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ABSTRACT
In this paper we propose a general family of position auc-
tions used in paid search, which we call multi-score position
auctions. These auctions contain the GSP auction and the
GSP auction with squashing as special cases. We show ex-
perimentally that these auctions contain special cases that
perform better than the GSP auction with squashing, in
terms of revenue, and the number of clicks on ads. In par-
ticular, we study in detail the special case that squashes
the first slot alone and show that this beats pure squashing
(which squashes all slots uniformly). We study the equilibria
that arise in this special case to examine both the first order
and the second order effect of moving from the squashing-
all-slots auction to the squash-only-the-top-slot auction. For
studying the second order effect, we simulate auctions using
the value-relevance correlated distribution suggested in La-
haie and Pennock [2007]. Since this distribution is derived
from a study of value and relevance distributions in Yahoo!
we believe the insights derived from this simulation to be
valuable. For measuring the first order effect, in addition
to the said simulation, we also conduct experiments using
auction data from Bing over several weeks that includes a
random sample of all auctions.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General; J.4 [Social and
Behavioral Sciences]: Economics

Keywords
Generalized Second Price Auction, Squashing

1. INTRODUCTION
Sponsored search auctions have been the “killer app” for

algorithmic game theory, due to the enormity of the scale
(with 10s of billions of dollars in annual revenue) and the
automated nature of these auctions. On the one hand, the
basic design of this auction, referred to as the Generalized
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Second Price (GSP) auction has been the gold standard and
has remained constant in the academic community, while on
the other hand several extensions have been incorporated
into this basic design in practice. These extensions seek
better trade-offs between various objectives and are held as
trade secrets. The aim of this paper is to systematically
consider a general family of auctions and identify specific
instances that perform better than GSP and its variants
that are used in practice.

One such widely adopted extension of the GSP auction
is squashing, and was introduced in the widely cited paper
of Lahaie and Pennock [13]. While the usual GSP auction
ranks the ads by the product of their bids and click proba-
bilities, squashing allows the click probability (or more gen-
erally a relevance score, denoted by e) to be raised to some
fixed exponent (i.e., the ranking is by b× eα, α ≥ 0, here b
is the bid and e the click probability). This generalizes GSP
to a single parameter family of auctions, thus giving more
freedom in auction design.

In this paper we propose a general family of auctions,
which we call multi-score position auctions (MSPA), and
experimentally evaluate a particular sub-family of these auc-
tions, which we term dual score auctions (DSA). The basic
idea of an MSPA is that each slot has its own scoring func-
tion, along with an initial score to select the unordered set
of ads to be shown. The payment rule is in the spirit of
GSP: each ad must pay the minimum bid required to retain
its slot. This generalizes GSP with squashing (and hence
GSP), where the scoring function is the same for all slots,
namely, the squashed score. There is a particularly attrac-
tive special case of DSA that only applies squashing to the
first slot and does not squash the other slots. This special
case seems appealing since it does not increase the number
of auction parameters over the squashed-GSP auction and
seems to be the simplest non-trivial example of a DSA auc-
tion. To our knowledge, all previous modifications to GSP
consist of a single scoring function for the auction. We study
this special case of DSA empirically in detail and also study
the nature of its equilibria.

We examine both the first-order and second-order effect
of going from the auction where we squash all slots uni-
formly with exponent α to the one where we squash only
the top slot at α. In this context, first-order effect refers to
a comparison of the two auctions’ revenue and clicks based
on existing bids. Second-order effect refers to making the
same comparison, but using the respective equilibrium bids
for each auction.
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Our experimental setup to measure first-order effect.
Our experimental setup uses actual search queries and

click responses to compute revenue and clicks, so it captures
all the complex dependence of clicks on the entire context
of the search results page. This avoids pitfalls of assump-
tions such as that the click-through rates are a product of a
slot dependent factor and an advertisement dependent fac-
tor. We achieve this by using certain experimental traffic on
Bing for which the order of the ads was randomized. Due to
this randomness the order of the ads for some of these search
results pages coincides with the order given by any specific
DSA auction which we would like to measure. Furthermore,
the randomization ensures that this happens sufficiently of-
ten and is a representative sample of all search queries. We
use data from several weeks so that we have a sufficient vol-
ume of instances. Thus, we can evaluate the performance of
a DSA auction for any choice of exponents.

Our simulation setup to measure second order effect.
With experiments on actual search engine traffic as de-

scribed in the previous paragraph, it is very difficult to mea-
sure second order effects. This is because a typical A/B test
is allotted a small fraction of search engine traffic. On the
other hand, what we need to measure second order effect
is a small set of advertisers to respond to the new auction
format. This requires changing the auction format for all
the queries relevant to all the advertisers in the concerned
set, which often demands a large portion of traffic to be
segregated for this experiment since each advertiser bids on
numerous keywords. Given this difficulty, we measure sec-
ond order effects using simulations à la Lahaie and Pennock
[13]. They generate values and click-probabilities from a
particular (joint) distribution which fits well a popular key-
word in Yahoo! search. We use the same distribution as
theirs. For any auction, given the values, we compute the
bids that form an equilibrium and evaluate the auction at
these bids to measure second-order effect. (Further, we use
the same distribution to measure first-order effect too, for
comparison with the experimental results from Bing traffic.)

A random sample of all queries.
This combination of simulations to measure advertiser re-

action and real data to only measure first order effects has
also been used in other recent papers such as Bachrach et al.
[6] and Roberts et al. [17]. However, there is a significant
difference in the nature of real data used by them and by
us. The real data used by these papers, as well as the data
used by Lahaie and Pennock [13] to derive their distributions
are for a few popular keywords, keywords that are searched
many times. However, it is known that a significant fraction
of the revenue comes from the “tail queries”, queries that are
seen only a few times. Thus any insight obtained from such
data may not necessarily be broadly applicable. The way we
get our auction data is truly a random sample of all queries
over several weeks and is therefore representative of the en-
tire market. We provide more details of our experimental
design in Section 3.

Findings from our first-order experiments.
Our main finding regarding first-order-effect based on Bing

traffic is that squashing only the top slot is better than squash-
ing all the slots, both in terms of revenue, and the number
of clicks (which is a proxy for user relevance/user satisfac-

tion, i.e., the DSA auction with exponent α for the top slot
and exponent 1 for the remaining slots does better than the
squashed GSP auction with exponent α. More details on
the exact numbers are in Section 3. Furthermore, the first-
order results measured from our experiments with actual
Bing traffic are broadly in agreement with the first-order
effect measured from simulations using the value and click-
probabilities distribution from [13].

Findings from our second-order simulations.
The main task in measuring second order effects is com-

puting the equilibrium of the squash-all-slots auction and
squash-only-the-top-slot aucton. For computing the equilib-
rium of the squash-all-slots auction, we use standard, “low-
est revenue fetching envy-free equilibrium” suggested inde-
pendently by Edelman et al. [9] and Varian [19]. In his
paper, Varian [19] gives empirical evidence for advertiser
bids coinciding with the predictions of this envy-free equilib-
rium. For the squash-only-the-top-slot auction, equilibrium
computation is more intricate, since there could be multiple
equilibria (even after placing the envy-free restriction) and
the equilibrium selection has a significant impact. But the
overall trend is still positive, with a strong trend that shows
that if the equilibrium prefers bidders with higher relevance,
then the improvements are significant, and somewhat sur-
prisingly, even more than what we get for the first order!
This suggests that the search engine should try to steer the
bids towards an equilibrium that favors more relevant adver-
tisers, which is a good idea anyway. The search engine could
do this, for instance, via bidding agents that can adjust bids,
(under some constraints provided by the advertiser) or by
influencing the matching of candidates to auctions. Equilib-
rium derivation is described in Section 4 and the results from
simulations using these equilibria are described in Section 5.

Intuitive explanation.
Both the first-order and second-order effects point towards

squash-only-the-top-slot auction being superior to squash-
all-slots auction. While this fact acts as an empirical jus-
tification for using the former, here we provide an intuitive
explanation for this phenomenon. The effect of squashing,
which changes the rank-score from b·e to b·eα for 0 ≤ α ≤ 1,
is to undermine the contribution of click probability in de-
ciding the ordering of ads. (To see this, consider the extreme
case of α = 0, where the bids alone decide the ordering of
ads.) When does squashing have a positive effect on rev-
enue? Consider an arbitrary slot, and 2 competing ads for
that slot. Fixing the ads in the other slots, let e1, e2 be the
click probabilities of ads 1 and 2 for this slot under consid-
eration; let b1 and b2 be the bids of these two ads. There are
three natural rankings possible here: GSP ranks these ads
according to their rank score of b · e, squashed-GSP ranks
these ads according to their rank-score b · eα, and finally
there is also the natural ranking of ads according to rele-
vance (click probabilities). We analyze three different cases
that come out of how these three different rankings compare,
and argue that only in one case can squashing improve rev-
enue. Further, we argue that this case is likely to occur only
for the first slot. As a convention, let 1 be the ad that wins
the slot under consideration when using GSP ranking, i.e.,
let b1e1 ≥ b2e2. Note that GSP’s revenue from this slot is
b2e2
e1

e1 = b2p2. Also, recall that 0 ≤ α ≤ 1.



1. GSP order = Squashed-GSP order = Click-probability or-
der. Mathematically, this case translates to {b1e1 ≥
b2e2; b1e

α
1 ≥ b2e

α
2 ; e1 ≥ e2}. This is the only case where

squashing improves revenue. GSP’s revenue is b2e2 from

this slot, while squashed-GSP’s revenue is
b2e

α
2

eα1
e1 =

b2e
α
2 e

1−α
1 . The latter is at least b2e2 whenever e1 ≥ e2

which is true in this case.

2. GSP order = Squashed-GSP order 6= Click-probability or-
der. Mathematically, this is {b1e1 ≥ b2e2; b1e

α
1 ≥ b2e

α
2 ;

e1 ≤ e2}. In this case, squashed GSP’s revenue is
b2e

α
2

eα1
e1 =

b2e
α
2 e

1−α
1 . The latter is at most b2e2 because we have

e1 ≤ e2 in this case. Thus squashing hurts revenue.

3. GSP order = Click-probability order 6= Squashed-GSP or-
der. Mathematically, this is {b1e1 ≥ b2e2; b1e

α
1 ≤ b2e

α
2 ;

e1 ≥ e2}. In this case, squashed GSP’s revenue is
b1e

α
1

eα2
e2 =

b1e
α
1 e

1−α
2 . The latter is at most b2e2 because we have

b1e
α
1 ≤ b2e

α
2 . Thus in this case squashing hurts revenue.

Further, squashing also hurts the number of clicks, be-
cause in GSP the number of clicks is proportional to e1,
whrere as in squashed-GSP, due to a change in the order-
ing, the number of clicks is proportional to e2, which is
at most e1.

The question now is, given that squashing hurts in 2 out
of 3 cases, whether one should squash or not. Given that the
above analysis is on a per-slot basis, a more refined question
would be to identify which slots are likely to fall in case
1 and therefore should be squashed (as squashing increases
revenue in case 1), and which slots are likely to fall under
cases 2, 3 and therefore should not be squashed (as squashing
decreases revenue in cases 2, 3, and sometimes also decreases
clicks). We claim that slot 1 is more likely to fall in case 1
than any other slot. The reason is that often the GSP winner
of the first slot wins not only in terms of b×e but also in the
individual dimensions of b and e. In this case, it is immediate
that we fall in case 1. Even if the first slot winner wins only
in terms of e, but not in b, often the margin of victory in e
is high enough that even if one alters the GSP rank-score a
bit by introducing a squashing exponent, it is not very likely
to alter GSP’s order, and therefore GSP order = Squashed-
GSP order = Click-probability order, putting us in case 1
where one gets higher revenue. But as one goes down to
larger slot numbers (lower positions), the GSP winner is
not so pronounced as the first slot winner: i.e., either the
GSP winner of that slot doesn’t always win in terms of click-
probability e (putting us in case 2), or, the margin of victory
in terms of click-probability e is not high enough that a tiny
change in rank-score by squashing changes the squahsed-
GSP order from GSP order puttting us in case 3. Thus the
likelihood of being in case 1 decreases as we increase the
slot numbers. Intuitively this explains why it is better not
to squash the lower slots, and squash only the top slot.

Another implication of our results is that the revenue ben-
efits of squashing accrue mostly from the top slot.

Generality of the results.
A natural question at this point is to assess the general-

ity of our findings. For instance, will squash-only-the-top-
slot be found superior in other search engines’ data too?
What are some properties in the dataset to look for to get

a sense of whether this result will hold? The 3-case analysis
in the previous paragraphs shows that for any dataset where
the first slot winner wins “more comfortably” (i.e., the vic-
tory margin in terms of click-probability is sufficiently high)
while the click-probability victory margin is not that large
for the remaining slots, squash-only-the-top-slot auction is
very likely to do better. This property is true in Bing data
set, even after one excludes navigational queries and other
“dominant advertiser queries” like Verizon bidding on “Veri-
zon”keyword (although we are not allowed to release specific
numbers like the bid decay rate, click probability decay rate,
etc.). We believe that while the ratios may be different for
different search engines, this general fact that the first slot
winner wins “more” than the other slot winners should hold
in most datasets.

Related Work: Apart from the foundational work of
Aggarwal et al. [3], Edelman et al. [9], Varian [19], the work
that is most closely related to ours is that of Lahaie and
Pennock [13]. They propose a variant of the GSP auction,
namely squashed GSP auctions, where the ranking uses a
squashed score and contains as special cases both the rank-
by-bid and usual GSP. They show that GSP with squashing
allows the auctioneer to optimize revenue at equilibrium and
justify their results with simulations. In later work Lahaie
and McAfee [12] show that the squashed auction can, un-
der certain circumstances, also produce an efficient ranking.
Our work presents a further generalization of the auction
mechanisms of these works. Our simulations closely match
the ones done in Lahaie and Pennock [13]. We use counter-
factual analysis to study the first-order effects and to analyze
the revenue-relevance trade-offs for the auction on actual ad
auction data. This methodology is expounded in Bottou
et al. [7], however, in a machine learning rather than an
auction design setting.

Other papers have proposed modifications to the basic
mechanism. Aggarwal et al. [4] propose a truthful auction
based on Gale-Shapley stable matching theory that can in-
corporate bidder and position specific minimum and max-
imum prices. Roberts et al. [17] propose an auction that
ranks using the difference between the bid and the reserve
price. In other words, the reserve price affects the ranking
beyond just filtering out advertisers with low bids. They
too use simulations and real data to show this could raise
more revenue. Another example of an empirical evaluation
of variants of the GSP auction is by Thompson and Leyton-
Brown [18]. They too run simulations, similar to Lahaie
and Pennock [13], using data generated from distributions
believed to mimic the actual bid distribution. They compare
the revenue guarantee at equilibrium with different quality-
weighted reserve prices and un-weighted reserve prices, and
conclude that un-weighted prices perform consistently bet-
ter. They also show that squashing improves the revenue of
quality-weighted reserve prices, which otherwise fall much
behind un-weighted reserves. Bachrach et al. [6] also evalu-
ate different ways of setting reserve prices, with an empha-
sis on the tradeoffs obtainable between different objectives,
once again using a combination of simulations and real data.

GSP Auctions have been studied from many different an-
gles [5, 1, 14, 16, 10], such as questioning the separability as-
sumption about the click-through rates, which are observed
to not hold in practice [8, 2, 11]. Ostrovsky and Schwarz
[15] analyze how using reserve prices derived from Myer-



son’s theory can help increase revenue. A more complete
summary of these results is beyond the scope of this paper.
However, we are not aware of any other papers suggesting
modifications of the basic auction format itself.

2. MODEL

2.1 Position Auctions
Position Auctions refer to auctioning of ad slots along-

side “organic search” results in response to a user query in a
search engine. Abstractly, a set of ads, A, compete for a set
of k slots numbered 1 through k, with k < |A|. The slots
at the top of the page (which correspond to lower numbered
slots in our notation) are more desirable to all the adver-
tisers. The slots are allocated through an auction. The
advertisers place bids that are used in the auction.

An important feature of this mechanism is that it is pay-
per-click: while the search engine assigns slots, it gets paid
only if the user clicks on the ad. Whether an ad gets clicked
or not depends on the allocation of ads to slots, the most
general view being that the click probability of any ad de-
pends on the entire slate of ads being shown. A common
assumption is the, so-called, rank-1 assumption: that the
click probability is a product of an advertiser factor and the
slot-factor. Opinions about the accuracy of this assumption
are mostly divided. In any case, an important consideration
in the auction is the inherent clickability of an ad, which we
simply call as the click probability. This is estimated by the
search engine/auctioneer using sophisticated machine learn-
ing algorithms. For the purpose of auction design these can
be thought of as the input.

To complete the abstract auction design problem, the auc-
tion assigns each slot to an ad, and charges payments. We
represent the assignment by σ : [k]→ A, σ(j) is the identity
of the ad that is assigned slot j.1 Let vj be the value of the
ad in slot j for getting a click and let πj be the payment
made by the ad in slot j, on getting a click. Let c(j, σ) be
the probability that the ad in slot j is clicked, given the
allocation σ.

Important objectives in these auctions are

1. Revenue: the expected revenue of an allocation σ and
payment π is

k∑
j=1

πjc(j, σ).

Revenue is clearly of interest to the search engine.

2. Number of clicks: The expected number of clicks given
an allocation σ is

k∑
j=1

c(j, σ).

The number of clicks is an indication of ad relevance
and engagement with the user, and is considered very
important. More relevant ads and better engagement
with the user bring back more users and, in the long
run, benefit the search engine and the advertisers.

1 In practice k is not fixed, but this is a minor and distracting
feature that we ignore for the sake of discussion here.

2.2 Multi-score auctions
A multi-score auction is given by a set of k+ 1 functions,

s0 and sj for j = 1, · · · , k, from a pair of bid and click
probability, (b, c), to a non-negative real number. Each sj
for j = 0, · · · , k is strictly monotonically increasing in each
of its arguments. Let s−1

j denote the inverse of sj in the first

argument, i.e., s−1
j (b′, p) is the unique number b such that

sj(b, p) = b′.
The auction proceeds as follows, it first selects the top k

ads according to s0. Then it goes down the slots from 1 to k
and for each j = 1, · · · , k picks the ad with the highest score
according to sj (from the ads not already picked for a higher
slot) to be assigned slot j. The payments are set similar to
the GSP rule: each advertiser pays the lowest amount he
would have to bid in order to retain his slot. The auction is
summarized in Algorithm 1.

All of our auctions can be extended to include reserve
prices, but we ignore reserve prices to keep the exposition
simple.

ALGORITHM 1: Multi-Score Position Auctions

Input: A set of candidate ads, A, and for each ad i ∈ A, its bid
bi and its click probability ci.

Output: A selection and ranking of top k ads given by
σ : [k]→ A. Their payments given by πj , for
j = 1, · · · , k.

S ← arg kmax{s0(bi, ci) : i ∈ A}, the top k ads from A, ranked
by s0(bi, ci), i ∈ A;
r0 ← argmax{s0(bi, ci) : i ∈ A \ S};
for j = 1, · · · , k do

σ(j)← argmax{sj(bi, ci) : i ∈ S} ;
S ← S \ σ(j) ;
πj ←
max

(
{s−1
j (sj(bi, ci), cσ(j)) : i ∈ S} ∪ {s−1

0 (r0, cσ(j))}
)
;

end

The multi-score auction is a generalization of standard
auctions used in practice: the GSP auction corresponds to
the scoring functions sj = bc for all j. Another common
variant is GSP with squashing, which corresponds to sj =
bcα for some α (we restrict to α ∈ [0, 1]). Variants considered
previously fall into the “single score” framework, where sj is
the same for all j. Extending it to possibly different scores
for each slot gives more freedom to the auction designer.

2.3 Dual score auctions (DSA)
We consider a special case of the above general family

of auctions. The class is parameterized by a pair of real
numbers, (α, β). In the first step, the top k ads are picked
according to bcβ . From among them, the ad in the first
slot is picked according to bcα, and the rest of the slots
are filled with the remaining ads ranked by bcβ . In other
words, these are multi-score auctions with s1(b, c) = bcα

and sj(b, c) = bcβ for all j 6= 1.
We rename the ads so that σ is the identity function. Then

advertiser 1 is charged

max

({
bjc

α
j

cα1
: j ≥ 2

}
∪

{
bjc

β
j

cβ1
: j > k

})
.

Advertiser j for j = 2, · · · , k is charged bj+1c
β
j+1/c

β
j . We

refer to this auction as dsa(α, β).



There are also other ways to get sub-families of MSPAs
with few parameters. For instance, one can consider a sepa-
rate scoring function for candidate selection (s0) and a dif-
ferent one for ranking (sj for all j ≥ 1). The space of MSPAs
is quite huge and it is possible that there are several other
interesting auctions in this framework.

3. EXPERIMENTS
We run experiments on actual data from Bing. These ex-

periments measure first order effects, which measures the
change in the performance metrics keeping the bids un-
changed. It is almost impossible to effectively measure sec-
ond order effects from real data. The reason is that such
experiments are required to run only on a small sample of
auctions. However, in order to measure the second order
effects, all of the auctions an advertiser participates in must
be included in the experiment. This creates a dependency
which often forces to include a large part, if not all, of the
auctions, contradicting the requirement that the experiment
be only performed on a small fraction of auctions.

3.1 Experimental Design
For our empirical evaluation, we use data from existing

randomized experiments in Bing. One of the existing ex-
periments in Bing places the ads in an order that is chosen
uniformly at random from all permutations from the set of
auction candidates. This experiment itself runs on a ran-
dom sample of actual search traffic. Given any value of
(α, β), there is a non-trivial fraction of auctions for which
the (random) order of the ads in this experiment matches
the order of ads according to the auction dsa(α, β). This is
a random sample of all auctions (since the randomization of
the ad slate is independent of the auction) and given suffi-
ciently many auctions, we get a representative sample of all
search traffic. We use the bid data and the actual user click
reponses from logged information for this experiment. We
used logs from a duration of several weeks for the analysis.
This lets us compare DSAs with different α, β parameters
for a number of variants. As noted earlier, this is a signif-
icant departure from earlier papers which use data from a
few popular keywords only. Moreover, our method allows us
to evaluate the auctions with respect to actual clicks, which
is also absent in previous work. Here are some key facts
about our experimental design:

1. The data for the experiment was collected for a dura-
tion of 41 days.

2. The experiment performs a filtering that excludes nav-
igational intent queries and other queries where there
is a dominant advertiser, like Verizon bidding on the
“Verizon” keyword.

3. Barring the dominant advertiser filter, and other san-
itizations to remove nonbillable queries, etc., the ex-
perimental traffic represents a true random sample of
the entire traffic to Bing.

4. For each value of α and β we report, the sample size,
which is the number of samples in our data set that
matched the order of dsa(α, β), was between 11 million
and 13 million. Thus, there are no small sample issues.

Even though the order of the ads is randomized, it may
not be perfect. A sanity check is to see whether for a given

(α, β) there were sufficiently many queries for which the ads
were ranked as per dsa(α, β). Due to confidentiality reasons,
we present a slightly different statistic, for each β we present
the average (over different αs) of the ratio of the number of
queries matching dsa(α, β) to the number of queries match-
ing dsa(1, 1), i.e.,

∑
α∈Λ

1

|Λ|
number of queries matching dsa(α, β)

number of queries matching dsa(1, 1)
. (1)

One caveat of our setup is that we cannot change the
criteria used to select the set of ads, alternatively s0 is the
criterion that Bing used for selecting auction candidates dur-
ing the time period of our data collection. We only capture
effects that are due to re-ranking of candidate ads.

3.2 Experimental Results
The main chart is in Figure 1, which compares dsa(α, 1)

with dsa(α, α). This shows that dsa(α, 1) always pareto-
dominates dsa(α, α), with substantial improvements in both
rps and ctr. This is in agreeement with the simulation
results presented in Figure 3. This is the most interesting
conclusion of these experiments, indicating that squashing
only the top slot is better than complete squashing.

Why restrict α to [0, 1]?.
The optimal value of α is keyword specific, and depends

on the correlation between bids and click-through-rates for
that keyword. While theoretically the optimal α could lie
anywhere in (−∞,+∞), the kinds of correlation necessary
to make the optimal α negative or too large are not realistic.
Further, even if a negative α could afford the search engine
large revenue in the short run, it results in very poor rele-
vance, affecting user satisfaction. Consequently, we present
results for 0 ≤ α ≤ 1 which seems to be the range of α’s that
give the right trade-off between revenue and relevance. Re-
markably, Figure 1 shows that squashing only the top slot is
better than squashing for all slots for all αs in [0, 1]. While
we omit results for α ∈ [−1, 0], the trend of simultaneous
increase in revenue and CTR continues to remain there too.

Next, we present a chart (Figure 2) showing that the num-
ber of queries is pretty evenly distributed, by giving for each
β, the ratio of the number of queries matching dsa(α, β) to
the number of queries matching dsa(1, 1) as mentioned in
Equation (1). Note that the value for β = 1 is less than 1,
since this is an average over all αs.

4. EQUILIBRIA OF DSA
Unlike our experiments, where c(j, σ) could be an arbi-

trary function of j and σ, measuring second-order effects of
DSA requires computing DSA’s equilibrium and hence some
structure is necessary on c(j, σ). We make the standard as-
sumption that the ckick-through-rate of bidder s in position
t is esxt, for es, xt ∈ [0, 1]. In our previous section’s no-
tation, c(j, σ) = eσ(j)xj . The quantity es is often referred
to as the relevance of bidder s’s ad and xt is called as the
position effect.

With the above separable click-through-rate assumption
Varian [19] and Edelman et al. [9] characterize the set of
envy-free equlibria or “symmetric Nash equilibria” (SNE) of
the GSP auction and Lahaie and Pennock [13] do the same
for GSP with squashing. These are a subset of pure Nash
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equilibria, obtained by strengthening some of the Nash equi-
librium constraints to make them symmetric for deviations
that take the bidder above and below his current slot. The
characterization says that such an equilibrium always exists,
there is only one order of bidders that can result in an SNE
and gives a closed form formula for the bids at the lowest
price equilibrium (which is uniquely defined).

Unfortunately, there isn’t such a simple characterization
for the SNE of DSA, and a SNE may not exist. When they
exist, there may be multiple orderings of bidders which sup-
port equilibria. The first fact is not problematic: our sim-
ulations show that equilibrium exists for more than 91%
of queries2 for all α ≥ 0. The second poses an interest-
ing conundrum, and our simulations show that the choice of
equilibrium order results in significant difference to the per-
formance metrics. Before we detail the results of our simu-
lations, we detail the equilibrium constraints. Fix a partic-
ular ordering of bidders, say bidder s is in slot s for s ∈ [n].
Then the SNE conditions are as follows. For DSA(α, β), let
ws = eβs and ŵs = eαs . Let bs be the bid of advertiser s.

We first write envy-free constraints for bidders in slots
s > 1 to not envy each other:

2Note that as α gets closer to 1, the percentage of queries
that have a SNE increases and hits 100% at α = 1 since that
corresponds to pure GSP.

∀s 6= 1, t 6= 1,

(
vs −

bs+1ws+1

ws

)
esxs ≥

(
vs −

bt+1wt+1

ws

)
esxt

(2)

Let p̂1 = maxs≥2 bsŵs. We now write constraints for bid-
ders in slots s > 1 to not envy bidder in slot 1.

∀s 6= 1,

(
vs −

bs+1ws+1

ws

)
esxs ≥

(
vs −

p̂1

ws

)
esx1

(3)

Finally, we write the constraints for bidder in slot 1 not
to envy any bidder in slot s ≥ 2.

∀s 6= 1,

(
v1 −

p̂1

ŵ1

)
e1x1 ≥

(
v1 −

bs+1ws+1

w1

)
e1xs

(4)

Given an ordering of the bidders, we can check if equilib-
rium exists using conditions (2),(3),(4). Once we know equi-
librium exists for a given order, we can also find the lowest
price equilibrium bids as follows. While all kinds of compli-
cated allocations and bids could satisfy conditions (2),(3),(4),
note that once the bidder in the first slot is fixed, the remain-
ing k − 1 slots should necessarily satisfy mutual envy-free
conditions among themselves, and therefore, by Edelman
et al. [9] and Varian [19], there is a unique ordering among
them, namely, the order of vsws = vse

β
s . The lowest SNE

bids for slots 3, . . . , k is uniquely determined, and is given
by (see Varian [19] and Lahaie and Pennock [13]):

bs+1ws+1xs =

k∑
t=s

(xt − xt+1)vt+1wt+1. (5)

Fixing the above bids for slots 3, . . . , k (bidders s > k
have bs = vs) determines the payments for all slots except
1 . The only quantity to be determined to compute rev-
enue is p̂1. We compute the smallest p̂1 that satisfies condi-
tions (3),(4). This determines the revenue to be p̂1

ŵ1
x1e1 +∑k

s=2

bs+1ws+1

ws
xses.

Remark 1. It could be possible that an equilibrium for
DSA(α, β) may exist satisfying conditions (2),(3),(4), but
may not satisfy the lowest bids specified in (5). For our sim-
ulation purposes, we call such instances as no-equilibrium
instances, and even with this restriction, the number of in-
stances with equilbrium is at least 91% in the relevant regime
of α ≥ 0.4. More precisely, we only look for equilibria that
satisfy the lowest bid constraints for slots 3, . . . , k in (5).

Remark 2. Note that since p̂1 = maxs≥2 bsŵs, bidder 2
is not necessarily the price setter for bidder 1.

5. SIMULATIONS
We do simulations to compare the performance of DSA

and GSP with squashing. The goal of doing simulations is
to measure the second order effects, i.e., if we change the auc-
tion format, then we expect the advertisers to adjust their
bids to the new format, with respect to which we should
measure the performance metrics. How do advertisers bid?
The standard assumption is that they bid at an SNE. There-
fore we measure the percentage change in the performance



metrics betweeen an SNE of GSP with squashing and an
SNE of DSA. This is the same methodology used by La-
haie and Pennock [13] to compare GSP with squashing with
pure GSP. For our simulations we use the same distribution
as they did to generate the instances.

As in Lahaie and Pennock [13] we use a joint distribu-
tion for determining the bidders’ value relevance pairs. The
marginal distribution for values is a lognormal distribution
with parameters µ = 0.35 and σ = 0.71. The marginal
distribution for relevance is a beta distribution with param-
eters a = 2.71 and b = 25.43. We use a Gaussian copula to
create a joint distribution from these two marginal distribu-
tions, with differing levels of correlation. We report results
for Spearman correlation levels that Lahaie and Pennock
report fit well with the keyword for which they performed
their simulations: namely, correlations of 0.3, 0.4, 0.5.

We focus on the two most important objectives, revenue
and click-throughs. We present relative impact on these
two objectives as we move from dsa(α, α) to dsa(α, 1). The
percentage increase in revenue and the percent increase in
clickthroughs are respectively(

rev(α, 1)

rev(α, α)
− 1

)
· 100 and

(
ctr(α, 1)

ctr(α, α)
− 1

)
· 100.

Before we do the second order analysis, we do a first order
analysis: how do the performance metrics change if we re-
tain the SNE bids for the original auction. We do this as a
sanity check to test whether this agrees with the first order
analysis we perform on real data (see Section 3). These re-
sults are presented in Figure 3. The first order effects show
a consistent improvement in both rps and ctr for dsa(α, 1)
vs. dsa(α, α), in agreement with our analysis on real data.
We emphasize that while simulation is for a single keyword’s
distribution, our real experiment is over a random selection
of all queries for several weeks.
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Figure 3: Impact on revenue and click-throughs for
dsa(α, α) vs. dsa(α, 1).

As mentioned before, there may not be an SNE at all in
dsa(α, β) or there may be many orders of bidders for which
equilibria exist. Observe that the possible number of such
orders is at most n, since once you fix the bidder in the top
slot, the rest of the bidders are ordered according to bje

β
j .

Therefore it is computationally easy to just try all n choices
for the first slot and check for equilibrium. This gives rise to
the problem of equilibrium selection; if many of these choices

lead to an equilibrium, which one do we choose?3 We break
ties according to the following 3 criteria, the relevance ej , the
α-score for true values vje

α
j and the β-score for true values

vje
β
j . These orderings give successively lesser importance

to relevance (the ej ’s) and our simulations show that they
perform successively worse.

The results of the second-order analysis are presented in
Figure 4 for samples with a Spearman correlation of 0.4.

We also do simulations for samples with a Spearman cor-
relation of 0.3 and 0.5. The results are in Tables 1, 2, 3
and 4, and the trends are consistent with what we get for
correlation of 0.4.

The simulations suggest that the performance metrics de-
pend significantly on the choice of equilibrium. As can be
seen from Figure 4, there is a strong trend that shows that
preferring advertisers with higher relevance can lead to a
significant increase in all the desired peformance metrics.
Perhaps surprisingly, when we simply use the relevance score
(ej) to break ties, this increase is even more than the first or-
der increase. The search engine could steer the bids towards
an equilibrium that prefers advertisers with higher relevance
via, for example, bidding agents. Our simulations show that
such a strategy could result in a significant improvement in
the performance metrics.
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