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Abstract. We improve the best known competitive ratio (from 1/4 to

1/2), for the online multi-unit allocation problem, where the objective is

to maximize the single-price revenue. Moreover, the competitive ratio of

our algorithm tends to 1, as the bid-profile tends to “smoothen”. This

algorithm is used as a subroutine in designing truthful auctions for the

same setting: the allocation has to be done online, while the payments

can be decided at the end of the day. Earlier, a reduction from the auction

design problem to the allocation problem was known only for the unit-

demand case. We give a reduction for the general case when the bidders

have decreasing marginal utilities. The problem is inspired by sponsored

search auctions.

1 Introduction

It is fairly common that a mechanism has to work in a dynamic environ-

ment, where there is an uncertainity in either the demand, or the supply,

or both. This has led to the study of online mechanism design [7, 4, 13]

and has presented significant new challenges compared to the traditional

static setting. Most of the research has focused on dynamic demand case:

the uncertainty is in the number and types of the bidders, their arrival

and departure time, etc, such as airline tickets. On the other hand, very

little is known for dynamic supply case: the uncertainty is in the number

of items to be allocated, or more generally the set of feasible allocations,

such as sponsored search. Mahdian and Saberi [14] initiated the study of

the dynamic supply case by giving a constant competitive ratio algorithm

for auctioning multiple copies of a single item with unit-demand bidders.
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University of Chicago and the second author was in Toyota Technological Institute,

Chicago



We improve their competitive ratio by a factor of 2 by giving an alternate

and simple algorithm, and also extend their results to handle bidders with

multiple demand.

A bidder with unit-demand has a value ui for one copy of the item, and

his utility is ui − p if he is allocated the item at price p, and 0 otherwise.

Definition 1. Online Multi-unit Auction Problem, unit-demand

([14]). At the beginning of the auction, each bidder (with unit-demand)

bids a value bi. At each (discrete) time unit, a new copy arrives which

must be allocated to a bidder immediately, or else it perishes. When there

are no more copies left, the auction determines the prices charged to the

winning bidders.

Note that the auction has no prior knowledge of how many copies of the

item will be produced.

Definition 2. An auction is truthful if bidding bi = ui is a dominant

strategy for each bidder.

The goal of the auction is to maximize the revenue of the auctioneer,

which is the sum of the prices charged to the winning bidders. The main

motivation behind the work of [14] was sponsored search auctions, which

are a major source of revenue for search engines like Google, Yahoo and

MSN. The bidders are the advertisers and the items correspond to search

queries. The queries arrive online and have to be allocated immediately,

while the advertisers stay for the entire duration of the auction and

present their bids ahead of time. The advertisers are only charged at

the end of the day.

An alternate model is to ask that the prices are also determined online.

For the sponsored search auction setting, charging at the end is closer to

reality. Also, charging online seems to be considerably restrictive, as there

are strong lower bounds for this model1. For the sponsored search auction

setting, a more realistic model is when the bidders have multiple demand.

We present an auction for this case as well, and our results for this case

are of significant interest.

The auction problem considered here is also a natural extension of the

line of work on digital goods auction: from unlimited supply ([9–12]) to

limited supply ([1, 3, 5]), to unknown supply ([14] and this paper).

1 The lower bounds [2] are for a related problem, that of maximizing social welfare.

It is an interesting open question if these lower bounds also hold for maximizing

revenue.



As is standard in the literature on digital goods auction, we give a

competitive analysis of the auction, by comparing the revenue of the

auction to a benchmark. The benchmark we use is once again a standard

in digital goods auction, it is the optimal single-price revenue on hindsight:

OPT := maxp p.|{i : bi ≥ p}|. The auction itself is allowed to charge

different prices to different bidders, although our auction charges only

two different prices.

Definition 3. Competitive Ratio An auction is said to have a com-

petitive ratio of α if the expected revenue of the auction is at least αOPT .

[14] gave a reduction from the auction problem to the following al-

gorithmic problem, with only a constant factor lost in the competitive

ratio.

Definition 4. Online Multi-unit Allocation Problem, unit-demand

The algorithm is given the utility ui of each bidder. At each (discrete) time

unit, a new copy arrives which must be allocated to a bidder immediately,

or else it perishes. When there are no more copies left, the algorithm

charges all the winning bidders with a single price, that is smaller than

their utilities.

There is no requirement of truthfulness in the allocation problem. Also,

the algorithm itself has to charge the same price to all the bidders, unlike

the auction which was allowed to charge different prices to different bid-

ders. Also note that the revenue-maximizing single price is determined by

the allocations made by the algorithm. It is simply the smallest winning

utility. As with the auction problem, we compare the revenue of the algo-

rithm with the optimal single price revenue on hindsight; the competitive

ratio is defined analogously.

Theorem 1. ([14]) There is a truthful mechanism for the online multi-

unit auction problem with unit-demand bidders with a competitive ratio

of O(α) given an algorithm for the allocation problem with competitive

ratio α.

1.1 Main Result

It can be easily seen that the competitive ratio of any deterministic algo-

rithm for the allocation problem is arbitrarily small. So it is actually sur-

prising that a randomized algorithm can even get a constant competitive



ratio. The reason for this difficulty is that the revenue of the algorithm,

as a function of the number of copies allocated can have many “peaks”

and “valleys”. For any deterministic algorithm, an adversary can make

sure that the algorithm either ends up in a valley, or is stuck on a small

peak while the optimum is at a larger peak elsewhere. The key decision

for an algorithm is when it is at a peak, it has to decide if it has to stay

at the peak, or try to get to the next one. What our algorithm does is

to simply wait at the current peak for a period of time chosen uniformly

at random between 1 and the maximum distance between peaks seen so

far. The simplicity of our algorithm is quite appealing. This improves the

best known competitive ratio (from 1/4 to 1/2), for the online multi-unit

allocation problem, which in turn gives a factor of 2 improvement for the

online multi-unit auction problem.

Theorem 2. There is an algorithm for the online multi-unit allocation

problem for unit demand, that achieves a competitive ration of 1/2.

The proof of the competitive ratio relies on case analysis since the op-

timal revenue and the expected revenue of the algorithm vary depending

on the total number of copies seen. A good idea of how the analysis goes

can be had by considering the following instance: suppose there is one bid

of 1 and many bids of ǫ ≪ 1. In this case the algorithm waits for a time

chosen u.a.r between 1 and 1/ǫ. If the number of copies seen is m ≤ 1/ǫ,

then the optimal revenue is 1, while the expected revenue is 1 − x + x2

2

(where x = ǫm), which is at least 1/2 when x ≤ 1. If m ≥ 1/ǫ then the

optimal revenue is ǫm, while the expected revenue is ǫm − 1/2 ≥ ǫm
2

.

Moreover, the competitive ratio of our algorithm tends to 1, as the bid-

profile tends to “smoothen”. [14] also showed an upper bound of e/(e+1)

for the allocation problem and closing the gap is an open problem. See

Section 4 for a more detailed discussion on this.

Mahdian and Saberi [14] showed that using an algorithm for the online

multi-unit allocation problem for unit demand with competitive ratio ρ

one can construct a truthful auction for the online multi-unit auction

problem with competitive ratio ρ/20. Thus,

Corollary 1. There is a truthful auction for the online multi-unit auc-

tion problem, that achieves a constant competitive ratio.



1.2 Extensions

A more realistic case in the context of sponsored search auction is when

the bidders have multiple demand: bidders have decreasing marginal util-

ities for multiple copies of the item, and submit multiple bids. The opti-

mum and the competitive ratio are defined analogous to the unit-demand

case. The allocation problem remains the same even with multiple de-

mands, since the problem does not really depend on the identity of the

bidders. Hence, our algorithm for the allocation problem gives a compet-

itive ratio of 1/2 even for this case.

However, the auction problem is harder with multiple demands, since

it provides more ways for the bidders to lie and benefit. In particular,

the auction obtained by using the reduction in [14] is not truthful for

multiple demands. The reduction in [14] is based on random sampling

with computing optimal “price offers”. But when run in an online setting,

the prices offered decrease over time, due to which a bidder might regret

not getting a copy earlier as the price decreased at a later time. The

reduction in [14] takes care of this situation by a clever implementation

that works only when all bidders want only one copy. It is not truthful

when the bidders can submit multiple bids. We circumvent this difficulty

by combining the random sampling technique with the VCG auction.

However, we only get an asymptotic competitive ratio, that is the ratio

tends to 1/2, as a certain bidder dominance parameter tends to 0. The

bidder dominance parameter is defined to be the maximum fraction of

the optimum revenue that can be obtained from any single bidder. A

small bidder dominance parameter indicates that the revenue from any

one bidder is small compared to the optimal revenue.

Definition 5. For any price p and any bidder i we denote by n(i, p) the

number of bids of bidder i that are more than p. The bidder dominance

parameter is

η :=
maxi,p n(i, p)p

OPT
.

Theorem 3. There is a truthful mechanism for the online multi-unit

auction problem with multiple-demand bidders, that with probability more

than (1− δ) guarantees a revenue of at least αOPT (1− ǫ) on expectation,

where α is the competitive ratio of the allocation algorithm that we use as

the subroutine, if

η = O
(

ǫ2/ log
(n

δ

))

,



where n is the number of distinct bid values.

The problem considered here is perhaps the simplest non-trivial case

of the actual problem in sponsored search auctions. There are many ex-

tensions of which we have little understanding, for instance, one could

consider multiple slots for every query. Another interesting extension is

when the bidders have constant marginal utilities for the copies, but have

daily budgets. [5, 1] gave an auction for this case with known supply (the

offline problem). Extending it to the online setting is an important open

problem. The introduction of budgets also makes the multiple items case

interesting. (Otherwise, assuming additive utilities, the auctions for dif-

ferent items are independent of each other.) Even the offline case of this

problem is open.

Subsequent Related Work: Subsequent to our result, Devanur and

Hartline [6] gave an alternate auction for the Online Multi-Unit Auc-

tion problem with a competitive ratio that is better than this paper.

This auction does not use the reduction to the allocation problem. How-

ever, the auction in [6] is only for unit-demand bidders, so our results for

the multiple-demand bidders are still the best. Also the online allocation

problem, and the algorithm for it are interesting in their own right.

Organization: We present our algorithm for the Online Multi-unit Allo-

cation problem in Section 2. Theorem 2. For lack of space we are unable

to present the proof of the competitive ratio of the algorithm in this ex-

tended abstract. The auction for the multiple demands case and a sketch

of the proof of Theorem 3 is given in Section 3. Section 4 contains a

discussion on future work and open problems.

2 Algorithm for the Online Multi-unit Allocation

Problem

Without loss of generality assuming that the utilities are u1 ≥ u2 ≥

· · · ≥ un, the revenue obtained by allocating l units of the item is lul.

Let 1 = a1 < b1 < a2 < b2 < a3 < b3 < . . . be the critical points of the

function lul, that is, the function lul is non-decreasing as l increases from

ai to bi and for all bi < l < ai+1 we have biubi
> lul and biubi

≤ ai+1uai+1
.

The algorithm is in one of two states, ALLOCATE or WAIT. When

it is in ALLOCATE, it allocates the next copy of the item. When it is

in WAIT, it discards the next copy. The description of the algorithm is

completed by specifying when it transits from one state to the other.



The algorithm is initially in ALLOCATE. It transits from ALLO-

CATE to WAIT when the number of copies allocated (X) is equal to bi

for some i. It transits from WAIT to ALLOCATE when the number of

copies discarded till then (Y ) is equal to a random variable, T , for waiting

time. T is reset every time the algorithm transits to WAIT. T is picked

so that it is distributed uniformly between 0 and Di, where D0 = 0 and

for all i ≥ 1

Di = max
j≤i

(aj+1 − bj)

(recall that X = bi). We further want to maintain the invariant that Y

never exceeds T . Equivalently, the value of T can only increase during a

run of the algorithm.

We still have to specify how T is picked. Because of the condition

that T can only increase, we cannot pick T independently every time we

transit to WAIT. If Di ≤ Di−1, then we don’t have to change T at all. If

Di > Di−1, then

– w.p. Di−1

Di
don’t change T ,

– with the remaining probability pick T uniformly at random from the

interval [Di−1,Di].

It is easy to see that the resulting T is distributed uniformly in [0,Di].

Note that in case T is not changed, then Y is already equal to T , and we

transit back to ALLOCATE immediately. Equivalently, we don’t transit

to WAIT at all.

Pseudocode for the Algorithm

1. initialize STATE = ALLOCATE, i=1, X=Y=T=0;

2. when a new copy is produced

3. If (STATE = ALLOCATE)

4. Allocate the copy to the next bidder;

5. X ++;

6. If (X = bi)

7. If (Di > Di−1)

8. With prob 1 −
Di−1

Di

9. set T to a random number from the interval [Di−1,Di];

10. STATE = WAIT;

11. i ++;

12. If (STATE = WAIT)



13. Discard the copy;

14. Y ++;

15. If (Y = T )

16. STATE = ALLOCATE

17. GO TO line 2.

Because of shortage of space we cannot present the analysis for com-

petitive ratio in this extended abstract.

3 Bidders with Multiple Demand

Let B = {1, 2, . . . , n} be the set of bidders. Each bidder can make multiple

bids. We will design a truthful mechanism which has good competitive

ratio. Our mechanism will use an online multi-unit allocation algorithm

as a sub-routine. Under a bidder-dominance assumption, the competitive

ratio of our mechanism will be (1 − ǫ)α where α is the competitive ratio

of the allocation algorithm we use as our subroutine.

The Mechanism: We divide the set of bidders into two

groups S and T by placing each bidder randomly into either

of the groups. On each set of bidders S and T we will have

fictitious runs of the allocation algorithm. Let the fictitious

run of the allocation algorithm on the set S (respectively T )

allocates x(S, k) (respectively x(T, k)) copies when k copies

are produced.

Now when the j-th copy is produced, if j is even we compute

x(S, j/2). If at that time the number of copies allocated to

bidders in T is less than x(S, j/2)(1 − 6γ) then we allocate

the j-th copy to T otherwise discard the copy. Similarly, if j

is odd we compute x(T, (j+1)/2) and if the number of copies

allocated to bidders in S is less than x(T, (j + 1)/2)(1 − 6γ)

then we allocate the j-th copy to S otherwise discard the

copy.

Finally let xfinal(S) and xfinal(T ) copies are allocated to

bidders in S and T respectively. The prices charged are the

VCG payments, that is, as if we ran a VCG auction to sell

xfinal(S) copies to bidders in S.



Note that the even indexed copies will be allocated only to bidders

in T and the odd-indexed copies will be allocated only to bidders in S.

But the bids of bidders in S decides how many (odd-indexed) copies will

be allocated to bidders in T and vice versa. This mechanism is similar to

that in [11] on digital good auction with unlimited supplies except that

in [11] the bids of bidders in S decides the cut off price for bidders in T

and vice-versa.

If M is the number of copies of the item that are finally produced

we denote by OPT = OPT (B,M) the revenue obtained by the optimal

single price allocation algorithm.

Definition 6. For any price p and any bidder i we denote by n(i, p) the

number of bids of bidder i that are more than p.

We define the bidder dominance parameter η as

η =
maxi,p n(i, p)p

OPT
.

Theorem 4. The above mechanism is a truthful mechanism. If all the

bids are from a finite set of prices (say Q) and if

1

η
= Ω

(

log

(

|Q|

δ

)(

1

ǫ2

))

and if we set γ = ǫ/8 then with probability more than (1− δ) our mecha-

nism guarantees a revenue of at least αOPT (1− ǫ) on expectation, where

α is the competitive ratio of the allocation algorithm that we use as the

subroutine.

In the rest of this section we will give a sketch of the proof of the

theorem. The detailed proof of the theorem is in the Appendix. The proof

is similar to that in [11].

The proof that the mechanism is truthful follows from the facts that

the number of copies allocated to each half is independent of the number of

the bids of the bidders in that half and the fact that pricing is determined

by the VCG auction.

The proof of the competitive ratio has two main parts: The first thing

is that since the bidders are split randomly into two sets so with high

probability the optimal revenue we can obtain from either of the sets is

nearly half of what we can obtain from the whole set.

The second thing is that the discounting factor of (1 − 6γ) ensures

that with high probability the eventual winners in S (respectively T ) are



charged at least as much as our allocation algorithm charges during its

fictitious run on the set T (respectively S) .

Note that the bound on the bidder dominance gives us an upper bound

on n(i, p) that is the number of bids on any bidders that is more than p.

This is essential for our analysis.

Let a fictitious run of the optimal single price allocation algorithm

on S generates a revenue of OPT (S, j) after j copies are produced. By

Mcdiarmid’s Inequality and the bound on the bidder dominance param-

eter, with probability at least (1 − O(δ)) we have OPT (S, ⌈M/2⌉) >

(1/2 − γ)OPT , where M is the final number of copies produced. Simi-

larly we have OPT (T, ⌊M/2⌋) > (1/2 − γ)OPT .

For the second stage we again notice that since the set of bidders was

partitioned randomly so with high probability the set of bids that are

more than p is also evenly divided among the two sets S and T . From

the McDiarmid’s Inequality and from the bound on the bidder dominance

parameter we see that with high probability the number of bids in S that

are more than p is much more than (1− 6γ) times the number of bids in

T that are more than p (and vice versa).

Let ALG(S, j) and ALG(T, j) be the revenue is generated by the fic-

titious run of our allocation algorithm on S and T respectively after j

items are produced. Now since the allocation algorithm is α competitive

we have that on expectation ALG(S, j) > αOPT (S, j). Thus with prob-

ability at least (1 − O(δ)) the revenue we earned on expectation is more

than

ALG(S, ⌈M/2⌉)(1−6γ)+ALG(T, ⌊M/2⌋)(1−6γ) > α(1−6γ)(1−2γ)OPT

which is greater than α(1 − 8γ)OPT .

4 Conclusion and Open Problems

The optimal competitive ratio for the allocation problem is open. [14]

showed an upper bound of e/(e + 1) for any randomized algorithm. The

instance for which they show this upper bound is when there is one bid of

1 and many bids of ǫ. For this particular instance, the following algorithm

gets a competitive ratio of 2/3: with probability 1/3, allocate just one copy

and get a revenue of 1, and with probability 2/3, run our algorithm. We

conjecture that this algorithm can be generalized to get a 2/3 competitive

ratio. Also, a better upper bound proof will probably have to consider



instances with multiple peaks, where the ratio of the Di’s to the ai+1’s is

large.

For the auction problem, the competitive ratio for the unit-demand

case is quite small, and that for the multiple demand case holds only

asymptotically. Getting it to a reasonably large constant (or proving that

it is impossible) is an important open problem.

The most common scenario in sponsored search auctions is that the

bidders have a constant utility for multiple copies of the item, but with a

daily budget. Our allocation algorithm works for this case as well, but the

reduction from the auction problem is not truthful. Borgs et al [5] give

a truthful auction for the offline case with budgets, using the standard

random sampling techniques with price offers. However, it is not clear

how to extend their auction to the online case. The difficulty is the same

as that for the multiple-demand case, that the price offers are decreasing

over time. But unlike the multiple-demand case, there is no VCG auction

for the budgets case, so our reduction does not work.
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Appendix





A Competitive Analysis of the Algorithm for the Online

Multi-unit Allocation Problem

In this section we show that the expected revenue of our algorithm, ALG,

is at least half of the optimal revenue on hindsight, OPT . Let M be the

number of copies that is produced at the end of the day. If M ≤ b1 then

OPT is MbM and our algorithm also allocates all the M copies. Thus in

this case ALG achieves the optimal revenue. Now let bi ≤ M < bi+1.

Case 1: If M ≤ ai+1, then OPT is biubi
.

Case 2: If ai+1 < M , then OPT is MuM .

Recall that X is the number of items sold by the algorithm. Therefore,

ALG = E[XuX ]. We approximate ALG in the above two cases as follows.

In Case 1, if X ≤ bi then uX ≥ ubi
, and if X > bi then uX ≥ uai+1

. Hence

we have that

ALG ≥ Pr[X < bi]E[X|X < bi]ubi
+Pr[X = bi]biubi

+Pr[X > bi]E[X|X > bi]uai+1

Also note that by definition ai+1uai+1
≥ biubi

= OPT . Hence

uai+1
≥

biubi

ai+1

=
OPT

ai+1

.

Substituting for the values of ubi
and uai+1

, we get

ALG

OPT
≥ Pr[X < bi]E[X|X < bi]

1

bi
+Pr[X = bi]+Pr[X > bi]E[X|X > bi]

1

ai+1

.

(1)

In Case 2, we use the fact that since X ≤ M thus uX ≥ uM , so ALG ≥

E[X]uM , and since OPT = MuM , we need to prove that E[X] is at least

M/2.

E[X] = Pr[X < bi]E[X|X < bi] + Pr[X = bi]bi + Pr[X > bi]E[X|X > bi].

(2)

We now give a way to calculate the various probabilities and expectations

needed.

Definition 7. For all i ≥ 1 let Ti be the value of the random variable T

chosen at phase i.

That is, Ti is the number of number of items we plan to discard before

allocating the (bi + 1)-th element. Also note that Ti is distributed uni-

formly between 0 and Di, and Ti−1 ≤ Ti for all i. Also, it is easy to see



from the description of the algorithm that X ≥ M − Ti−1 when X < bi,

and X = M − Ti when X > bi. This gives us the following lemmas. Let

M ′ := M − bi.

Lemma 1. For all i ≥ 1 the following statements hold, (let T0 = 0),

1. X < bi ⇔ Ti−1 > M ′.

2. X = bi ⇔ Ti−1 ≤ M ′ and Ti ≥ M ′.

3. X > bi ⇔ (Ti−1 < M ′ and Ti < M ′) ⇔ Ti < M ′.

Lemma 2.

E[X|X < bi] ≥ M − E[Ti−1|Ti−1 > M ′] = M −
M ′ + Di−1

2
.

E[X|X > bi] = M − E[Ti|Ti < M ′] = M −
min{M ′,Di}

2
.

However, the probability of the events X < bi, X = bi and X > bi

depend upon the order of Ji := bi + Di−1, ai+1 and M . So we consider

all possible orders of these 3 quantities separately. Table 1 shows the

probabilities for all the cases.

A.1 Analyzing all the Cases

A few observations first: from Lemma 2,

E[X|X < bi] ≥ M −
M ′ + Di−1

2
≥

M

2

since Di−1 ≤ bi = M − M ′ and hence M ′ + Di−1 ≤ M . And when

M ′ ≤ Di,

E[X|X > bi] = M −
M ′

2
=

M + bi

2
.

Case 1a: [Ji ≤ M ≤ ai+1] Set x = M ′

Di
and y = Di

ai+1
. Then M ′

ai+1
= xy and

bi

ai+1
= 1 − y. Substituting for the probabilities and expectations in (1),

ALG

OPT
≥ 1 − x + x

(

1 +
xy

2
− y

)

= 1 +
x2y

2
− xy =: α.

dα

dx
= y(x − 1) ≤ 0.

Therefore α is minimized when x = 1, and at this point, α = 1−y/2 ≥ 1/2

since y ≤ 1.



Pr[X < bi]

= Pr[Ti−1 > M
′]

Pr[X = bi]
Pr[X > bi]

= Pr[Ti < M
′]

Case 1a
Ji < M ≤ ai+1

Di−1 ≤ M
′
≤ Di

0 1 −
M

′

Di

M
′

Di

Case 1b
M ≤ Ji < ai+1

M
′
≤ Di−1 ≤ Di

1 −
M

′

Di−1

M
′

Di−1

−
M

′

Di

M
′

Di

Case 1c
M ≤ ai+1 ≤ Ji

M
′
≤ Di−1 = Di

1 −
M

′

Di−1

0 M
′

Di−1

Case 2a
Ji < ai+1 ≤ M

Di−1 < Di ≤ M
′

0 0 1

Case 2b
ai+1 ≤ M ≤ Ji

M
′
≤ Di−1 = Di

1 − M
′

Di−1

0 M
′

Di−1

Case 2c
ai+1 ≤ Ji < M

Di−1 = Di ≤ M
′

0 0 1

Table 1. Probability of the event X < bi, X = bi and X > bi for the six different cases

Case 1b: [bi ≤ M ≤ Ji ≤ ai+1] As observed earlier, we have that

E[X|X < bi] ≥
M
2

≥ bi

2
and E[X|X > bi] = M+bi

2
≥ bi. Setting x = M ′

Di−1

and using (1) again,

ALG

OPT
≥ (1 − x)

1

2
+ x

(

1 −
Di−1

Di
+

Di−1

Di

bi

ai+1

)

=: β.

To prove β ≥ 1/2 it is enough to prove that Di−1

Di

(

1 − bi

ai+1

)

≤ 1

2
. This

follows from the fact that ai+1 = bi + Di ≥ 2Di−1.

Case 1c: [bi ≤ M ≤ ai+1 ≤ Ji] As before we have that E[X|X < bi] ≥
M
2

≥ bi

2
and E[X|X > bi] = M+bi

2
≥ ai+1

2
. The last inequality follows



because ai+1 ≤ Ji = bi + Di−1 ≤ bi + M . Plugging these back in (1) gives
ALG
OPT

≥ 1

2
.

Case 2a: [Ji ≤ ai+1 ≤ M ] From (2) and Lemma 2, E[X] = M − Di

2
≥

M/2 since M ≥ Di.

Case 2b: [ai+1 ≤ M ≤ Ji] In this case, it is enough to show that both

E[X|X < bi] and E[X|X > bi] are bigger than M/2. From Lemma 2,

E[X|X < bi] ≥
M
2

. E[X|X > bi] = M − M ′

2
≥ M

2
.

Case 2c: [ai+1 ≤ Ji ≤ M ] The analysis is identical to Case 2a.

In fact, the competitive ratio of our algorithm is 1−ǫ if ǫ ≥ max{Di−1

bi
, Di

ai+1
}.

The proof is essentially the same as above.

B Proof of Theorem 4

We will now give the detailed proof of Theorem 4.

Let us first fix some notations. Let the optimal single price alloca-

tion algorithm for the set S allocates x∗(S, j) items at price p∗(S, j) af-

ter j items are produced. So the optimal algorithm generates revenue

OPT (S, i) := x∗(p, i)p∗(S, i). Let a fictitious run of the online multi-unit

allocation algorithm (that we use as a sub-routine) on the set S allocates

x(S, j) items at price p(S, j) after j items are produced and hence gen-

erates revenue ALG(S, i) := x(p, i)p(S, i). Recall B is the set of all the

bidders and if M is the number of items finally produced then the optimal

revenue against which we compare our algorithm is OPT (B,M) =: OPT .

Also to make the notations less messy we will assume M is even (other-

wise we will have to carry the floors and ceilings all over the proof and

they add little to the understanding of the proof).

Since the online algorithm we use as a subroutine has a competitive

ratio of α so for all j,

ALG(S, j) ≥ αOPT (S, j).

Definition 8. For any price p let n(S, p), n(T, p) and n(B, p) be the

number of bids more that p that are made by bidders in S, T and B

respectively.

Let Yi be the indicator variable indicating whether the bidder i is in

S or not. Let fp(Y1, . . . , Yn) calculates the number of bids more than or

equal to p that are in S, that is fp(Y1, . . . , Yn) = n(S, p). Note that since

the bidders are randomly placed in S or T we have

E[fp(Y1, Y2, . . . , Yn)] =
n(B, p)

2



Let ci is the maximum change in the value of fp if we change the value

of Yi. Note that ci is equal to the number of bids of bidder i that are

more than p, that is ci = n(i, p). But from our assumption on the bidder

dominance parameter we have n(i, p) < ηOPT/p. Hence

∑

c2
i <

ηOPT

p

(

∑

ci

)

=
ηOPT

p
n(B, p)

By McDiarmid’s Inequality we have

Pr

[
∣

∣

∣

∣

n(B, p)

2
− n(S, p)

∣

∣

∣

∣

> γn(B, p)

]

< exp

(

−2γ2n(B, p)2
∑

c2
i

)

< exp

(

−2pγ2n(B, p)

ηOPT

)

(3)

Lemma 3. With probability at least (1−2|Q| exp(−2γ2/η)) both OPT (S,M/2)

and OPT (T,M/2) are greater than (1/2 − γ)OPT .

Proof. Let p be any price satisfying n(B,M)p ≥ OPT . Then from Equa-

tion 3 we have

Pr

[
∣

∣

∣

∣

n(B, p)

2
− n(S, p)

∣

∣

∣

∣

> γn(B, p)

]

< exp

(

−2γ2

η

)

Now if the optimal algorithm decides to allocate x∗(B,M) items

at price p∗(B,M) then clearly n∗(B, p∗(B,M))p∗(B,M) ≥ OPT . Also

p∗(B,M) can take values only from the set Q. So by union bound we

have for any M with probability at least (1 − |Q|exp(−2γ2/η)) we have

∣

∣

∣

∣

n(B, p∗(B,M))

2
− n(S, p∗(B,M))

∣

∣

∣

∣

> γn(B, p∗(B,M))

That is, with probability at least (1 − |Q| exp(−2γ2/η)) at least (1/2 −

γ)n(B, p∗(B,M)) bids in S are more than p∗(B,M). So

OPT (S,M/2) ≥ n(S, p∗(B,M))p∗(B,M) ≥

(

1

2
− γ

)

OPT.

Similarly with probability at least (1 − |Q| exp(−2γ2/η)) we have

OPT (T,M/2) >

(

1

2
− γ

)

OPT.



Corollary 2. With probability at least (1 − 2|Q| exp(−2γ2/η)) we have

the following two inequalities

x(S,M/2) > α

(

1

2
− γ

)

OPT

p(S,M/2)

x(T,M/2) > α

(

1

2
− γ

)

OPT

p(S,M/2)
.

Proof. Since the allocation algorithm that we use as a subroutine has

competitive ratio α so,

x(S,M/2)p(S,M/2) = ALG(S,M/2) ≥ αOPT (S,M/2) > α

(

1

2
− γ

)

OPT,

the last inequality following from Lemma 3.

The other inequality follows similarly.

Corollary 3. With probability (1 − 4|Q| exp(−2γ2α(1/2 − γ)/η)) for all

p = p(S,M/2) we have the following two inequalities:

∣

∣

∣

∣

n(B, p)

2
− n(S, p)

∣

∣

∣

∣

> γn(S, p)

∣

∣

∣

∣

n(B, p)

2
− n(T, p)

∣

∣

∣

∣

> γn(S, p)

and for all p = p(T,M/2) we have the following two inequalities:

∣

∣

∣

∣

n(B, p)

2
− n(S, p)

∣

∣

∣

∣

> γn(T, p)

∣

∣

∣

∣

n(B, p)

2
− n(T, p)

∣

∣

∣

∣

> γn(T, p)

Proof. From Equation 3 and Lemma 3 we see that for any fixed p =

p(S,M/2)

Pr

[∣

∣

∣

∣

n(B, p)

2
− n(S, p)

∣

∣

∣

∣

> γn(B, p)

]

< exp

(

−2γ2p(n(S, p))

ηOPT

)

< exp

(

−2γ2(1/2 − γ)

η

)

,

the last inequality follows from Corollary 2. The Corollary now follows

by applying union bound.



Corollary 4. With probability (1 − 4|Q| exp(−2γ2α(1/2 − γ)/η))

n(i, p(S,M/2)) < γx(S,M/2).

Proof.

n(i, p(S,M/2)) < η
OPT

p(S,M/2)
< η

x(S,M/2)

(1/2 − γ)α
< γx(S,M/2),

the second inequality follows from Corollary 2 and the third inequality

follows from the choice of η.

Now the fictitious run of the online allocation algorithm on S finally

decides to allocate x(S,M/2) copies to bidders in S at price p(S,M/2).

So the mechanism allocates (1− 6γ)x(S,M/2) copies to bidders in T . By

Corollary 3 with probability at least (1 − 4|Q| exp(−2γ2(1/2 − γ)/η))

n(T, p(S,M/2)) > (1 − 6γ)n(S, p(S,M/2)) + 2γn(S, p(S,M/2))

Thus there are at least 2γn(S, p(S,M/2)) losing bid in T that bids at

least p(S,M/2). But from Corollary 4 we see that no bidder has more than

γn(S, p(S,M/2)) bids above p(S,M/2). So by the VCG auction pricing

system each winner in T pays at least p(S,M/2) per copy. So the revenue

we get from T is at least

p(S,M/2)(1 − 6γ)x(S,M/2) = ALG(S,M/2)(1 − 6γ)

Similarly the revenue we get from S is at least

ALG(T,M/2)(1 − 6γ)

So with probability (1−4|Q| exp(−2γ2α(1/2−γ)/η)) our revenue earned

is at least

ALG(S,M/2)(1−6γ)+ALG(T,M/2)(1−6γ) > α(1−6γ)(1−2γ)OPT > α(1−8γ)OPT

So if γ = ǫ/8 and (2γ2α(1/2−γ)/η)) > log(4|Q|/δ) then with probability

(1 − δ) the total revenue earned on expectation is at least α(1 − ǫ)OPT .


