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ABSTRACT
We describe a real-time bidding algorithm for performance-
based display ad allocation. A central issue in performance
display advertising is matching campaigns to ad impressions,
which can be formulated as a constrained optimization prob-
lem that maximizes revenue subject to constraints such as
budget limits and inventory availability. The current prac-
tice is to solve the optimization problem offline at a tractable
level of impression granularity (e.g., the placement level),
and to serve ads online based on the precomputed static de-
livery scheme. Although this offline approach takes a global
view to achieve optimality, it fails to scale to ad delivery
decision making at an individual impression level. There-
fore, we propose a real-time bidding algorithm that enables
fine-grained impression valuation (e.g., targeting users with
real-time conversion data), and adjusts value-based bid ac-
cording to real-time constraint snapshot (e.g., budget con-
sumption level). Theoretically, we show that under a lin-
ear programming (LP) primal-dual formulation, the simple
real-time bidding algorithm is indeed an online solver to the
original primal problem by taking the optimal solution to
the dual problem as input. In other words, the online algo-
rithm guarantees the offline optimality given the same level
of knowledge an offline optimization would have. Empiri-
cally, we develop and experiment with two real-time bid ad-
justment approaches to adapting to the non-stationary na-
ture of the marketplace: one adjusts bids against real-time
constraint satisfaction level using control-theoretic methods,
and the other adjusts bids also based on the historical bid-
ding landscape statistically modeled. Finally, we show ex-
perimental results with real-world ad serving data.

1. INTRODUCTION
In this paper we consider the problem of performance-

based display ad allocation. The goal is to match campaigns
(demand-side) to ad impressions (supply-side) such that the
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total revenue from a publisher’s perspective (also referred
to as yield) is maximized, while satisfying the constraints
primarily imposed by campaign budget and supply inven-
tory availability. In performance-based display advertising,
there are two major pricing models, namely cost-per-click
(CPC) and cost-per-action (CPA). At an abstract level, ad-
vertisers place their bids in the form of CPC or CPA prices
on ad impression opportunities from publishers, an ad serv-
ing system makes delivery decisions based on advertisers
bids, estimated click-through rate (CTR) or conversion rate
(CVR), and relevant constraints, and then advertisers only
pay publishers for performance-based metrics, i.e., clicks or
conversions on their ads. Without loss of generality, we will
focus our discussion on an abstract one-sided marketplace of
advertisers, with only one publisher and no intermediaries
(e.g., ad networks). We further assume that an ad delivery
system is optimizing revenue on behalf of the publisher, as
well as use CPC campaigns for illustration purpose.

Under an unconstrained environment, particularly if ad-
vertisers have unlimited budget, the revenue-optimal allo-
cation mechanism is to simply assign each impression to
the campaign with highest expected revenue per impres-
sion (eCPI = CTR × CPC). However, it can be trivially
shown that this näıve mechanism is suboptimal under a con-
strained setting where demand-side constraints exist. The
current practice is to solve a constrained optimization prob-
lem offline (see Section 6 for a formal account), and use
the static optimal allocation to guide ad delivery. The con-
strained optimization is formulated as a linear programming
(LP) problem, where the total revenue is maximized with
respect to impression allocations subject to linearized con-
straints. Although an offline optimization takes a global
view to achieve revenue optimality at a certain aggregated
level, this approach has considerable limitations as follows.

1. An offline global optimization can only be solved at a
tractable level of impression granularity. In the current
formulation of performance optimization for one large
display network for instance, impressions are allocated
at the campaign-placement level, there are about 1M
decision variables and 0.5M constraints. Impressions
within each node of this granularity are treated homo-
geneous in term of valuation, therefore finer-grained
impression data cannot be leveraged. Some of these
impression-level opportunities are known to be differ-
entiating, such as user historical behavior [5].

2. Even if some constraints are inherently at an aggre-



gated level, such as campaign-level budget constraints
and placement-level traffic volume, the offline opti-
mization will still soon become intractable as the num-
ber of advertisers and publishers becomes very large,
as in ad exchanges [14].

3. Since the offline optimization can only creates a static
allocation scheme, it lacks a natural way to adapt to
the marketplace dynamics. In particular, when the dis-
tribution from which winning bids are drawn (bidding
landscape) changes and the campaign goal is over or
under delivered as a consequence, an offline algorithm
has no mechanism to adjust accordingly [7].

Motivated by the limitations of the current approach and
the emergence of ad exchanges for clearing performance dis-
play ads [14], we develop a real-time bidding algorithm that
enables fine-grained or even individual impression valuation
while preserving the offline revenue optimality. The real-
time bidding algorithm is not only elegant but also well-
grounded on the duality principle. It turns out that the
simple online algorithm solves the original offline optimiza-
tion problem as the primal by taking the optimal solution
to the dual as input, i.e., the bid adjustment term. The
dual optimal thus bears natural interpretation, that is, the
shadow price of an extra unit of the primal constraint. With
this theoretical foundation from a static perspective, the bid-
ding algorithm requires two key predictive components to
account for the dynamic nature of a marketplace.

1. Impression valuation is a function that returns the
expected value of an impression to a bidder (adver-
tiser or campaign) given relevant impression-level and
demand-side data, which takes the form:

eCPI = CTR× CPC, (1)

where eCPI stands for expected cost per impression,
and shall be the optimal bid in an unconstrained envi-
ronment. The CPC price is a constant w.r.t. a given
campaign. The critical task is to estimate the click-
through rate (CTR):

CTR = p(click|campaign,impression), (2)

where impression in the conditional side encodes rel-
evant impression-level data including user, and cam-
paign encodes demand-side data. The problem of esti-
mating CTR is reasonably well-studied [1, 5, 8]. For a
real-time bidding algorithm, a CTR model shall lever-
age fine-grained and real-time predictor variables, usu-
ally high-dimensional and sparse, and perform online
prediction efficiently, e.g., in 10’s milliseconds [14]. While
we will not focus on building a CTR predictive model,
we follow the art and use a regression-based model.

2. Real-time bid adjustment is to adjust the value-based
bid according to (1) the bidding landscape so far, and
(2) the current constraint satisfaction level. We pro-
pose an additive bid adjustment as follows.

bid = eCPI− α, (3)

where α is the bid adjustment term. Intuitively, when
the bidding landscape becomes more competitive (i.e.,
the probability of winning becomes lower given a same
bid), and there are more impressions to acquire to sat-
isfy constraints, α should be smaller (or even negative)

to bid higher. Theoretically, the additive form can be
derived from a primal-dual formulation. Specifically,
we develop two real-time bid adjustment approaches
(see Section 5 for the update formulae):

(a) A control-theoretic approach that adjusts the bid
against constraint satisfaction level based on some
error function. We present two forms of optimal-
ity control: (1) a proportional-integral controller,
and (2) an exponential form.

(b) A statistical approach that estimates the distribu-
tion from which winning bids are drawn, and then
derives the bid adjustment to achieve a desired
winning probability, also based on the constraint
satisfaction level.

We shall note that the impression valuation function as in
Eq. (1) is with respect to an advertiser and is not necessar-
ily the same as the revenue function of a publisher (think
of a second-price auction). To abstract from the complica-
tion of what auction to run, which itself is an open research
issue [14], we assume in our discussion a first-price auction
run in a one-sided marketplace of advertisers, without loss
of the generality of the basic approach. In this case, Eq. (1)
is equivalent to the revenue function. This simplifying as-
sumption is removed in Section 6 when we develop more
general bidding algorithms, e.g., from an ad network point
of view and in a second-price auction. Indeed, in a standard
auction in a one-sided market as we assume, the revenue
equivalence theorem states that first-price, second-price and
several other auctions will all yield identical expected rev-
enue in Bayesian equilibrium [10].

2. BACKGROUND
The primary theoretical foundation upon which the online

bidding algorithms are grounded is LP duality. We briefly
introduce the concepts fundamental to the derivation that
follows. The standard form of a LP problem, referred to as
a primal problem, is:

max
x

c>x

s.t. Ax ≤ b,
x ≥ 0.

(4)

Here x is a vector of n variables, c is a vector of n coefficients,
and c>x is the objective function. A is a m × n matrix of
coefficients, b is a vector ofm coefficients, and Ax ≤ b are the
constraints, as well as the non-negative variable constraints.
A x is feasible if it satisfies all constraints, and is optimal if
it gives the maximal value of the objective function among
all feasibles.

The standard form can be equivalently converted into an
augmented form by introducing a non-negative slack vari-
able for each of the m constraints to replace inequalities
with equalities in the constraints. If the optimal value of
a slack variable is zero in the augmented form, the corre-
sponding inequality constraint in the stand form becomes
tight in its optimal solution.

The primal problem can be converted into a dual problem:

min
y

b>y

s.t. A>y ≥ c,
y ≥ 0.

(5)



Here y is a vector of m variables corresponding to the m
constraints in the primal, and A>y ≥ c are the n con-
straints corresponding to the n primal variables. The weak
duality theorem states that the dual problem provides an
upper bound to the objective function of the primal, i.e.,
c>x ≤ b>y,∀ feasible x, y. The strong duality theorem
states that if the primal has an optimal solution x∗, then the
dual also has an optimal solution y∗, such that c>x∗ = b>y∗.
Obviously, the primal and the dual are symmetric.

With the primal-dual formulation, we now have a choice of
solving either the primal or the dual first (offline), according
to the problem structure at hand (e.g., dimensionality and
generality); and then derive (possibly online) an optimal
solution to one (the primal) when an optimal solution to the
other (the dual) is known. There is a very useful necessary
condition for optimality that facilitates this idea.

Theorem 1. The complementary slackness theorem states:
Suppose that

1. x = (x1, . . . , xn)> is a primal feasible,

2. z = (z1, . . . , zn)> is the corresponding dual slack,

3. y = (y1, . . . , ym)> is a dual feasible, and

4. w = (w1, . . . , wm)> is the corresponding primal slack.

Then x and y are optimal for their respective problems if
and only if:

1. xizi = 0, ∀i, and

2. yjwj = 0, ∀j.

The complementary slackness condition is a special case
of the more general Karush-Kuhn-Tucker (KKT) conditions
in convex optimization.

3. PERFORMANCE DISPLAY OPTIMIZA-
TION: A LP FORMULATION

To derive the basic algorithmic form for online bidding,
and to establish its optimality, we begin by formulating the
basic performance display ad optimization as a LP. In this
basic setting, impressions are valuated and allocated individ-
ually, and the demand-side constraints (e.g., budget limits)
are given in terms of impression delivery goal. This formu-
lation shall capture all theoretical essences, and practical
nuances are discussed in Section 6. Let us first define the
following notations:

1. i indexes n impressions, and j indexes m campaigns;

2. pij denotes CTR of impression i assigned to campaign
j, qj denotes CPC for campaign j, and vij = pijqj is
the eCPI of such assignment;

3. gj is the impression delivery goal for campaign j;

4. xij is the decision variable indicating whether impres-
sion i is assigned to campaign j (xij = 1) or not
(xij = 0).

We formulate the following LP as the primal:

max
x

∑
i,j

vijxij

s.t. ∀j,
∑
i

xij ≤ gj ,

∀i,
∑
j

xij ≤ 1,

xij ≥ 0.

(6)

The dual problem is then:

min
α,β

∑
j

gjαj +
∑
i

βi

s.t. ∀i, j, αj + βi ≥ vij ,
αj , βi ≥ 0.

(7)

It is important to note that since an impression is by na-
ture indivisible, the primal should actually be an integer
programming problem, by adding the integer variable con-
straint xij ∈ {0, 1}. However, as we show more rigorously
in Section 4, the optimal solution to the primal LP is in-
deed integral, given some nice structure of this basic set-
ting, specifically the constraint matrix is totally unimodular
(TU). Even if the LP optimal solution is no longer integral,
e.g., using budget constraints directly instead of impression
delivery goal, the LP relaxation will not pose any significant
problems in practice. For impression i, a fractional opti-
mal xij can be thought of as a probabilistic assignment, i.e.,
assign impression i to campaign j with probability xij . As-
sume that there are sufficiently large amount of impressions
identical to i (to the extent a practical system can tell), then
not only will the probabilistic assignment yield an integral
solution, but also optimal for the LP. As a consequence, we
can safely use algorithms to ensure an integral solution.

The dual variables have natural interpretations: αj is the
economic value of acquiring an additional goal impression
for campaign j (e.g., by increasing budget), and βi is the
economic value of procuring an additional impression i for
the publisher (e.g., by attracting more visits).

We wish to derive an online algorithm to solve the primal
LP, thus obtaining a delivery scheme xij , ∀i, j. One may
choose to solve the primal directly, as in the current prac-
tice of display ad allocation. In this case, the number of
variables (xij) to learn is n ×m. On the other hand, solv-
ing the dual only requires n + m variables (αj , βi), orders
of magnitude dimensionality reduction. The Occam’s razor
principle favors parsimonious models as the dual. The prob-
lems remaining are: (1) how to derive an optimal solution to
the primal from the optimal solution to the dual, in an online
fashion; and (2) how to account for the non-stationary na-
ture of the distribution of impression arrivals. The bidding
algorithm in Section 4 addresses the first problem, and the
bid adjustment in Section 5 addresses the second problem.

4. A REAL-TIME BIDDING ALGORITHM
Consider an online setting, where each impression i arrives

from a stream, and a real-time ad serving decision needs to
be made, i.e., the assignment of xij ,∀j. For each incoming
impression i, we will add m decision variables xij , ∀j and one
constraint

∑
j xij ≤ 1 to the primal, one decision variable

βi and m constraints αj + βi ≥ vij , ∀j to the dual. Let
us for now assume that the optimal αj , ∀j are given. The



following online algorithm uses the complementary slackness
theorem to assign variables such that the offline optimality
is preserved.

Algorithm 1: The basic real-time bidding algorithm

Input: qj , gj , αj ,∀j
Output: xij , βi,∀i, j
begin1

G← ∅;2

foreach impression i from a stream do3

pij = p(click|i, j), ∀j;4

vij ← pijqj , ∀j;5

j∗ ← argmaxj 6∈G (vij − αj);6

if (vij∗ − αj∗) > 0 then7

xij∗ ← 1;8

xij ← 0, ∀j 6= j∗;9

βi ← vij∗ − αj∗ ;10

if
∑
i′ xi′j∗ = gj∗ then11

G← G ∪ j∗;12

end13

end14

αj ← UpdateAlpha(αj), ∀j;15

end16

end17

The basic idea conveyed by Algorithm 1 is the following.
For an incoming impression i, each campaign j valuates it
with vij = p(click|i, j)qj , and then bids on it with vij − αj .
The winning bidder with positive bid gets the impression,
and goal-achieved campaigns j ∈ G will withdraw from fu-
ture auctions. Here βi is for bookkeeping the economic value
of impression i and is not critical to auction. The bid adjust-
ment function αj ← UpdateAlpha(αj) is to adapt αj ’s to
the current goal delivery level and bidding environment. Un-
der a stationary impression arrival assumption, it reduces to
an identity function. We will implement the non-stationary
version in Section 5. From an auction perspective, more
interestingly, αj can be interpreted as the minimum profit
(revenue minus cost) campaign j requires, and βi shall be
proportional to the floor price demanded by the publisher
who sells impression i.

We now establish the offline optimality of this basic online
bidding algorithm under a stationary α assumption.

Theorem 2. The optimality of the online bidding algo-
rithm. Given the optimal bid adjustment αj , ∀j, a first-price
auction with the following design guarantees the offline op-
timality.

1. Every campaign j bids on an impression i with the
amount vij − αj ;

2. Only active campaigns, i.e.,
∑
i′ xi′j < gj , can partic-

ipate;

3. The impression is assigned if and only if the highest
bid is positive.

Proof. Since a feasible solution exists (e.g., trivially set
all variables to zero) and the objective function is bounded,
there exist optimal solutions. For each impression i, the
winning bidder is j∗ = argmaxj 6∈G (vij − αj).

First, if the highest bid (vij∗−αj∗) > 0, impression i must
be assigned; otherwise, the primal constraint

∑
j xij < 1 is

slack, and the corresponding dual variable βi = 0, thus the
dual constraint αj∗ + βi ≥ vij∗ contradicts. Then assign i
to some j′, so xij′ = 1, and αj′ + βi = vij′ . If j′ 6= j∗,
(vij∗ −αj∗) > (vij′ −αj′) = βi assuming no ties in bidding,
thus the constraint αj∗ + βi ≥ vij∗ contradicts. Therefore,
the optimal solution contains xij∗ = 1 and xij = 0, ∀j 6= j∗.

Second, if (vij∗ − αj∗) < 0, the impression i should be
ignored; otherwise, the tightened dual constraint αj + βi =
vij corresponding to xij = 1 contradicts, since βi ≥ 0. If
(vij∗ − αj∗) = 0, there are multiple optimal solutions.

Third, the constraints
∑
i xij ≤ gj , ∀j are satisfied by

maintaining an active campaign set ¬G.
Finally, an impression with a positive highest bid must be

all assigned (even in a divisible sense) to the highest bidder
j∗; otherwise, if some losing bidder j′ 6= j∗ gets assigned
some non-zero impression (e.g., 0.2 impression), then the
corresponding dual constraint tightened αj′ +βi = vij′ , and
hence contradicts the highest-bid proposition (vij′ − αj′) =
βi > (vij∗−αj∗) assuming no ties in bidding. More formally,
we can rewrite the primal constraints as in Eq. (6) in the
standard matrix form:

[
Im Im · · · Im
U1 U2 · · · Un

]
×



x11
...

x1m
x21

...
xnm


≤



g1
...
gm
1
...
1


. (8)

Here Im is a m×m identity matrix, and there are n of them
horizontally stacked. Ui,∀i is a n × m matrix with ones
on the ith row and zeros elsewhere. The constraint matrix
A is then a (n + m) × (nm) matrix. Now we can verify
that A is totally unimodular (TU). A unimodular matrix is
a square integer matrix with determinant 1 or −1, and a
TU matrix is a matrix for which every square non-singular
submatrix is unimodular. It is known that if A is TU and
b is integral, the LP of the standard form as in Eq. (4) has
integral optima.

5. BID ADJUSTMENT
One simplifying assumption we made in the basic algo-

rithm is that the distribution from which impressions are
drawn is stationary, which means given sufficient historical
data we can learn the optimal bid adjustment αj ,∀j a priori
by solving the dual offline. In practice, however, since the
marketplace is dynamic, impression arrival is non-stationary,
e.g., seasonality changes of supply. On the other hand,
demand-side valuation is also a non-stationary process, e.g.,
old campaigns expire and new campaigns begin. These non-
stationarities will violate the complementary slackness con-
dition, and hence the historically-optimal αj ’s will not be
optimal for future. Our approach is to initialize αj ’s with
the offline optimal solution to the dual formulated with his-
torical data, and then update αj ’s online to accommodate
supply-side dynamics and demand-side constraint satisfac-
tion level, through control-theoretic or statistical methods.

5.1 Control-theoretic Bid Adjustment
A simple control design is based on classical control the-

ory, particularly we will use a proportional-integral (PI)
controller [2], a commonly-used form of the more generic



proportional-integral-derivative (PID) controller. It is known
that, in the absence of knowledge of the underlying process,
a PID controller is the best controller [3]. Formally, let t
denote time, rj(t) and r′j(t) are the desired and observed
probabilities of winning bids, respectively, tracked at time
t; and ej(t) = rj(t) − r′j(t) is the error measured at time t.
The PI controller takes the following form:

αj(t+ 1)← αj(t)− k1ej(t)− k2
∫ t

0

ej(τ)dτ. (9)

Here k1 is called proportional gain, and k2 is called integral
gain, both are tuning parameters. In practice, time t needs
not to be tracked instantaneously, for both online computa-
tional efficiency and the discrete nature of impression arrival.
Instead, let t ∈ [1, . . . , T ] indexes sufficiently small time in-
tervals, where T is the number of intervals within the entire
duration of online bidding; and one only updates αj ’s once
after each interval.

Another even simpler control approach is inspired by Wa-
terlevel [4], an online and fast approximation algorithm orig-
inally designed for resource allocation problems, such as
delivering placement-reserved display ads. The Waterlevel-
based update formula is:

αj(t+ 1)← αj(t) exp (γ(xj(t)/gj − 1/T )),∀j, (10)

where xj(t) denotes the number of impressions won by cam-
paign j during time interval t; and the exponent factor γ is
a tuning parameter that controls how fast the algorithm re-
sponds to the error measured as xj(t)/gj−1/T . If the initial
αj ’s (e.g., solved from the offline dual) are indeed optimal
for future runs, we want γ to be zero. Notice though, in the
error term xj(t)/gj − 1/T we assume for clarity a uniform
impression stream over time intervals. This assumption is
not critical since it can be easily removed by adding a time-
dependent prior. Moreover, the Waterlevel-based update
has a nice chaining property:

αj(t+ 1) = αj(t) exp (γ(xj(t)/gj − 1/T ))

= αj(t− 1) exp

(
γ

(
t∑

τ=t−1

xj(τ)/gj − 2/T

))
= . . .

= αj(1) exp

(
γ

(
t∑

τ=1

xj(τ)/gj − t/T

))
.

(11)

5.2 Model-based Bid Adjustment
The basic idea of our model-based approach is drawn from

modern control theory [9], where a mathematical model of
the state of the system (the bidding marketplace in our case)
is utilized to produce a control signal (the bid adjustment
αj ’s in our case). More formally, we postulate a parametric
distribution P on the winning bids as follows.

w ∼ P(θ), (12)

where θ is the model parameter. We use the generic form
since an appropriate parametric choice should be empirically
justified by data, and likely domain-dependent. Several rea-
sonable choices are a log-normal distribution [7] and a Gaus-
sian distribution on the square-root of winning bids [13],
but neither can handle negative bids naturally. In our ad-
ditive form of bid adjustment as in Eq. (3), a negative bid
bij = vij −αj < 0 would mean that the bidder cannot fulfill

its minimal margin by acquiring impression i, thus reveals
a hidden part of the entire value book of the marketplace.
We note the PDF as f(w; θ), the CDF as F (w; θ), and the
inverse CDF as F−1(p; θ). The MLE of the distribution
parameter θ is derived from sufficient statistics of historical
winning bids {w}, which can be readily updated online, e.g.,
the first and second moments. With this statistical model of
bidding landscape, we can derive the probability of winning
by bidding with bij = vij − αj :

p(w ≤ bij) =

∫ bij

−∞
f(w; θ)dw = F (bij ; θ). (13)

It is unrealistic to assume that the winning bids for all im-
pression i’s follow a single distribution (more likely a mixture
model), thus we will fit a distribution P(θ) for a group of
homogeneous impressions, e.g., from a placement. In prac-
tice, we align a P(θ) with the impression granularity level at
which both the supply-side and demand-side constraints the
system wishes to enforce (more on this in Section 6). For
now let us focus on homogeneous impressions.

We wish to link the learned winning probability with fu-
ture bidding behavior to achieve the delivery goal. Suppose
that rj is the expected or desired probability of winning the
remaining impressions by campaign j to meet its goal gj .
It is tempting to just bid with bij = F−1(rj ; θ) on future
impression i’s. However, this purely goal-based approach
fails to use feedback explicitly to control future bids, thus
losing the advantages that a so-called closed-loop controller
(e.g., a PID controller) would have, including stability and
robustness to model uncertainty. In other words, the purely
goal-driven approach does not learn from the errors made
by past bidding. We now propose a model-based controller
that addresses this limitation, while leveraging the knowl-
edge learned about the bidding landscape. The bid adjust-
ment formula is as follows.

αj(t+ 1)← αj(t)− γ
(
F−1(rj(t))− F−1(r′j(t))

)
, ∀j, (14)

where rj(t) and r′j(t) are desired and observed winning prob-
abilities, respectively, measured at time t. The multiplica-
tive factor γ is a tuning parameter that controls the rate at
which an update responds to errors. Compared with clas-
sic approaches, a model-based approach does not directly
operate on measured errors; instead it transforms an error
signal (winning probability error), through a compact model
(P(θ)), to a control signal (updated αj).

It is also worth noting that in the absence of a good para-
metric distribution, a non-parametric model can also be used
in practice. One needs to maintain an empirical CDF as a
two-way lookup table (F (w;D) and F−1(p;D)) for online
inference.

6. PERFORMANCE DISPLAY OPTIMIZA-
TION: A PRACTICAL FORMULATION

We have developed the basic algorithmic form in Algo-
rithm 1, and established its optimality given the stationary
impression arrival assumption. In the basic LP formulation,
constraints are encoded as impression delivery goal, and im-
pressions are valuated and assigned individually. We now
formulate the LP problem directly with business constraints,
primarily demand-side budget limits and supply-side inven-
tory availability; and then discuss major practical aspects



that a real-world system shall take into consideration. Let
us first update the following notations:

1. i now indexes n impression groups (e.g., placements),
impressions within one group are regarded as indis-
tinguishable, and hence yield a same CTR estimation
given a campaign;

2. gj is the budget cap for campaign j;

3. hi denotes the impression availability constraint or fore-
cast for group i;

4. xij now denotes the number of impressions from group
i allocated to campaign j;

5. wi denotes the (traffic acquisition) cost per impression
from group i, e.g., the second price in a Vickrey auc-
tion.

Notice that we make CTR prediction and supply constraint
at the same resolution, i.e., per impression group. This is
critical to avoid the so-called cream-skimming problem [11].
If CTR prediction is finer-grained than supply constraint
for instance, an optimization will always assign impressions
to higher-CTR opportunities within each impression group,
which is obviously unrealistic. Also, we introduce the cost
term wi to generalize the yield optimization to other players,
e.g., an ad network or demand-side platform participating
into a second-price auction. The primal LP now becomes:

max
x

∑
i,j

(vij − wi)xij

s.t. ∀j,
∑
i

vijxij ≤ gj ,

∀i,
∑
j

xij ≤ hi,

xij ≥ 0.

(15)

And the dual problem is:

min
α,β

∑
j

gjαj +
∑
i

hiβi

s.t. ∀i, j, vijαj + βi ≥ vij − wi,
αj , βi ≥ 0.

(16)

By a similar derivation as in Section 4, the following auc-
tion design would approach offline revenue optimality:

1. Every campaign j bids on an impression from group i
with the amount vij(1− αj);

2. Only active campaigns, i.e.,
∑
i vijxij < gj , can par-

ticipate;

3. The impression is assigned only if the highest bid is
greater than the cost wi, which is implied if wi only
contains the second price.

The bid adjustment term αj can now be interpreted as the
minimum profit margin (profit divided by revenue) a cam-
paign requires. The cost term wi is constant with respect to
each auction.

Since the primal constraint matrix A in Eq. (15) is no
longer TU with the valuation terms vij ’s introduced, the
primal optimal is not necessarily integral. As we demon-
strated in Section 4, however, the LP relaxation is not a

concern in practice. One can solve the primal x∗ij ’s, and then
stochastically assign impressions from group i to campaign
j with probability x∗ij/

∑
j′ x
∗
ij′ , referred to as proportional

allocation. Many current practices follow this primal-based
approach [4, 6].

As one wishes to valuate impressions at a very fine-grained
level, the primal will soon become intractable (recall the
cream-skimming problem). We propose a dual-based ap-
proach as follows. First, the dual as in Eq. (16) is solved
offline using historical data. The offline optimal αj ’s are
then used as the initial bid adjustment terms for future
bidding. In online bidding, a centralized ad delivery sys-
tem (e.g., owned by the publisher) with perfect information
(e.g., the historically optimal αj ’s) bids on behalf of all ad-
vertisers, and adjusts αj ’s near real-time based on observed
constraint satisfaction level and bidding landscape, through
approaches described in Section 5. The dual has lower di-
mensionality to start with, i.e., n + m model parameters
instead of nm, thus conceived to have a better generality.
What we seek from the dual is actually a partial solution,
that is, αj ’s only, which only causes linear complexity of
the offline solver. Furthermore, since we will adjust αj ’s
dynamically anyway, a good approximation may suffice.

A practical algorithm shall take into consideration the fol-
lowing aspects. First, to avoid multimodality, one distribu-
tion density P(θ) is estimated for one impression group that
exhibits sufficient homogeneity, e.g., a Gaussian distribu-
tion on winning bids per group w ∼ N (µi, σ

2
i ) to allow for

negative bids. Since the purpose of the statistical model is
to derive a constraint-based bid from the desired winning
probability based upon budget limit, the budget constraint
gj needs to be given at the same impression group level at
which the distribution is fit. However, constraints such as
budget cap are naturally given at the campaign level across
all impression groups. This issue can be addressed both of-
fline and online. One can start with distributing offline a
campaign-level goal across impression groups with a prior
proportion, and then synchronize online these campaign-
group level subgoals. More interestingly, the other part
of the dual solution, namely βi’s, shall guide this subgoal
synchronization. If some βi becomes positive and larger,
the inventory availability from impression group i becomes
scarce, which suggests one shall move some delivery sub-
goals from group i to those with ampler resources and bid
less aggressively for group i (think of a reverse auction where
impression groups bid for campaigns). Here we focus on pre-
distributed campaign-group level goals gj ’s.

Second, we consider a fully observed exchange where the
winning bid ws′ is revealed after each auction. A partially
observed setting differs in the penalty for a bidder to learn
the distribution of winning bids, i.e., wi will contain some
exploration cost [7].

Third, the algorithm shall be implemented as an online lis-
tener, where each impression s arrives from a stream S one
at a time. For online computational efficiency, only mini-
mally required statistics are updated real-time, specifically
impression assignments, sample sizes, cumulative valuation,
and moments for model parameter θ. Bid adjustment, along
with its relevant parameter estimation, is performed near
real-time, only once after each time interval t; so does cam-
paign budget capping. These near real-time updates may
involve expensive computations such as inversing a CDF.

Finally, the estimated CTR psj , along with eCPI vsj and



bid bsj , is made dependent upon individual impressions s.
This is only for a bidder to randomize its bids, but not for
cream skimming. The expected value of a randomized CTR
should still be the group-level CTR, i.e., E(psj) = pij , ∀s ∈ i.
Bid randomization has two advantages: (1) bidding ties
can be naturally broken (see the optimality theorem and
its proof in Section 4), and tie-breaking is especially impor-
tant in reserved ad allocation where valuations may largely
overlap; and (2) one can extend the optimal auction the-
ory [15] to show that the revenue-optimal mechanism for
an ad network is to randomize its bids (e.g., by a uniform
distribution) within a certain range [14].

7. EXPERIMENTS
In this section, we discuss our empirical evaluation with

the application of implicit targeting for performance display
advertising [1], using real-world ad serving data. The goal of
implicit targeting is to optimize revenue by leveraging fine-
grained impression-level opportunities, such as user signals.
Compared with explicit targeting, such as behavioral tar-
geting [5], the audience to target is not explicitly defined,
but instead is identified via impression-level valuation. The
current approach to performance ad optimization is to solve
a LP offline for determining ad assignment at the (place-
ment, campaign) level, and to use a static proportional al-
location scheme for online ad delivery. In implicit targeting,
we wish to perform the LP optimization at the (placement,
user, campaign) level, and to solve it online. Here a user is
a user-level feature vector that encodes signals relevant to
predicting clicks. By distinguishing among users within a
same placement, one shall expect higher revenue than treat-
ing them identical. In comparison with the current offline
approach, the proposed online bidding algorithm for implicit
targeting not only makes impression-level valuation feasible,
but also yields substantial computational advantage. For-
mally, we formulate the problem of implicit targeting as a
LP similar to Eq. (15), with the following specializations.

1. Campaign-level budget constraints are given as im-
pression delivery goals gj ’s.

2. An impression group i is defined as a (placement, user)
tuple, at which level both CTR prediction pij and in-
ventory control

∑
j xij ≤ hi are performed.

3. The cost term wi will be zero, since impressions are
from owned inventory.

7.1 Data, Methodology and Metrics
We aim to empirically answer the following questions:

1. Whether the online bidding algorithm can obtain the
offline revenue optimality, given the optimal bid ad-
justment αj?

2. How different bid adjustment approaches perform, their
optimality approximation, and control-theoretic prop-
erties?

3. How significant is the initial value of αj , and to solve
it offline with historical data?

A proprietary data set of ad serving for one of the most
trafficked placements is obtained from a large display net-
work. There are on average 20M impressions served on each

day, and four CPC campaigns involved. The raw log is pro-
cessed into examples with the schema: (timestamp, place-
ment, user, campaign, clicks, impressions). For each exam-
ple, let us denote the timestamp as t, the (placement, user)
pair as i, the campaign as j, the clicks as cij(t), and the
impressions as xij(t). When t is tracked instantaneously, an
example shall correspond to a single impression assignment.
For computational efficiency in our experiments, we trace
timestamp in seconds, and hence the composite key (t, i, j)
uniquely identifies an example. The impressions xij(t), ∀t, i, j
are the allocation results of the current production system
based on a (placement, campaign) level LP optimization,
thus aggregating impressions for each campaign j gives the
impression delivery goal gj =

∑
t,i xij(t). The clicks cij(t)

are the ground-truth feedbacks, thus divided by impressions
gives the empirical CTR. For simulating revenue generated
by the proposed approach, we are particularly interested in
the empirical CTR for each (placement, user, campaign) tu-

ple marginalized over time, i.e., pij =
∑

t cij(t)∑
t xij(t)

. One may

choose to use time-dependent empirical CTR pij(t) =
cij(t)

xij(t)

to simulate revenue, but that would lead to noisy estima-
tion due to the sparsity of xij(t). The sum of the products
of clicks by CPC qj is the actual revenue yielded by the
current approach y =

∑
t,i,j cij(t)qj .

The online bidding algorithm is implemented as follows,
similar to Algorithm 1 but with practical considerations as
discussed in Section 6. One first sorts examples by times-
tamp to form a stream. For each incoming example from
the stream, one predicts CTR for each campaign p′ij ,∀j,
regardless of the actual assigned campaign. Active cam-
paigns then bid with bij = p′ijqj − αj , where αj is initial-
ized as the dual optimal solved from historical data and
updated online as bidding runs. The impressions associ-
ated with the example are re-assigned to the winning bidder
j∗ = argmaxj (bij), i.e., x′ij∗(t) ← xij(t) if bij∗ > 0; or
ignored if bij∗ ≤ 0,. By so simulating, the impression vol-
ume constraints ∀i,

∑
j xij ≤ hi are naturally satisfied, since

all impressions already exist and one only changes the cam-
paign assignments. The campaign-level goals are checked
real-time after each auction, while αj ’s are updated near
real-time once after each hour, i.e., T = 24. The algorithm
runs on a daily basis, and at the end of each day one will have
a simulated impression allocation x′ij(t), ∀t, i, j. The simu-
lated revenue is computed as y′ =

∑
t,i,j x

′
ij(t)pijqj , where

pij is the empirical CTR instead of the predicted CTR. To
evaluate the performance of different algorithms and bid ad-
justments, we use revenue lift defined as the ratio of simu-
lated revenue to actual revenue:

Revenue lift =
y′

y
=

∑
t,i,j x

′
ij(t)pijqj∑

t,i,j cij(t)qj
. (17)

By removing the CPC term, we can also report the overall
CTR lift by the proposed approach:

CTR lift =
CTR′

CTR
=

∑
t,i,j x

′
ij(t)pij/

∑
t,i,j x

′
ij(t)∑

t,i,j cij(t)/
∑
t,i,j xij(t)

. (18)

A sensible implicit targeting algorithm shall have a revenue
lift greater than one, and the offline optimal solution gives
an upper-bound lift to any online algorithm.

7.2 Results



Let us start with verifying the optimality of the online
bidding algorithm. We take one-day ad serving data, first
solve both the primal and the dual LP offline to obtain the
offline optimal revenue and αj ’s, and then simulate the on-
line bidding on the same data using the optimal αj ’s with-
out adjustment. As shown in Table 1, the online algorithm
achieves nicely the offline revenue optimality. The small
variance is because this particular implementation allocates
in batch impressions sharing a same composite key (t, i, j) to
save computation, which may violate inventory constraints
marginally. Although CTR is not the optimizing objective,
the online algorithm yields higher CTR lift than offline. This
is because the online algorithm only assigns impressions with
positive winning bids, and may disregard perceived non-
monetizable ones; while the offline solver does not concern
as long as the constraints are satisfied.

Table 1: Optimality of Online Bidding
Methods Revenue lift CTR lift

Offline optimal 1.4811 1.3180
Online bidding 1.4821 1.4913

We now evaluate different online bid adjustment approaches,
specifically the model-based and the Waterlevel-based con-
trol mechanisms (shortcut as ModelBidder and Waterlevel-
Bidder). Both uses historical optimal αj ’s as initial values
solved from the day preceding the testing day, and we test
on four consecutive days. The rate factor γ is set to 0.01 for
ModelBidder, and 0.24 = 0.01T for WaterlevelBidder. The
results are shown in Table 2.

Table 2: ModelBidder vs. WaterlevelBidder
Revenue lift Day1 Day2 Day3 Day4

Offline optimal 1.3656 1.4243 1.3652 1.4811
ModelBidder 1.3598 1.3936 1.3683 1.4817

WaterlevelBidder 1.2460 1.3923 1.3675 1.4681

Both bid adjustment methods perform very well in ap-
proaching offline revenue optimality, with above 90% offline
optimal revenue lift achieved in all cases. The model-based
adjustment does slightly better in revenue lift. It is also im-
portant to examine the control-theoretic properties of dif-
ferent adjustment algorithms, specifically the stability. Let
us define the hourly delivery ratio of a campaign as the
hourly winning impressions as a percentage of its daily de-
livery goal, and the reference ratio as the hourly impression
arrivals as a percentage of the total daily impressions. A
stable control strategy shall produce delivery ratios close to
the reference ratio. We plot the delivery ratios of different
adjustment methods against the reference ratio for one top
campaign in terms of delivery goal on one day, as shown in
Figure 1. The Waterlevel-based method shows superior sta-
bility since it directly operates on the error measured against
the reference, while the model-based exhibits greater oscil-
lations. On the other hand, using static optimal αj does not
react to the reference.

To investigate the significance of the initial value of αj
and the merit of solving it offline with historical data, we
simulate the Waterlevel-based bid adjustment with different
initial αj values, namely, (1) zero αj ’s, (2) historical optimal
αj ’s, and (3) offline optimal αj ’s for the testing day. In real-
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Figure 1: Hourly delivery ratio against reference

ity, one cannot know offline optimal values of αj ’s a priori.
The results are shown in Table 3.

Table 3: Significance of Initial αj
Revenue lift Day1 Day2 Day3 Day4

Offline optimal 1.3656 1.4243 1.3652 1.4811
Zero αj 1.3652 1.3984 1.3696 1.4819

Historical αj 1.2460 1.3923 1.3675 1.4681
Optimal αj 1.3557 1.3973 1.3655 1.4638

Although all different choices approximate offline revenue
optimality, varying initial value of αj makes no significant
difference. We argue that this may be an artifact of of-
fline simulation, where only offline data pre-filtered by the
current production system could be obtained. The actual
impression allocation in the data has already gone through
constraint enforcement by the current delivery system that
produces the data; and as a consequence, the delivery goal
for the online bidding simulation will not be constraining
enough to make αj significant at the beginning. In fact as
empirically shown, all campaigns only exhaust their deliv-
ery goals towards the end of a daily run. In reality, when
campaign budgets become much more constraining relative
to the impressions available from an open exchange, a good
initial αj will matter more.

To test the hypothesis of the pre-selection bias of the
offline data and to fully reveal the significance of the ini-
tial αj , we artificially constrain the campaign budget by
a factor of λ ∈ [0, 1], thus the campaign delivery goal gj
derived from the data becomes λgj . We experiment with
λ = 90%, 75%, 50% using the Waterlevel-based bid update,
and the results support the hypothesis, as shown in Tables 4,
5, and 6. As campaign budget becomes smaller and deliv-
ery goal becomes more constraining, the performance of the
zero-αj initialization degrades considerably, while the histo-
rial or offline optimal αj largely preserves the offline revenue
optimality. When campaign budget is cut by 50%, a cold
start with zero-αj cannot even recover the revenue yielded
by the current approach. These empirical results justify the
cost of solving an offline dual LP to obtain a sensible αj
initialization, especially under a constraining budget.

8. CONCLUSIONS
Our contributions are a simple yet well-grounded real-time



Table 4: Constraining budget by 90%
Revenue lift Day1 Day2 Day3 Day4

Offline optimal 1.3300 1.3930 1.3652 1.4814
Zero αj 1.2587 1.2797 1.2562 1.3368

Historical αj 1.1123 1.3795 1.2536 1.4507
Optimal αj 1.3269 1.3824 1.3218 1.3406

Table 5: Constraining budget by 75%
Revenue lift Day1 Day2 Day3 Day4

Offline optimal 1.2858 1.3540 1.3652 1.4813
Zero αj 1.0796 1.0789 1.0671 1.0953

Historical αj 1.1092 1.3431 1.3380 1.4599
Optimal αj 1.2694 1.3526 1.3480 1.3658

Table 6: Constraining budget by 50%
Revenue lift Day1 Day2 Day3 Day4

Offline optimal 1.2702 1.3248 1.3655 1.4815
Zero αj 0.7315 0.7076 0.7300 0.7194

Historical αj 1.2252 1.3181 1.1330 1.4792
Optimal αj 1.2228 1.1277 1.3555 1.4425

bidding algorithm for performance display ad allocation, its
theoretical revenue optimality guarantee, and practical ap-
proaches to adapting bids to market dynamics. We have
provided a general framework of bidding in performance-
based marketplace, where both impression valuation and
constraints are taken into consideration to come up with an
optimal bid. Further online experiments are desired to un-
derstand bid adjustment behavior even better, particularly
to investigate the significance of several sources of model un-
certainties including impression valuation and bidding land-
scape distribution. Finally, it will be of great interest to
examine the equilibrium properties of the proposed bidding
framework at an exchange, and particularly to compare the
proposed bidding algorithms with other auction mechanisms
with heterogeneous valuations [12,13].
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