impose a limit on
the amount of loan made so that the monthly payment is no
more than a certain fraction of one’s income.

519

Let us extend Fisher’s model with decreasing step spend-
ing constraint utility functions. Additionally, we enhance
the model by assuming that each buyer has utility for money,
also specified via a step function. Now, at specified prices,
a buyer may prefer to spend only part of her money. The
notion of equilibrium is generalized appropriately: all goods
need to be sold but not all money needs to be spent. The
analogous enhancement to the linear case is called quasi-
linear in economics. Our main algorithmic result is a poly-
nomial time algorithm for computing (the unique) equilib-
rium prices for this model.

We show existence of equilibrium prices for the spend-
ing constraint extension of both Fisher and Arrow-Debreu
models with continuous, decreasing utility functions. For
the former, Brouwer’s fixed point theorem suffices, however
for the latter we need full power of Kakutani’s fixed point
theorem. In the former case (Fisher’s model), equilibrium
prices are unique and in the latter case (Arrow-Debreu) they
are not. Uniqueness of equilibria has been considered impor-
tant, since it is another indication of stability within mar-
kets, e.g., see [4].

Using our algorithm for step decreasing utility functions
as a subroutine, we give an FPTAS for arbitrary decreas-
ing utility functions for Fisher’s model. We also use this
algorithm as a subroutine to give an FPTAS for decreasing
step utility functions in the spending constraint extension of
Arrow-Debreu model. Further extensions yield an FPTAS
for arbitrary decreasing utility functions in this model as
well.

Similar to [7], our algorithm for step decreasing utility
functions operates by monotonically raising prices until equi-
librium prices are reached. Such a procedure is supported by
the fact that these utility functions support weak gross sub-
stitutability, i.e., raising the price of good j cannot decrease
the demand for good j′.

The key point of departure with [7] is the following: In
the linear case, at any given prices, each buyer i has a set of
most desirable goods. Any allocations made from this set of
goods makes i equally happy; it is not essential to allocate
any particular good from this set. Indeed, the algorithm of
[7] exploits this freedom fully – it does not need to commit
to any allocations as the prices are being raised; allocations
are made only at the end, after equilibrium prices have been
computed.

In our setting, at any prices the optimal bundle of buyer
i will involve forced allocations, i.e., at these prices, buyer i
necessarily wants to spend a certain amount of her money
on certain goods. However, as prices change, some of the
forced allocations may become undesirable to buyer i and
need to be deallocated. The main new idea of the algorithm
is a way of carrying out this backtracking in a way that still
leads to polynomial running time.

If utility functions are assumed strictly concave, there is
a unique optimal bundle of goods for each buyer at any
given prices. Therefore, if market clearing prices are an-
nounced, each buyer can compute her optimal bundle in
a distributed manner and buy goods accordingly, and the
market will clear. Such utility functions are considered im-
portant in Economics; however, attempts at extending the
algorithm of [7] to the case of concave, or even piecewise-
linear and concave utilities, have so far failed. Let us outline
the main difficulty involved.

The algorithm of [7] is inspired by the primal-dual schema,

with prices playing the role of dual variables in this “primal-
dual-type” algorithm. Almost all known primal-dual algo-
rithms work by monotonically raising dual variables; very
few such algorithms use more sophisticated mechanisms of
increasing and decreasing dual variables in order to obtain
a better dual solution. Indeed, the latter is extremely diffi-
cult to arrange. We observe that piecewise-linear utilities do
not satisfy weak gross substitutability. As a result, raising
the price of j may require lowering the price of j′. Hence
it is reasonable to assume that an iterative algorithm for
piecewise-linear utility functions will need to increase and
decrease prices (dual variables) – a rather difficult matter
to arrange, as mentioned above.

Our algorithm for step decreasing utilities may help finesse
this difficulty via the following iterative procedure: Let fij

be the piecewise-linear utility function of buyer i for good
j and let gij be its derivative. Observe that gij is a de-
creasing step function. Observe that if the price of good j
is known, say pj , then the function gij(xijpj) gives the rate
at which i derives utility per unit of j received as a function
of the amount of money spent on j, i.e., the utility function
required in the spending constraint model. Now consider
the following procedure. Start with an initial price vector
so that the sum of prices of all goods adds up to the total
money possessed by buyers. Using these prices, convert the
given piecewise-linear utility functions into spending con-
straint utility functions and run the algorithm of the current
paper on this instance to obtain a new price vector. Repeat
until the price vector does not change, i.e., a fixed point is
obtained. It is easy to see that prices at the (unique) fixed
point are equilibrium prices for the given piecewise-linear
utility functions.

We formally define the spending constraint model, for
Fisher and Arrow-Debreu settings, in Section 2. Existence
and uniqueness results are presented in Section 3. The
polynomial time algorithm for step utility functions for the
Fisher setting is presented in Section 4, followed by approx-
imation algorithms for continuous deceasing functions (Sec-
tion 5). The results of Section 4 are from [16], and the
results of Sections 3 and 5 are from [6]. The spending con-
straint models in the Fisher and Arrow-Debreu settings were
introduced in [16] and [6], respectively.

2. THE SPENDING CONSTRAINT MODEL
Fisher’s model consists of a market with buyers and goods.

Each buyer has a specified amount of money and her utility
function for goods is specified. The problem is to find prices
for goods so that after each buyer is given her optimal bundle
of goods (relative to these prices), the market clears exactly,
i.e., there is no deficiency or surplus of any good.

We extend this model via spending constraint utility func-
tions: Let A be a set of divisible goods and B a set of buyers,
|A| = n, |B| = n′. Assume that the goods are numbered
from 1 to n and the buyers are numbered from 1 to n′. Each
buyer i ∈ B comes to the market with a specified amount
of money, say e(i) ∈ Q+ dollars, and we are specified the
quantity, bj ∈ Q+ of each good j ∈ A. For i ∈ B and j ∈ A,
let f i

j : [0, e(i)] → R+ be the rate function of buyer i for
good j; it specifies the rate at which i derives utility per
unit of j received, as a function of the amount of her budget
spent on j. If the price of j is fixed at pj per unit amount of
j, then the function f i

j/pj gives the rate at which i derives
utility per dollar spent, as a function of the amount of her

520

budget spent on j. Define gi
j : [0, e(i)]→ R+ as follows:

gi
j(x) =

Z x

0

f i
j (y)

pj
dy.

This function gives the utility derived by i on spending x
dollars on good j at price pj . Observe that by scaling the
functions f i

j appropriately we can assume w.l.o.g. that bj =
1 for each good j.

Each buyer also has utility for the part of her money that
she does not spend. For i ∈ B, let f i

0 : [0, e(i)]→ R+ specify
the rate at which i derives utility per dollar as a function of
the amount she does not spend. If i returns with x dollars,
the utility derived from this unspent money is given by

gi
0(x) =

Z x

0

f i
0(y)dy.

If f i
j is continuous and monotonically decreasing, gi

j will
be strictly concave and differentiable. It is easy to see that
for such functions, at any prices of the goods, there is a
unique allocation that maximizes i’s utility.

The Arrow-Debreu model is the classical exchange model.
The market consists of agents, each having an initial endow-
ment of goods, and having specified utility functions for the
goods. The problem is to find prices for goods such that af-
ter each agent sells her initial endowment at these prices and
buys her optimal basket of goods, the market clears. This
model involves feedback – the money possessed by an agent
depends on the prices of goods. Hence, any algorithm that
iteratively modifies prices has to keep track of the changing
amounts of money possessed by buyers, making this model
computationally more difficult.

The endowment of each agent i is a bundle of goods ei ∈
[0, 1]A (instead of money, as before). ei’s satisfy: ∀ j ∈
A,
P

i∈B eij = 1. For this model, the spending constraint
utility function specifies the rate at which an agent derives
utility for a good as a function of the fraction of money
spent, f i

j : [0, 1]→ R. The total money earned by the buyer
is e(i) =

P
j∈A eijpj . Via an appropriate scaling, the rate

function can be treated the same way as in the Fisher set-
ting.

3. EXISTENCE AND UNIQUENESS RESULTS

3.1 Characterizing the optimal bundle in the
Fisher setting

Throughout the paper, we will use the notation x to de-
note a vector, and xj to denote the jth component of x.

When the utilities are linear, i.e., f i
j is a constant function,

buyer i buys only those goods that maximize his “bang per
buck”, which is f i

j/pj . The corresponding characterization
for the spending constraint model is that the buyer buys
only those goods that maximize the rate at which he derives
his bang per buck for that good. More precisely, suppose
that i spends M i

j amount of money on good j when he buys

his optimum bundle. (Note that
P

j∈A M i
j = e(i).) Let

αi := maxj∈A f i
j (M

i
j)/pj be the maximum rate at which i

derives his bang per buck. Then M i
j > 0⇒ f i

j (M
i
j)/pj = αi;

M i
j = 0⇒ f i

j (0)/pj ≤ αi.
Suppose that f : [a, b] → R+ is continuous and strictly

decreasing. Then f is invertible in [f(b), f(a)]. Note that
f−1 : [f(b), f(a)] → [a, b] is also continuous and strictly
decreasing. If f is identically zero, then define f−1 to be

identically zero as well. Suppose that each f i
j is either con-

tinuous and strictly decreasing in [0, e(i)], or zero. Further,
if for each i there is at least one j such that f i

j is non-zero,
then say that the rate functions are nice for this instance.

Let
�
f i

j

�−1
be the inverse of f i

j .
Given a target rate of bang per buck value αi for buyer

i, the money that he should spend1 on good j is given by

M i
j =

�
f i

j

�−1
(αipj). This suggests a way to compute αi.

Recall that
P

j∈A M i
j = e(i). Therefore αi is the solution to

the equation (in the unknown α):

X
j∈A

�
f i

j

�−1

(αpj) = e(i). (1)

Note that αipj could be greater than f i
j (0), in which case

the inverse does not exist. We can fix this by defining�
f i

j

�−1
(x) = 0 for all x ≥ f i

j (0). This preserves the con-

tinuity of
�
f i

j

�−1
since

�
f i

j

�−1
is zero at f i

j (0). Similarly, we

extend
�
f i

j

�−1
to x ≤ f i

j (e(i)) by defining it to be e(i) at
all these points. As long as the rate functions are nice, (1)
has a unique solution. Since we defined the inverse of a zero
function to be zero, this ensures that a buyer never spends
any money on goods for which he has no utility.

We next establish the behavior of αi with the change in
prices. Suppose that for some j, pj is increased infinites-

imally. Then
�
f i

j

�−1
(αpj) either does not change, or de-

creases infinitesimally. Therefore αi, the solution to (1), ei-
ther does not change, or decreases infinitesimally. We state
this observation for future reference:

Lemma 1. αi is a continuous and non-increasing func-
tion of pj for all j.

3.2 Existence and uniqueness theorems
Let ξ() : Rn

+ → Rn
+ be the demand function in terms

of money, i.e., ξj(p) denotes the total amount of money
the buyers are willing to spend on good j at the given price
vector p. In terms of the above notation, we get that ξj(p) =P

i∈B M i
j . Therefore,

ξj(p) =
X
i∈B

�
f i

j

�−1

(αipj) . (2)

Since we already established that
�
f i

j

�−1
is continuous, and

that αi is a continuous function of p (Lemma 1), ξ(p) is a
continuous function of p. Since we assumed that there is a
unit amount of each good, the market equilibrium condition
can be restated as ξ(p) = p. We now recall Brouwer’s Fixed
Point Theorem that we use in establishing the existence of
equilibrium.

Theorem 2 (Brouwer). Let g : S → S be a continu-
ous function from a non-empty, compact, convex set S ⊂ Rn

into itself, then there is an x∗ ∈ S such that g(x∗) = x∗.

The goal is to define a continuous function g from S =
{p : pj ≥ 0,

P
j∈A pj =

P
i∈B e(i)}, the scaled simplex of

price vectors, into itself so that the fixed point corresponds
to the equilibrium. ξ almost works for this purpose, except
that it is not defined when some pj = 0.

1Another way to think about
�
f i

j

�−1
(αpj) is that it is the

length of the line segment y = α between the y-axis and the
curve y = f i

j (x)/pj.

521

Consider any j ∈ A. Let i ∈ B be such that f i
j is non-zero.

Let e(i) ≥ lj > 0 be such that

f i
j (lj)

lj
≥ f i

j′(e(i)/n)

e(i)/n
,∀ j′ �= j.

There exists such an lj since
fi

j (lj)

lj
tends to infinity as lj

tends to zero. It can be shown that if an equilibrium price p∗

exists, then p∗j ≥ lj . We divide S into two parts, Sin := {p ∈
S : pj ≥ lj , ∀ j ∈ A} and Sout := S \ Sin. When x ∈ Sin
we let g(x) = ξ(x); when x ∈ Sout, we let g(x) = ξ(x̄) where
x̄ is the point in Sin that is closest to x. It is easy to check
that g is indeed continuous on S and that the fixed point of
g is an equilibrium.

Theorem 3. For all markets in the Fisher setting with
spending constraint utilities, there exists an equilibrium price
vector if the rate functions are nice.

For the uniqueness of equilibrium, we prove a more general
result.

Definition 4. A demand function f satisfies Weak Gross
Substitutability if fj(p) does not decrease on increasing
the price of any good j′ other than j:

∂fj

∂pj′
≥ 0, ∀ j �= j′ ∈ A.

Lemma 5. The demand function ξ satisfies Weak Gross
Substitutability.

Proof. ¿From (2), it is enough to prove that
�
f i

j

�−1
(αipj)

is a non-decreasing function of pj′ . But the only dependence

on pj′ comes via αi. Since
�
f i

j

�−1
is non-increasing, it is

enough to prove that αi is a non-increasing function of pj′ .
But this has already been established in Lemma 1.

Definition 6. A demand function f satisfies Scale In-
variance if f does not change when all the prices are mul-
tiplied by the same non-zero scalar:

f(p) = f(θp),∀ θ > 0.

Lemma 7. The demand function ξ satisfies Scale Invari-
ance.

Proof. Note that if αi is the solution to (1) at the price
vector p, then αi/θ is the solution at the price vector θp.

Therefore
�
f i

j

�−1
(αipj) is Scale Invariant, and in turn, ξ is

Scale Invariant.

Lemma 8. If the demand function of a market satisfies
Weak Gross Substitutability, and Scale Invariance then the
equilibrium prices are unique.

Proof. Suppose that there are two price vectors, p and
q at which the market clears. Consider

θ := max
j∈A

(
pj

qj
).

W.l.o.g θ ≥ 1. It is enough to prove that θ ≤ 1. Note that
for all j, θqj ≥ pj , i.e., θq is component-wise bigger than
or equal to p. However, at least one component is exactly
equal; let that component be j, i.e., θqj = pj . Now consider
the process that starts with p and raises the price of each
good until it is θq. Since we only increase the prices of goods

other than j, ξj does not decrease during this process (by
Weak Gross Substitutability of ξ), i.e., ξj(θq) ≥ ξj(p). Since
p is market clearing, ξj(p) = pj . Further, pj = θqj by choice
of j. On the other hand, ξj(θq) = ξj(q) (by Scale Invariance
of ξ), which in turn is equal to qj since q is market clearing.
So we have qj = ξj(q) = ξj(θq) ≥ ξj(p) = pj = θqj . Hence
θ ≤ 1 and we are done.

¿From Lemmas 5, 7 and 8, the following theorem follows.

Theorem 9. The equilibrium price vector for any market
in the Fisher setting, with spending constraint utilities is
unique if the rate functions are nice.

3.3 The Arrow-Debreu setting
We follow the exposition of the Arrow-Debreu Theorem

in [1] and prove an analogous theorem for the Arrow-Debreu
setting with spending constraint utilities using Kakutani’s
Fixed Point Theorem. We show that the excess demand in
our case has essentially all the properties that the classic
model has. We only state those properties here. For the
complete proof, see [6].

Let ζ be the excess demand function, i.e., ζj(p) = ξj(p)/pj−
1. The market clearing condition translates to ζ(p) = 0. Let
S = {p ∈ Rm

+ : p1 + p2 + · · ·+ pm = 1, pi > 0 ∀ i ∈ A} . If ζ
satisfies the following properties,

1. ζ is continuous and bounded from below.

2. ζ satisfies the Walras’ law, i.e, p.ζ(p) = 0 holds for all
p ∈ S.

3. If a sequence {pn} of strictly positive prices

pn = (pn
1 , p

n
2 , . . . , p

n
l)→ p = (p1, p2, . . . , pl)

and pk > 0 holds for some k, then the sequence {ζk(pn)}
of the kth components of {ζk(pn)} is bounded.

4. pn → p ∈ ∂S, with {pn} ∈ S imply limn→∞ ||ζ(pn)|| =
∞.

then there exists at least one vector p ∈ S such that ζ(p) =
0.

In the Arrow-Debreu setting, prices are not unique. Con-
sider two agents, with endowments (1, 0) and (0, 1) respec-
tively. Suppose that for each agent, the utility for his good
far outweighs the utility for the other good. Then the mar-
ket clears for many different prices, in which each agent buys
only his own good.

4. THE BASIC ALGORITHM
Consider the case where f i

j ’s are decreasing step functions.

If so, gi
j will be a piecewise-linear and concave function. We

will call each step of f i
j a segment. The set of segments

defined in function f i
j will be denoted seg(f i

j). Suppose one

of these segments, s, has range [a, b] ⊆ [0, e(i)], and f i
j(x) =

c, for x ∈ [a, b]. Then, we will define value(s) = b − a,
rate(s) = c, and good(s) = j; we will assume that good
0 represents money. Let segments(i) denote the set of all
segments of buyer i, i.e.,

segments(i) =

n[
j=0

seg(f i
j).

Let us assume that the given problem instance satisfies
the following (mild) conditions:

522

• For each good, there is a potential buyer, i.e.,

∀j ∈ A ∃i ∈ B ∃s ∈ seg(f i
j) : rate(s) > 0.

• Each buyer has a desire to use all her money (to buy
goods or to keep some unspent), i.e.,

∀i ∈ B :
X

s∈segments(i), rate(s)>0

value(s) ≥ e(i).

Theorem 10. Under the conditions stated above, there
exist unique market clearing prices.

W.l.o.g. we may assume that each e(i) and the value
of each segment is integral. Given non-zero prices p =
(p1, . . . , pn), we characterize optimal baskets for each buyer
relative to p. Define the bang per buck relative to prices p
for segment s ∈ seg(f i

j), j �= 0, to be rate(s)/pj . The bang

per buck of segment s ∈ seg(f i
0) is simply rate(s). Sort all

segments s ∈ segments(i) by decreasing bang per buck, and
partition by equality into classes: Q1, Q2, For a class
Ql, define value(Ql) to be the sum of the values of segments
in it. At prices p, goods corresponding to any segment in
Ql make i equally happy, and those in Ql make i strictly
happier than those in Ql+1.

Find k such thatX
1≤l≤k−1

value(Ql) < e(i) ≤
X

1≤l≤k

value(Ql).

By the conditions of Theorem 10, segments in Qk have non-
zero rate. At prices p, i’s optimal allocation must contain
goods corresponding to all segments in Q1, . . . , Qk−1, and
a bundle of goods worth e(i) − (

P
1≤l≤k−1 value(Ql)) cor-

responding to segments in Qk. We will say that for buyer
i, at prices p, Q1, . . . , Qk−1 are her forced partitions, Qk is
her flexible partition, and Qk+1, . . . are her undesirable par-
titions.

At any intermediate point in the algorithm, not all forced
partitions w.r.t. the current prices will be allocated. How-
ever, the forced partitions that are allocated must form an
initial set from the sorted list. More precisely:

Invariant 1: For each buyer i, there is an integer ti such
that the forced allocations to i correspond exactly to all
segments in partitions Q1, . . . , Qti−1, where Q1, Q2, . . . is
the sorted list of partitions of i relative to current prices p.

We will say that Qti is the current partition for buyer i,

and we will denote it by Q(i). The exact value of ti depends
on the order in which events happen in the algorithm; how-
ever, when the algorithm terminates, ti = k as defined in
above.

4.1 Ensuring monotonicity of prices
The algorithm iteratively raises prices until equilibrium

prices are reached. Clearly, a prime consideration is to en-
sure that the equilibrium price is not exceeded for any good.
We describe below a condition that ensures this.

At any intermediate point in the algorithm, certain seg-
ments are already allocated. By allocating segment s, s ∈
seg(f i

j), j �= 0, we mean allocating value(s) worth of good j
to buyer i. The exact quantity of good j allocated will only
be determined at termination, when prices are finalized. In
addition, at an intermediate point in the algorithm, some
money would be returned to buyer i. Let returned(s), s ∈

seg(f i
0), denote the amount of money returned to i, corre-

sponding to segment s, where returned(s) ≤ value(s). If
returned(s) > 0, then all segments s′ ∈ seg(f i

0) having
higher rate must be fully returned, i.e., there is at most
one partially returned segment for each buyer.

Let allocated(j) denote the total value of good j, j �= 0
already allocated and let spent(i) denote the sum of the
amount spent by buyer i on allocated segments and the
amount of money already returned to her. Thus, when seg-
ment s is allocated, value(s) is added to allocated(j) and
to spent(i), and when returned(s) money is returned to i,
corresponding to segment s ∈ seg(f i

0), returned(s) is added
to spent(i). Also, define the money left over with buyer i,
m(i) = e(i)− spent(i).

Define the current bang per buck of buyer i, α(i), to be

the bang per buck of partition Q(i). This is the rate at
which i derives utility, per dollar spent, for allocations from
Q(i) at current prices. Next, we define the equality subgraph
G = (A,B,E) on bipartition A,B and containing edges E.

Corresponding to each buyer i and each segment s ∈ Q(i),
E contains the edge (i, j), where good(s) = j. The capacity
of this edge, cij = value(s).

Denote by a, s and m the current allocations, amounts
spent and left over money, i.e., (allocated(j), j ∈ A),
(spent(i), i ∈ B) and (m(i), i ∈ B), respectively. We will
carry over all these definitions to sets, e.g. for a set S ⊆ A,
m(S) will denote

P
j∈S m(j).

We next define network N(p,a, s), which is a function of
the current prices, allocations and amounts spent. Direct
all edges of the equality subgraph, G, from A to B. Add a
source vertex s, and directed edges (s, j), for each j ∈ A and
having capacity pj − allocated(j). Add a sink vertex t, and
directed edges (i, t), for each i ∈ B and having capacity m(i).
Throughout the algorithm, we will maintain the following:

Invariant 2: (s,A∪B∪t) is a min-cut in network N(p,a, s).

For S ⊆ A, define its neighborhood in the equality subgraph
to be

Γ(S) = {i ∈ B | ∃j ∈ S with(i, j) ∈ G}.
For A′ ⊆ A and B′ ⊆ B, define c(A′;B′) to be the sum
of capacities of all edges from A′ to B′ in N(p,a, s). For
S ⊆ A, define

best(S) = min
T⊆Γ(S)

{m(T) + c(S; Γ(S)− T)},

and define bestT(S) to be a maximal subset of Γ(S) that
optimizes the above expression. Observe that best(S) is the
capacity of the min-cut separating t from S in N(p,a, s).
Also observe that if T1 and T2 optimize the above expression,
then i ∈ T1−T2 must satisfy m(i) = c(S; i). Hence bestT(S)
is unique. We can now give a characterization of Invariant
2 in terms of cuts in the network.

Lemma 11. Network N(p,a, s) satisfies Invariant 2 iff

∀S ⊆ A : p(S)− a(S) ≤ best(S).

A set S ⊆ A that satisfies the inequality in Lemma 11
with equality will be called a tight set. By the following
lemma, if Invariant 2 holds, there is a unique maximal tight
set.

Lemma 12. Assume that Invariant 2 holds. If S1 ⊆ A
and S2 ⊆ A are two tight sets, then S1 ∪ S2 is also a tight
set.

523

Corollary 13. If Invariant 2 holds, the maximal tight
set is unique.

4.2 Algorithm 1
Observe that if S is a tight set, market clearing prices have

been achieved for these goods – unless the equality subgraph
undergoes change – since the prices of goods in S are just
right to exactly exhaust the money of all buyers interested
in these goods. Hence, the algorithm will stop raising prices
of these goods (indeed, raising them will violate Invariant
2).

The algorithm partitions the equality subgraph G = (A,B,E)
into two: frozen and active, consisting of bipartitions (A1, B1)
and (A2, B2), respectively (throughout this paper, A1, A2

will be subsets of A and B1, B2 will be subsets of B). A1

is the maximal tight set of G, B1 = Γ(A1), and the frozen
subgraph satisfies p(A1)−a(A1) = m(B1). The active sub-
graph satisfies

∀S ⊆ A2 : p(S)− a(S) < best(S)

and so prices of goods in A2 can be raised without violat-
ing Invariant 2. The crucial job of partitioning the equality
subgraph is performed by subroutine freeze (see Section
4.3), which also performs other related functions. As ar-
gued in Section 4.3, the frozen and active subgraphs are
disconnected and hence decoupled.

A buyer i is said to have a partially returned segment
s ∈ seg(f i

0) if 0 < returned(s) < value(s). This happens if i
moves to the frozen subgraph before value(s) money corre-
sponding to segment s could be fully returned. If so, when
i returns to the active subgraph, the algorithm attempts to
return the rest of value(s) to i.

In order to ensure Invariant 2 at the start of the algorithm,
the following steps are executed:

• Fix all prices at 1/n. Since all goods together cost one
dollar and all e(i)’s are integral, the initial prices are
low enough that each buyer can afford all the goods.
Clearly, each buyer’s current partition will be her first
partition.

• Next, we have to ensure that each good j has an in-
terested buyer, i.e., has an edge incident at it in the
equality subgraph. Compute αi for each buyer i at
the prices fixed in the previous step and compute the
equality subgraph. If good j has no edge incident, re-
duce its price to

pj = max
i∈B

max
s∈seg(fi

j)

�
rate(s)

αi

�
.

Next, partition the equality subgraph into frozen and ac-
tive by calling subroutine freeze (see Section 4.3). Market
clearing prices have not been reached for goods in the active
subgraph and their prices need to be increased. We want
to do this in such a way that the equality subgraph remains
unchanged. Observe that if buyer i has equality edges to
goods j and j′ then

uij

pj
=

uij′

pj′
, i.e.,

pj

pj′
=

uij

uij′
.

This suggests increasing prices in such a way that the ratio
of prices of any two goods is not affected, which in turn is
accomplished as follows: Multiply the current price, pj , of

each good j ∈ A2 by x. Initialize x = 1, and start raising x
continuously.

As x is raised, one of four events could take place (these
are executed in the order below, for reasons explained in the
proof):

• Event 1: This event happens if the active subgraph
contains buyer i with rate(s) = α(i) for s ∈ seg(f i

0),
where returned(s) < value(s). (This event happens
in one of two ways: First, buyer i with a partially
returned segment just moved to the active subgraph.
Second, as prices increase, the bang per buck of i de-
creased to the point where she is equally happy leaving
with money corresponding to segment s unspent. In
either case, the algorithm must return money corre-
sponding to s before it can raise prices of goods.) The
algorithm starts raising returned(s) continuously until
one of two events happens:

– Event 1(a): Observe that for a set S ⊆ A2

such that i ∈ bestT(S), best(S) is decreasing
as returned(s) is raised (since m(i) is decreas-
ing). As a result such a set may go tight. When
this happens, subroutine freeze is called to com-
pute the frozen subgraph; in the process, i will be
frozen.

– Event 1(b): returned(s) = value(s). In this
case, money corresponding to segment s has been
fully returned.

• Event 2: As prices increase, a subset of A2 may go
tight. If so, subroutine freeze is called to recompute
the frozen and active subgraphs.

• Event 3: For buyers in B2, goods in A1 are becom-
ing more and more desirable (since their prices are not
changing, whereas prices of goods in A2 are increas-
ing). As a result, a segment s ∈ seg(f i

j), i ∈ B2, j ∈
A1 may enter into the current partition of buyer i, Q(i).
When this happens, edge (i, j) is added to the equality
subgraph. As a result, A1 is not tight anymore, and
therefore subroutine freeze is called to recompute the
frozen and active subgraphs.

• Event 4: Suppose i ∈ B1 has a segment s ∈ seg(f i
j)

allocated to it, where j ∈ A2. Because the price of j
is increasing, at some point the bang per buck of this
segment may equal αi, i.e., segment s enters i’s current
partition. When this happens, we will deallocate seg-
ment s, i.e., subtract value(s) from allocated(j) and
from spent(i) and add edge (i, j) to the active sub-
graph. Since m(j) increases, A1 is not tight anymore,
and therefore subroutine freeze is called to recompute
the frozen and active subgraphs.

Algorithm 1 is summarized below. This algorithm raises
variables continuously at two places; we first need to re-
place these with discrete procedures. Compute the mini-
mum value of x at which each of the four events takes place,
and minimum of these is the event that happens first. For
Events 1, 3 and 4, the computation is straightforward. Let
x∗ be the value of x at which Event 2 happens. We give
a procedure for computing x∗ in Section 4.4. Also, let y∗

be the value of returned(s) at which Event 1(a) occurs. In
Section 4.4 we give a procedure for computing y∗ as well.

524

Initialization:
∀j ∈ A, pj ← 1/n;

∀i ∈ B,αi ← rate(s)/good(s), s ∈ Q(i);
Compute equality subgraph G;
∀j ∈ A if degG(j) = 0 then

pj ← maxi∈B maxs∈seg(fi
j)

n
rate(s)

αi

o

Recompute G;
(A1, B1)← (∅, ∅) (The frozen subgraph);
(A2, B2)← (A,B) (The active subgraph);
while A2 �= ∅ do

x← 1;
Define ∀j ∈ A2, price of j to be pjx;
Raise x continuously until one of four events hap-
pens:
if rate(s) = α(i), for s ∈ seg(f i

0) with returned(s) <
value(s) then

Start raising returned(s) continuously until
returned(s) = value(s)
or the following events happens:
if S ⊆ A2 goes tight then

Call freeze;

if S ⊆ A2 goes tight then
Call freeze;

if segment, s, corresponding to i ∈ B2 , j ∈ A1

enters Q(i), then
Add (i, j) to G with cij = value(s);
Call freeze;

if allocated segment, s, corresponding to i ∈ B1 ,
j ∈ A2 enters Q(i), then

Deallocate s;
Add (i, j) to G with cij = value(s);
Call freeze;

Algorithm 1:

4.3 Subroutine freeze
Subroutine freeze operates as follows: Via max-flow, find

a min-cut in N(p,a, s) that maximizes the number of ver-
tices in the s side (there is a unique such maximal min-cut).
Let it be (s∪A1∪B1, A2∪B2∪t) 2. Clearly, B1 = bestT(A1).
Corresponding to each edge connecting A1 to Γ(A1) − B1,
allocate goods.

As a result of this allocation, there may be buyers in B2

that do not have any equality edges incident at them (how-
ever, by the maximality of the cut found, they must have
money left over). For each such buyer i, compute her par-
titions relative to current prices and include edges corre-
sponding to the first unallocated partition. If none of these
edges is incident at a good in A1, subroutine freeze halts.
Otherwise, it starts all over again to find a min-cut in the
modified network.

Before returning, subroutine freeze partitions the equal-
ity subgraph into two: frozen and active. The frozen sub-
graph consists of the bipartition (A1, B1) and the active sub-
graph consists of (A2, B2).

Observe that buyers in B1 may desire goods in A2. By

2Throughout this paper, we will assume that A1, A2 ⊆ A
and B1, B2 ⊆ B.

Lemma 14, the prices of these goods can be raised without
violating Invariant 2. As soon as this happens, buyers in B1

who have equality edges to goods in A2 will not be interested
in these goods anymore, and such edges can be dropped.
The frozen and active graphs are hence decoupled. After
these changes, the following holds:

Lemma 14. The active and frozen subgraphs satisfy In-
variant 2. Furthermore, the active subgraph satisfies:

∀S ⊆ A2 : p(S)− a(S) < best(S),

and the frozen subgraph satisfies:

p(A1)− a(A1) = m(B1).

4.4 Computing x∗ and y∗: min-cuts in
parametric networks

For simplicity of notation, assume that the active sub-
graph is (A,B). Throughout this section, p will denote
prices at the beginning of the current phase, i.e., at x = 1.
We first show how to compute x∗, the value of x at which
Event 2 occurs, i.e., a new set goes tight. Let S∗ ⊆ A denote
the tight set. In N(p,a, s), replace the capacities of edges
(s, j), j ∈ A, by pj ·x−allocated(j) to obtain the parametric
network N ′(p,a, s). By Invariant 2, at x = 1, (s,A∪B ∪ t)
is a min-cut in N ′(p,a, s).

Lemma 15. The smallest value of x at which a new min-
cut appears in N ′(p,a, s) is given by

x∗ = min
∅
=S⊆A

best(S) + a(S)

p(S)
,

and the unique maximal set minimizing the above expression
is S∗.

Lemma 16. The following hold:

• If x ≤ x∗, then (s,A∪B∪t) is a min-cut in N ′(p,a, s).

• If x > x∗, then for any min-cut (s∪A1∪B1, A2∪B2∪t)
in N ′(p,a, s), S∗ ⊆ A1.

For i ∈ B, denote the sum of capacities of edges incident
at i in N(p,a, s) by c(i). Define m′(i) = min{m(i), c(i)},
and m′ to be the vector consisting of m′(i), i ∈ B. Observe
that replacing m by m′ in N(p,a, s) does not change the
min-cut or its capacity. Define N ′′(p,a, s) to be the network
obtained by replacing m by m′ in N ′(p,a, s). The reason
for working with m′ is that the cut (s∪A∪B1, B2 ∪ t) has
the same capacity as the cut (s ∪ A ∪ B, t). This property
will be used critically in the next lemma.

Lemma 17. Set x = (m′(B) + a(A))/p(A) and find the
minimal min-cut in N ′′(p,a, s) (i.e., the unique min-cut
minimizing the s side). Let it be (s∪A1∪B1, A2∪B2∪t). If
A1 = B1 = ∅ then x = x∗ and S∗ = A. Otherwise, x > x∗

and A1 is a proper subset of A.

Lemma 18. x∗ and S∗ can be found using n max-flow
computations.

Next, we show in case of Event 1 how to determine whether
Event 1(a) or Event 1(b) occurs, and in the former case, how
to compute y∗. Compute prices of all goods for the current
value of x, and let them be denoted by p′. Let a denote all

525

forced allocations made so far. Compute the money returned
to buyers; for i, assume that segment s is fully returned.
Let s′ denote the vector of money spent. Construct network
N(p′,a, s′) and find a maximal min-cut in it. If (s,A∪B∪t)
is the only min-cut in it, then Event 1(b) occurs, i.e., the
entire money corresponding to segment s can be returned to
i without a set going tight. Next assume that the maximal
min-cut in the network is (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t), with
A1 �= ∅. If so, Event 1(a) occurs. Clearly, the procedure
stated above uses one max-flow computation.

Lemma 19. If Event 1(b) occurs,

y∗ = value(s)−(p′(A1)−a(A1)−(m(B1)+c(A1; Γ(A1)−B1)).

4.5 Termination with market clearing prices
Observe that despite the return policy, the algorithm mono-

tonically keeps raising prices of goods, and this provides us
with a natural measure of progress – the difference between
total money possessed by buyers (after taking into consid-
eration money returned) and the sum of the prices of all
goods. When this difference becomes zero, all goods must
be frozen, and the algorithm terminates. If Invariants 1 and
2 hold, terminating prices are market clearing.

Let M denote the total amount of money possessed by
the buyers, U denote the largest rate of a segment, and Z
denote the total number of segments in all specified utility
functions. Let ∆ = nUn. Let us partition the running of
the algorithm into phases – each phase ends when a new set
goes tight, i.e., Event 1(a) or Event 2 occurs. Partition each
phase into iterations – each iteration ends when Event 3 or
Event 4 happens.

Observe that if Event 1(b) occurs while returning money
corresponding to segment s, then this segment will never
be considered again. Hence the number of occurrences of
Event 1(b) is bounded by the number of segments in func-
tions f i

0, for all i, which in turn is bounded by Z. Each itera-
tion requires computation of x∗, Lemma 17, which requires
n max-flow computations. The total number of max-flow
computations executed by subroutine freeze in a phase is
bounded by the total number of forced allocations and is
≤ Z. Hence we get:

Theorem 20. Algorithm 1 terminates with market clear-
ing prices and executes at most O(M∆2(Z + n2)) max-flow
computations.

4.6 Establishing polynomial running time
We next present Algorithm 2 which is a polynomial time

implementation of Algorithm 1. The only difference between
the two algorithms is the way a active set is defined at the
start of a phase and the manner in which it is updated in
each iteration. Algorithm 2 includes in the active subgraph
only those buyers that have a large surplus so that substan-
tial progress can be guaranteed in a phase. We will need
the notion of a balanced flow from [8] in order to specify the
active subgraph precisely.

Given flow f in the network N(p,a, s) let R(p,a, s, f)
denote the residual graph w.r.t. f . Define the surplus of
buyer i, γi(p, f), to be the residual capacity of the edge
(i, t) with respect to f , i.e., mi minus the flow sent through
the edge (i, t). The surplus vector is defined to be
(p, f) :=
(γ1(p, f), γ2(p, f), . . . , γn(p, f)). Let ‖v‖ denote the l2 norm
of vector v. A balanced flow in network N(p,a, s) is a max-
imum flow that minimizes ‖
(p, f)‖.

Property 1 If there is a path from node i ∈ B to node
j ∈ B in R(p,a, s, f) then
i(p, f) ≥
j(p, f).

Property 1 helps characterize balanced flows as follows;
the proof is identical to that in Theorem 17 in [7]:
A maximum flow f in network N(p,a, s) is balanced iff it
satisfies Property 1. Moreover, any two balanced flows have
the same surplus vector. We let this surplus vector be
(p).

Lemma 21. A balanced flow can be computed in network
N(p,a, s) using n′ max-flow computations.

Proof. Let S = m − (p − a) denote the total surplus,
and let sav = S/n′ denote the average surplus. Subtract
sav money from all buyers to obtain network N ′ from net-
work N(p,a, s). Compute a maximal min-cut in N ′, say
(s∪A1∪B1, A2∪B2∪t). In case A1 = A, the surplus vector
is unique. Otherwise, for each edge (i, j), i ∈ Γ(A1)∩B2, j ∈
A1, make the corresponding forced allocation, and then par-
tition the equality subgraph into two: (A1, B1) and (A2, B2).
Compute balanced flows in each separately. (In case one of
these graphs is empty, we need to compute a balanced flow
in only one graph; however, below we will deal with the
general case.)

We will show that the surplus of buyers in B1 is ≤ sav

and the surplus of buyers in B2 is > sav. We will prove
the second fact only; the proof of the first fact is analogous.
The proof is by contradiction. Let C ⊆ B2 be the set of
buyers having smallest surplus and let D ⊆ A be Γ(C). By
Property 1, there are no residual paths from B2 − C to C.
Hence all flow from D ∩A2 goes through C; say this flow is
α. Furthermore, observe that edges going from D ∪ A1 to
C must form part of the forced allocation made above and
hence are fully saturated. Let this flow be β. Therefore, the
flow going from C to t is α + β. Now the capacity of edges
from C to t in the previous situation, i.e., on subtracting
sav money from each buyer, is < α + β. Therefore, in this
situation, moving C and D to B1 and A1, respectively, will
result in a smaller cut, contradicting the minimality of cut
found. This proves that each buyer in B2 has surplus > sav.

Now consider the union of the two balanced flows. We
will show that it is a balanced flow in N(p,a, s). For this it
suffices to show that there are no residual paths from B1 to
B2 in the residual graph of the union flow, since there are
no residual paths from low surplus to high surplus buyers
within B1 or within B2 by Property 1. Two observations
prove this:

• All edges from A1 to B2 are involved in forced alloca-
tions made above and so are fully saturated and there-
fore cannot provide a path from B1 to B2.

• Edges from A2 to B1 carry no flow, and hence are all
directed from A2 to B1 in the residual graph. There-
fore, these edges also cannot provide a path from B1

to B2.

The argument given above naturally suggests a divide and
conquer method for computing a balanced flow in N(p,a, s):
subtract sav money from each buyer and compute minimal
min-cut to determine the two partitions. Make forced allo-
cations and then recursively compute balanced flows in each
partition.

We next define subroutine freeze2 which plays a role anal-
ogous to that of subroutine freeze. Subroutine freeze2 uses

526

the divide and conquer procedure outlined in Lemma 21 to
compute a balanced flow in network N(p,a, s); it makes
the required forced allocations in the process. As a result
of forced allocations, there may be buyers that do not have
equality edges incident at them. If each buyer has equal-
ity subgraph edges incident at it, subroutine freeze2 halts.
Otherwise, for each buyer not having such edges, it com-
putes the current partition of this buyer and adds edges
corresponding to it. freeze2 goes back to recomputing a
balanced flow in the resulting network.

The four events executed by Algorithm 1 are also executed
by Algorithm 2, and the conditions that trigger them are
also identical. The only difference is in the definition of
active subgraph at the beginning of a phase and the manner
in which it is modified with each event. We give these details
below.

At the beginning of a phase, Algorithm 2 computes a bal-
anced flow in network N(p,a, s). Let δ be the maximum
surplus of a buyer in this flow and let B2 ⊆ B be the set of
buyers having this surplus. Let A2 ⊆ A be the set of goods
that are adjacent to these buyers in the equality subgraph.
Then, the starting active subgraph is (A2, B2). The algo-
rithm starts raising prices of goods in A2 as in Algorithm
1.

We next give the actions to be taken in each event.

• Event 1(a): The current phase comes to an end.

• Event 1(b): The money corresponding to segment s
is fully returned.

• Event 2: The current phase comes to an end.

• Event 3: Add edge (i, j) (directed from j to i and
having capacity s)) to the equality subgraph and call
subroutine freeze2. The new active subgraph con-
sists of all buyers and goods that have a residual path
in R(p,a, s, f)− {s, t} to the current active subgraph
(and contains the current active subgraph).

• Event 4: Same as Event 3, except that edge (i, j)
is directed from i to j (since s) amount of flow has
already been sent from j to i).

Let’s analyze its running time. Event 3 can happen at
most n times, because each time a new good enters the
equality subgraph. Event 4 can happen at most Z times,
since any segment can be deallocated at most once in a
phase. The total number of executions of subroutine freeze2
in a phase is O(Z +n); each execution requiring n max-flow
computations.

The following lemma follows almost immediately from [8].

Lemma 22. ([8]) If p0 is the price vector at the beginning
of the algorithm and p∗ the price vector after t phases, then

t = O
�
n2 log

� ‖
(p0)‖
‖
(p∗)‖

��
.

Hence the total number of phases is bounded by

O
�
n2 log (∆2M)

�
= O

�
n2(log n + n logU + logM)

�
.

Hence we get

Theorem 23. Algorithm 2 finds market clearing prices
for the spending constraint model using

O
�
n3(n + Z)(log n + n logU + logM)

�
max-flow computations.

5. EXTENSIONS TO CONTINUOUS
FUNCTIONS

5.1 The Fisher setting
We define an approximate market equilibrium by relaxing

the Market Clearing condition.

Definition 24 (Approximate Market Equilibrium).
A price vector p is an ε-approximate market equilibrium if
neither deficiency nor surplus of goods is too high in value:X

j∈A

|ξj(p)− pj | ≤ ε
X
j∈A

pj .

We now give an algorithm for the Fisher setting when the
rate functions are nice. Assume that the algorithm is given
oracle access to the f i

j ’s. The algorithm is simple: approx-
imate the given functions with step functions where all the
segments are of length ε. More precisely, F i

j (x) := f i
j (�x

ε
�ε)

is the required approximation. Now run Algorithm 2 with
F i

j ’s as input, and return the price vector thus obtained, say

p. Let M i
j be the money that buyer i spends on good j when

he buys the optimal bundle at prices p (w.r.t the functions
f i

j ’s), andMi
j be the money that i spends on j according to

Algorithm 2. (Note that the F i
j ’s are step functions, so there

need not be a unique optimal bundle. Hence we consider the
allocation given by Algorithm 2.) We show that Mi

j is in

fact a good approximation to M i
j as in the following lemma:

Lemma 25. Let M i
j andMi

j be as defined above. Let n =
|A|. Then,

∀ i ∈ B, j ∈ A, Mi
j − nε ≤M i

j ≤Mi
j + ε. (3)

Proof. Let ni
j := �M i

j/ε�, i.e., ni
jε ≤M i

j < (ni
j + 1)ε. If

we show that ni
jε ≤ Mi

j , then we get that M i
j ≤ Mi

j + ε.

We may assume that 0 < ni
j , since otherwise the inequality

trivially follows.
Note that we chose our approximation F i

j of f i
j such that

F i
j (x) ≤ f i

j (x) for all x. Therefore maxj∈A F i
j (Mi

j)/pj is

≤ αi = f i
j (M

i
j)/pj since 0 < ni

j . Therefore F i
j (Mi

j) ≤
f i

j (M
i
j) ≤ f i

j (n
i
jε) = F i

j (n
i
jε), by the definition of F i

j . Since

F i
j is non-increasing, we get that ni

jε ≤Mi
j .

Recall that
P

j∈AMi
j =

P
j∈A M i

j = e(i). Therefore, for

any j, Mi
j −M i

j =
P

j′∈A,j′
=j(M
i
j′ −Mi

j′) ≤ nε.

Note that
P

i∈B M i
j = ξj(p) (by definition) and

P
i∈BMi

j =

pj (since p is market clearing for the F i
j ’s). Now summing

(3) over all i ∈ B, we get that ∀ j ∈ A, pj −n′nε ≤ ξj(p) ≤
pj + n′ε, where n′ = |B|. Therefore,

|ξj(p)− pj | ≤ n′nε. (4)

Summing over all j ∈ A, we get that p is indeed an n′n2ε-
approximate market equilibrium, since the prices are all at
least 1.

We have actually proved a stronger version of approxima-
tion, i.e., ξ is component-wise close to p, and that the error
is absolute (additive). The definition only needed that the
respective sums be close, and the error be relative (multi-
plicative). In fact, more is true: that the allocation returned
by the algorithm (i.e., i spendsMi

j on j,) is almost optimal

w.r.t the f i
j ’s. We leave the details of this to the full version

[6].

527

5.2 The Arrow-Debreu Setting
We first extend Algorithm 2 to the Arrow-Debreu setting

with step functions. Note that the main difference in the
Arrow-Debreu setting is that the income of a buyer, e(i),
is not constant. It is a function of p. This difficulty is
overcome in Algorithm 3, which is as follows:

Start with prices pj = 1 ∀ j, and compute all the
e(i)’s. Now run Algorithm 2 with these e(i)’s
fixed, until we find a p such that |γ(p)| is3 at
most nε. Let one such run be called an epoch.
At the end of an epoch, recompute the e(i)’s and
repeat, unless p is an ε-approximate equilibrium.

We show that the number of epochs needed so that one is
guaranteed an ε-approximate equilibrium is at most 1/ε2.

Let P denote the sum of the prices of all the goods, and
M denote the sum of the incomes of all the buyers at any
point of time in the algorithm. Let f (by abuse of notation)
be allocated(A)+ the value of a max-flow in the network
N(p,a, s).

Lemma 26. A price p is 2ε-approximate market clearing
if w.r.t. p, P − f ≤ Pε.

Lemma 27. The value of P − f at the end of each subse-
quent epoch does not increase.

Proof. Note that for each good j, the value of P − f
contributed by j is the residual capacity of the edge (s, j),
i.e., pj − fj , where fj is allocated(j)+ the flow in the edge
(s, j). We will argue that at the end of each epoch, pj − fj

never increases. Suppose that pj increased in that epoch.
Since Algorithm 2 only increases the prices of those goods j
whose (s, j) edge is saturated, pj − fj is zero.

So we may assume that pj remained the same in that
epoch. Since no prices are decreased, and the incomes have
increased, all the segments of j that were (partially or fully)
filled in the earlier epoch will still be filled to at least the
same extent in the new epoch as well. Hence pj − fj does
not increase.

Lemma 28. If at the end of an epoch, either P −M ≤ nε
or P ≥ n

ε
, then p is a 4ε-approximate equilibrium.

Proof. Note that |
(p)| is actually equal to M − f .
Hence, at the end of each epoch, M − f ≤ nε. Since, we
start with prices all 1, P − f ≤ n to begin with. Since
from Lemma 27, P − f does not increase at the end of each
subsequent epoch, P − f ≤ n at the end of each epoch.

Now suppose that P −M ≤ nε, then P − f = (P −M) +
(M − f) ≤ 2nε ≤ 2Pε. On the other hand, if P ≥ n

ε
, then

n ≤ Pε. So P − f ≤ n ≤ Pε. The result now follows from
Lemma 26.

If in each epoch P − M > nε, then after 1
ε2

epochs P ≥
n
ε
, which means that we are guaranteed an ε-approximate

equilibrium within O(1
ε2

) epochs.
We now show that the number of phases in each epoch is

polynomial. Since at the beginning of each epoch |
(p)| ≤
P ≤ n/ε and the epoch ends if |
(p)| ≤ nε, Lemma 22
says that there are O(n2 log n

ε
) phases in each epoch. More-

over, each phase needs O(n(n+Z)) max-flow computations.
Hence we get the following theorem:

3|v| denotes the l1-norm of the vector v.

Theorem 29. Algorithm 3 finds an ε-approximate equi-

librium using O
�

n3(n+Z)

ε2
log n

ε

�
max-flow computations.

We can extend this algorithm to the continuous case as in
the Fisher setting, the only difference being that we use Al-
gorithm 3, which only gives an ε−approximate equilibrium.
It can be shown that the composition of the two algorithms
is still ε−approximate. For details, see [6].

6. REFERENCES
[1] Aliprantis, Brown, and Burkinshaw. “Existence and

Optimality of Competitive Equilibria”,
Springer-Verlag, 1990.

[2] K. K. Arrow, and G. Debreu, “Existence of an
Equilibrium for a Competitive Economy”,
Econometrica, Vol. 22, pp. 265-290, 1954.

[3] G. Debreu. Economies with a finite set of equilibria.
Econometrica, 38:387–92, 1970.

[4] N. R. Devanur, V.V. Vazirani. “Improved
Approximation Scheme for Computing Arrow Debreu
Prices in The Linear Case”. In Proc. FSTTCS, 2003.

[5] N. R. Devanur, V.V. Vazirani. “Algorithmic,
Existence and Uniqueness Results for the Spending
Constraint Model”. Manuscript4, 2003.

[6] N.R. Devanur, C.H. Papadimitriou, A. Saberi, V.V.
Vazirani. “Market Equilibrium via a
Primal-Dual-Type Algorithm”. In Proc. FOCS, 2002.

[7] N.R. Devanur, C.H. Papadimitriou, A. Saberi, V.V.
Vazirani. “Market Equilibrium via a
Primal-Dual-Type Algorithm”. Full version.

[8] X. Deng, C. H. Papadimitriou, and S. Safra, “On the
Complexity of Equilibria.” In Proc. STOC, 2002.

[9] E. Eisenberg and D. Gale. Consensus of subjective
probabilities: The pari-mutuel method. Annals Of
Mathematical Statistics, 30:165–168, 1959.

[10] R. Garg and S. Kapoor “Auction Algorithms for
Market Equilibrium”. In Proc. STOC, 2004.

[11] K. Jain. A polynomial time algorithm for computing
the Arrow-Debreu market equilibrium for linear
utilities. Manuscript, 2004.

[12] K. Jain, M. Mahdian, and A. Saberi. “Approximating
Market Equilibrium”. In Proc. APPROX, 2003.

[13] C. Papadimitriou. Algorithms, games, and the
internet. In Proceedings of the 33rd Annual ACM
Symposium on the Theory of Computing, pages
749–753, 2001.

[14] H. Scarf. “The Computation of Economic Equilibria”
(with collaboration of T. Hansen), Cowles Foundation
Monograph No. 24. 1973.

[15] V.V. Vazirani. “ Market Equilibrium When Buyers
Have Spending Constraints”. Submitted, 2003.

[16] L. Walras. Elements d’economie politique pure;
ou, Theorie de la richesse sociale (Elements of
Pure Economics; Or the Theory of Social Wealth).
Lausanne, Paris, 1874 (1954, Engl. transl.).

4The papers [6], [8] and [16] are available at
http://www.cc.gatech.edu/grads/d/Nikhil.Devanur and
http://www.cc.gatech.edu/fac/Vijay.Vazirani.

528

